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predicted by computational tools. Here, we highlight four critical parameters that could enhance the accuracy of called
single nucleotide variants and insertions/deletions: quality and deepness, refinement and improvement of initial mapping,
allele/strand balance, and examination of spurious genes. Use of these sequence features appropriately in variant filtering
could greatly improve validation rates, thereby saving time and costs in next-generation sequencing projects.
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Introduction

The recent successful applications of next-generation sequenc-

ing (NGS) technologies to identify disease-associated variants have

revolutionized biomedical and biological research, especially in

human disease studies [1,2]. Rapid advances in NGS technologies,

along with the dramatic decrease of cost, have propelled them to

become a major approach in research. As of September 2011,

more than 40 Mendelian diseases have been analyzed using whole

exome sequencing (WES) [3], and more than 10 complex diseases

have been studied using whole genome sequencing (WGS) and/or

WES, including, but not limited to, renal cancer [4], melanoma

[5], hepatocellular carcinoma [6], acute monocytic leukemia [7],

and head and neck squamous cell carcinoma [8]. While most of

the early NGS studies were conducted by large sequencing centers

or prominent research groups [2,9], the tremendous improvement

in technologies during the past two to three years has dramatically

reduced cost and hastened the speed of sequencing a genome

within a short period of time. Subsequently, NGS technologies are

now affordable and accessible to small or moderately sized

laboratories and are expected to quickly evolve as a routine

experimental technique in a similar fashion as the now common

use of microarray.

NGS generates massive amounts of data for genetic variant

detection. Thus, currently, a major bottleneck of NGS applications

is downstream bioinformatics analysis. This problem is especially

challenging for bench scientists. To meet this strong demand,

many investigators have been redirected to this new field and are

in the early stages of acquiring this technological knowledge,

especially pertaining to data analysis. Meanwhile, a great number

of computational tools dedicated to almost all aspects of NGS data

analyses have been developed during the past few years. However,

these tools are complicated and have project-specific features.

Firsthand experience in using these tools is important, especially

because investigators need to be able to readily identify true

variants for validation from the typically millions of variants called

by NGS computational tools. In this paper, we discuss four major

parameters that affect variant calling and the validation process,

aiming to provide some general guidelines to the NGS commu-

nity, especially for those new to NGS applications.

Among the various types of mutations that cause diseases, single

nucleotide variants (SNVs) and small insertions and deletions

(indels) are the most abundant. The detection of these variants is

critical in both WGS and WES studies. In the NGS data analysis

pipeline, SNV/indel calling is performed after mapping reads to a

reference genome, typically generating an initial set of SNVs/

indels. Based on several recently sequenced individual genomes

[10,11,12], a pattern has been recognized that, in general,

approximately 3–4 million SNVs are expected to be found in a

human genome by WGS when compared to the reference genome

[13], and ,20,000 SNVs are to be found in a human exome by

WES [14]. Some of these SNVs might, however, be false positives.

An open question is how to identify a set of SNVs with high

enough quality for follow up validation or further analysis. In an

early study by Ley et al. [15], the authors generated an initial

calling list of SNVs (,3.8 million SNVs) using the software Maq

[16] and then selected a subset of mutations from the list for

experimental validation. After they used their experimental data as

a training dataset for the Decision Tree C4.5 algorithm, the
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authors successfully learned a set of critical rules (e.g., based on

read counts, base quality and SNP quality scores), which were then

used to predict a small yet well supported set of ,2.6 million SNVs

with high accuracy [15]. In another study, Wei et al. [5] called

SNVs using the software bam2mpg [17] and developed a ratio

score to evaluate the quality of the initially called genotypes. Based

on their experimental data, the authors estimated a threshold of

this ratio score and used it to filter their initial list of SNVs.

These two studies, as well as several large-scale sequencing

projects [9,14], have shown that post-filtering of SNVs is essential

to identify variants that are more likely to be true while effectively

filtering false positives. Although not formulated, a few consistent

filtering rules have been recognized by the community, including

base quality, mapping quality, and coverage of supporting reads.

Additionally, there are several other factors that may affect the

accuracy of SNV/indel calling, such as sequence complexity and

the fitness of the algorithms used in a specific case. In this study,

we discuss four parameters that affect SNV and small indel calling,

which are critical in NGS applications. These parameters are (1)

variant quality and coverage, (2) refinement and improvement of

initial mapping, (3) allele/strand balance, and (4) examination of

spurious genes. Although some of them have been discussed in

previous studies in various forms [14,18,19], here, we systemat-

ically examined and demonstrated these rules using our own

experimental data, so that they may be generally applied to

different NGS data analyses.

Results and Discussion

Analysis Pipeline for SNV/Indel Detection
A straightforward, yet concise, pipeline to detect SNVs and

indels includes (1) sequencing, (2) pre-processing (e.g., quality

Figure 1. Pipelines for calling SNVs and indels. SNVs and indels are called by three options based on SAMtools (pileup or mpileup) and GATK
recalibration. Accordingly, three tiers of SNVs and indels are used for comparison. SNVs: single nucleotide variants. Indels: insertions and deletions.
doi:10.1371/journal.pone.0038470.g001
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check, data cleaning if necessary), (3) mapping reads to the

reference genome using tools like the Burrows-Wheeler Alignment

tool (BWA) [20], Bowtie [21], or others, (4) post-processing of the

alignment results (e.g., marking duplicates, sorting, and indexing),

(5) calling SNVs/indels using tools such as SAMtools [19,22] and/

or the Unified Genotyper implemented in the Genome Analysis

Toolkit (GATK) [14], and (6) filtering (Figure 1). Advantages of

this workflow include that it is straightforward, uses robust

technologies (applicable to both WGS and WES), is fast to

execute especially for WGS data, and leads to an acceptable false

positive rate. In our implementation, we applied BWA (version

0.5.9) to map reads using all default parameters. The Picard tool

(version 1.52) was used to mark duplicates, and the SAMtools:m-

pileup function (version 0.1.13) was used to call SNVs/indels. In the

filtering step, we used ‘‘perl vcfutils.pl varFilter’’ with a ‘‘-d 3 -D

10000’’ option and other parameters by default and denoted the

results using this pipeline as the tier one variant set (see the

Materials and Methods section for details). We did not apply any

further filtering rules to the tier one variants, as our intention was

to search for parameters and rules that are effective for improving

the validation rate. For this purpose, we required an unbiased set

of variants for validation.

Alternatively, the GATK program can be incorporated before

variant calling. While GATK has a comprehensive list of functions

for almost all the NGS analyses, here, we focused on an

enhancement of our pipeline using GATK (Figure 1). Specifically,

we proposed the incorporation of GATK in the step after read

mapping and before SNV/indel calling by SAMtools:mpileup.

Among all the complicated tools implemented in GATK, we

found that two functions, the recalibration of mapping scores and

local realignment around indels, were particularly useful to

improve initial mapping results before SNV calling. After the

integration of these two steps, a new set of mapping results in

BAM/SAM format [22] were generated and analyzed using the

SAMtools:mpileup function for calling SNVs/indels, followed by

varFilter for initial filtering. We denoted the results as the tier two

variant set.

Of note, the function to call SNVs and indels in SAMtools

previously was pileup, which became obsolete since version 0.1.10

and was replaced by mpileup. Thus, most studies published in early

2011 or before used SAMtools:pileup. To compare performance

between these programs, we also implemented SAMtools:pileup

(version 0.1.13, pileup was still available in this version); results were

denoted as the tier three variant set.

Validation Dataset
We used real data generated from NGS of 18 tumor-normal

pairs using an Illumina HiSeq 2000 (Chen, Pao, Zhao and Ji,

unpublished data). Starting with the tier one variant set, we

selected a total of 181 mutations based on potential functional

importance, including both SNVs and indels called in the 18

cancer samples. The tier one set was generated based on the most

straightforward analysis pipeline, i.e., no post-improvement on the

alignment results or any filter rules on the initial results; thus, it

included almost all putative variants directly obtained from the

pipeline output. The false positive rate was expected to be high.

Among these 181 mutations, 159 were SNVs and 22 were indels

(Table 1). Primers were designed for each of these variant sites,

and traditional Sanger sequencing was used to sequence the

corresponding PCR products. Sixty-five of the SNVs were

validated as true variants, with a validation rate of 40.88%.

Similarly, 12 indels were validated, and the validation rate was

54.54%. Overall, the validation rate was low for SNVs/indels

detected without applying filtering.

To perform a systematic evaluation of the variants by three

tiers, we used the following indicators to distinguish different cases

of prediction and validation data.

N True Positive (TP): variants predicted and validated.

N False Positive (FP): variants predicted but failed in validation.

N False Negative (FN): variants not predicted but validated.

N True Negative (TN): variants not predicted and not validated.

Three parameters were introduced in our evaluation:

recall~
TP

TPzFN
, accuracy~

TP

TPzFP
, and an F score,

F~2|
accuracy|recall

accuracyzrecall
. Due to the limitation of the dataset,

we could not obtain an accurate computation for the area under

the receiver curve (AUC), a widely used term in data mining.

Rather, we incorporated the F score to assist with the selection of

parameters and create a balance between accuracy and recall.

Based on our evaluation, we summarized the following four points

that are critical for improving variant call.

Table 1. Comparison of validation of 159 SNVs and 22 indels by different parameter setting in variant calling.

Dataset Condition TP FP TN FN Validate rate Recall Accuracy

SNVs (159)

Tier One Initial calling 65 2 94 2 65/159 = 40.88%

Tier One QUAL$28, DP$5 50 9 85 15 50/65 = 76.92% 50/59 = 84.75%

Tier Two No filtering 65 80 14 0 65/65 = 100% 65/145 = 44.83%

Tier Two QUAL$23, DP$5
or QUAL$25, DP$3

59 10 70 6 59/65 = 90.77% 59/69 = 85.51%

Indels (22)

Tier One Initial calling 12 2 10 2 12/22 = 54.54%

Tier One QUAL$17, DP$3 12 1 9 0 12/12 = 100% 12/13 = 92.31%

Tier Two No filtering 9 10 0 3 9/12 = 75% 9/19 = 47.37%

Tier Two QUAL$21, DP$3 9 0 10 3 9/12 = 75% 9/9 = 100%

QUAL: quality score for SNVs and indels. DP: read depth. Definition of Tiers One and Two is provided in text and Figure 1. TP: true positive; FP: false positive; FN: false

negative; TN: true negative;recall~
TP

TPzFN
; accuracy~

TP

TPzFP
.

doi:10.1371/journal.pone.0038470.t001
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Point 1: Both Quality and Read Depth Matter
In early applications using SAMtools to call SNVs/indels, cutoff

values of 20 for SNV quality (hereafter denoted as QUAL) and 50

for indels were suggested [23]. In the recent versions of SAMtools,

mpileup has replaced pileup with a newly introduced concept of Base

Alignment Quality (BAQ) [19]. We were unable to find an explicit

recommendation for the cutoff values that are appropriate for

filtering putative SNVs/indels. To find the appropriate cutoff

values for mpileup, specifically for SNVs, we systematically

compared the QUAL values for the variants called by SAM-

tools:mpileup (tier one set) and SAMtools:pileup (tier three set) for

each of the 18 cancer samples. The Pearson correlation

coefficients were very high and in a small range (0.9872 to

0.9946) among the 18 samples, although SAMtools:pileup QUAL

scores were slightly higher than SAMtools:mpileup scores in .80%

cases. Results of one sample are provided in Figure S1. This

comparison indicates that the QUAL scores of variants called by

mpileup and pileup are quite similar. Accordingly, we suggest a cutoff

QUAL value ,20 can be generally applied to variants called by

SAMtools:mpileup.

To further explore which cutoff values are most appropriate, we

compared the performance of variant calling through our

validation dataset. Specifically, initial variants were separated into

different groups through possible combination values of QUAL

and read depth (DP). We limited QUAL values in the range

between 15 and 35 with a step-wise increase of 1 and DP in the

Figure 2. Distribution of accuracy versus recall by different combinations of quality score (QUAL) and read depth (DP) values in two
sets (tiers 1 and 2) of SNVs and indels. (a) Tier One SNVs. (b) Tier Two SNVs. (c) Tier One Indels. (d) Tier Two Indels. For each variant set (panel),
each node represents a combination of cutoff values for QUAL and DP. Specifically, the QUAL cutoff was selected by an integer value in the range of
15 to 35 with an increment of 1 each time, and the DP cutoff by an integer value in the range of 3 to 15 with an increment of 1 each time. Then, we
evaluated the accuracy, recall, and F score (see text) for each cutoff combination. Note that many nodes are overlapped on the panel and shown by
jitter (i.e., points at the same locations are slightly shifted for visibility). The combination of values that could generate the highest F score was
selected (shown in red points).
doi:10.1371/journal.pone.0038470.g002
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range between 3 and 15 with step-wise increase by 1 as well. The

recall, accuracy, and F score for each of the possible combinations

of QUAL and DP were computed and compared, with the goal of

finding the combination of QUAL and DP scores that could

generate the highest F score. For tier one variants, we found that

with QUAL $28 and DP$5, the highest F score (0.8065) could be

achieved and a total of 50 of the 65 validated SNVs could be

recruited (recall = 76.92%), with an accuracy rate of 84.75%

(Figures 2a and 3a and Table 1). For tier one indels, using QUAL

$17 and DP$3, all 12 validated mutations could be recalled

(100%), with an accuracy rate of 92.31% (Table 1, Figures 2c and

3c). Although the F score may not be the most appropriate for

identifying QUAL and DP cutoff values, its notion of making a

trade-off between accuracy and recall is reasonable. We expect to

further improve this evaluation approach for identifying cutoff

values. For example, another combination for tier one indels,

QUAL $21 and DP$3, could generate a higher accuracy (100%)

with a slight decrease in the recall rate: only 11 indels could be

recalled (11/12 = 91.67%) (Figure 2c). Therefore, if high accuracy

is a high priority and resources allow only a limited number of

variants to be validated, the options ‘‘QUAL $21 and DP$3’’ is

preferred. On the other hand, if the goal is to search for and

validate as many possible variants with abundant resources

available, ‘‘QUAL $17 and DP$3’’ could be adopted.

Point 2: Realignment and Recalibration Improve Variant
Calling

When using the validation data to compare variant calling in

the tier one and two sets, we had better performance measured by

both recall and accuracy, especially for SNVs. With QUAL $23

and DP$5, or QUAL $25 and DP$3, we could recruit 59 tier

two SNVs (recall = 90.77%) with an accuracy of 85.51%

(Figures 2b and 3b). This result was compared to the highest

recall rate (76.92%) and accuracy rate (84.75%) using tier one

Figure 3. Distribution of read depth (DP) versus SNV quality score (QUAL) for the SNVs or indels selected for validation. (a) Tier One
SNVs (159 SNVs), (b) Tier Two SNVs (145 SNVs), (c) Tier One Indels (22 indels), and (d) Tier Two Indels (19 indels). Variants in blue denote successful
validation, and variants in red denote failure in validation. In each panel, the vertical dash line indicates the cutoff value for QUAL, and the horizontal
dash line indicates cutoff value for DP (see Point 2 in the main text and Table 1).
doi:10.1371/journal.pone.0038470.g003
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Figure 4. Allele and strand bias for SNVs. This figure shows read distribution of called variants to reference or alternative (i.e., non-reference)
alleles in forward or reverse strand. (a) Tier One SNVs passed validation. (b) Tier One SNVs failed in validation. (c) Tier Two SNVs passed validation. (d)
Tier Two SNVs failed in validation. Red: reference base forward; pink: reference base reverse; blue: alternative base forward; and cyan: alternative base
reverse. The arrows under the x-axis indicate the variants lacked supporting reads for one or more of the four allele/strand cases.
doi:10.1371/journal.pone.0038470.g004
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SNVs. For indels, using QUAL $21 and DP$3, only 9 of the 12

validated indels were recruited (Figures 2d and 3d), which is

slightly lower than the tier one data where all 12 validated indels

could be recruited and the accuracy was 100%.

For both tier one and tier two sets, the cutoff values we proposed

here might be variant set-specific and may vary according to

specific conditions; thus, there is no need to follow the exact

values. Rather, our values here demonstrate, based on our data

and experience, that a cutoff around 20–25 for SNV quality and

read depth $5, or higher, if data allows, would lead to a high

validation rate when using the pipeline for the tier two variant set.

Point 3: Allele and Strand Bias
Other factors that have been previously mentioned [14,24]

include a required supporting read number regarding the

reference or alternative alleles in the forward and reverse strands,

respectively. We systematically examined the allele and strand

distribution of the validation data in the tier one and two variant

sets (Figure 4). For each variant site, four numbers of ‘‘high-

quality’’ reads were obtained respectively for (1) reference allele

forward (RF), (2) reference allele reverse (RR), (3) alternate allele

forward (AF), and (4) alternative allele reverse (AR). Here, ‘‘high-

quality reads’’ indicate those that were literally used in SNV/indel

calling by SAMtools:mpileup function and were reported as the

‘‘DP4’’ item in the resultant files in VCF format [25]. As shown in

Figure 4, we indeed observed a strong difference between the

variants passing validation and those that failed in validation. To

describe this quantitatively, in each scenario, we counted the

number of variants with at least one supporting read for all four

allele/strand combinations and those with no supporting reads in

any of the four combinations (Figure 5a), and then constructed

262 contingency tables (Figure 5b and 5c). Fisher’s exact test

showed that there was a significant difference between the read

distribution and validation status (P = 1.7661025 for tier one

variant set and P = 1.2761024 for tier two variant set). However,

when we attempted to use this rule to perform prediction, i.e.,

requiring at least one supporting read for each of the 4 base/

strand combinations, we did not find that recall or accuracy

improved substantially. Thus, no filtering rules based on the

allele/strand balance were explicitly applied in our analysis. Even

so, this lack of improvement might occur in our data specifically.

Overall, we suggest that researchers check the allele/strand bias in

their own projects.

Point 4: Manual Check of Spurious Genes
Previous studies have noticed the phenomenon of spurious

genes (genes with spurious mutations found in many samples or

different projects) caused by similar regions in the genome [18].

These genes, e.g., CDC27, CTBP2, and OR4C3, have been

frequently predicted, in different projects, to have mutations, but

these findings were finally proved to be artifacts [1,26,27]. The

details of spurious genes in NGS data have yet to be explored. A

possible scenario is described below. Suppose there are two regions

A and B in the genome. Region A is included in the current

version of the reference genome, but region B is not due to the

incompleteness of our knowledge. Using currently available

mapping tools, the reads that are initially generated by region B

will hardly be confidently mapped to any region in the genome

and will be discarded. However, if the similarity between the two

regions is very high and the read is short, it would be possible that

the reads that are originally generated by region B will be assigned

to region A with mismatches, and these ‘‘mismatches’’ could

subsequently be reported as putative SNVs/indels in region A. Ju

et al. [28] proposed ‘‘super’’ genes to classify this type of gene,

which was found to have a high density of detected SNVs in their

genomic regions. We observed that CDC27 was frequently

predicted to have mutations in several of our in-house exome

sequencing projects with different phenotypes (data not shown). It

is important to distinguish such genes, especially when sequencing

a number of cancer samples, because in such conditions,

investigators would be particularly interested in searching for

genes with a high mutation frequency in multiple samples.

Without warning, it is likely that investigators will identify top

candidate genes with a high frequency of spurious mutations.

Should this occur, such artifacts could waste a lot of resources in

validation work, or even lead to false discovery reporting in the

literature.

To explore systematically the existence of spurious genes, we

carefully examined several known spurious genes/mutations (e.g.,

CDC27) and found that they tend to have two features: (1) high

coverage around the variation site, which could be partially

explained by incorrect assignment of reads (see above), and (2) low

quality of local alignment. Figure 6 shows an example of good

alignment that has most of the bases matched perfectly to the

reference genome except at the SNV site (Figure 6a), and an

example of bad alignment that has many mismatched bases within

each read (Figure 6b, the local alignment around two exons of

CDC27). Additionally, a long segment of the sequences around the

target regions is normally involved. Hence, the bad alignment will

exist across several bases rather than only the targeted site.

Therefore, we recommend describing the ‘‘local alignment

environment’’ of a variant locus rather than only considering the

alignment at the locus. In this work, we considered each exon as

an analysis unit.

For each exon, we proposed two parameters to quantitatively

measure these features in order to facilitate a manual check of

Figure 5. An illustration of Fisher’s exact test for allele and
strand balance. On the top panel (a), the table shows how we
summarized the counts for each mutation site (shown in each column
and denoted by M) in each of the four cases: reference forward,
reference reverse, alternative forward, and alternative reverse. A variant
is indicated by 1 if it does not have a supporting read in one or more
cases; otherwise, it is indicated by 0. The contingency tables for the Tier
One dataset and Tier Two dataset were constructed as shown in (b) and
(c), respectively.
doi:10.1371/journal.pone.0038470.g005
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high-risk spurious loci/genes. First, to assess the coverage

of an exon, we derived a parameter RPE to denote the

normalized number of Reads Per Exon: RPE~

#reads|106

exon length|
P

e[fexonsg
#readse

. In this formula, the absolute

number of reads for an exon is normalized (1) by its length

(exon_length) so that different exons with different lengths are

comparable to each other, and (2) by the total number of reads

mapped to exon regions (
P

e[fexonsg
#readse) for each sample so that

the same exon in different samples can be compared. Secondly, we

define a parameter PHQR to compute the Proportion of High-

Quality Reads (HQRs) for each exon. In the alignment results by

BWA, each read is assigned a mapping quality (MAPQ), defined

as -106log10Pr(mapping position is wrong) and rounded to the nearest

integer [22]. The MAPQ values range between 0 and 60, with

higher values indicating high mapping quality (Figure 6c). We

used the MAPQ information to indicate if a read has high-quality

if its MAPQ was higher than or equal to 40, and the proportion of

such high-quality reads for each exon was then computed as PHQR.

The cutoff value of 40 was selected based on the overall

distribution of mapping quality (Figure 6c). Of note, a pre-filtering

step on MAPQ is expected to be executed on the initial alignment

file (BAM/SAM) before SNV/indel calling, e.g., the command

Figure 6. A visual examination of a spurious gene (CDC27). The top panels show visualization of read alignment in good (a) and bad (b)
conditions using the software IGV [29]. The top part of each figure shows the coverage. Each grey bar represents one read, with the color grey
indicating it is matched well with the reference and other colors indicating mismatches. Panel (c) shows the distribution of mapping quality (MAPQ)
of all the reads in a representative sample. MAPQ is defined as -106log10Pr(mapping position is wrong), rounded to the nearest integer. As shown on
the x-axis in (c), MAPQ ranges between 0 and 60 in this sample, with 60 indicating the best mapping. Y-axis in (c) is the number of reads in this
sample. Panel (d) shows the distribution of MAPQ of all the reads in a sample and the reads mapped to CDC27 exon regions. Y-axis in (d) is the
proportion of reads in each MAPQ range (x-axis).
doi:10.1371/journal.pone.0038470.g006
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line ‘‘SAMtools view -q 1’’ is suggested to remove reads mapped to

multiple positions by the ‘‘-q’’ option [23]. However, the value

used in this step (-q) is typically not as high as 40, because this

setting could be too strict and, in turn, remove numerous reads. In

summary, in the alignment files used for SNV/indel calling, the

MAPQ values vary widely, and PHQR could be used to indicate the

overall alignment quality.

Figure 7 displays the distribution of PHQR versus RPE in our

samples. In the figure, each point represents an exon and grey

nodes indicate the cohort of all exons. We specifically examined

the distribution of the gene CDC27 (CCDS11509.1) and its 19

exons in all 36 samples. Here, we also included the matched

control samples because the spurious gene phenomenon is a

systematic artifact and is expected to occur in any samples

regardless of disease status. As shown in Figure 7, one exon of

CDC27 was observed to depart from the major distribution (red

points), and this phenomenon occurred in all the 36 samples. In

the plot panel (Figure 7), this exon is located in the right bottom

area where the coverage is high (x-axis), and the proportion of

high-quality reads is low (y-axis), which is consistent with the two

features we have expected (see above). We manually set this region

as RPE.1.5 and PHQR,0.4 and then collected all the exons that

were located in this area. After ranking these exons according to

their number of occurrence samples, we identified a total of 10

genes observed in more than 30 samples (83% of 36 samples)

(Table 2). Again, these cutoff values are arbitrary. Researchers

may apply a more stringent cutoff to require occurrence in .90%

of samples or refine the area in the plot by setting RPE and PHQR.

However, one may need to be cautious of the possibility false

positives regarding the exons we listed in Table 2. Manual

examination of local alignment should be performed before

experimental validation to save efforts and resource.

Figure 7. Detection of spurious genes. RPE: the number of Reads Per Exon after adjusting the length of the exon and the overall sequencing
depth per sample. PHQR: the Proportion of High-Quality Reads for each exon. Each point represents an exon. The grey points represent all the exons in
one sample. The red points indicate the distribution of the 13th exon of the gene CDC27 in all 36 samples, and purple points indicate the distribution
of the 42nd exon of the gene MLL3 in all 36 samples, both of which are representative spurious genes and failed to be validated by experiments. The
vertical dash line is set RPE = 1.5 and the horizontal dash line is set PHQR = 0.4.
doi:10.1371/journal.pone.0038470.g007

Table 2. Spurious genes having mutations detected in .30
samples.

CCDS ID Gene symbol Exon # samples

CCDS11509.1 CDC27 13th 36

CCDS12749.1 CGB 3rd 36

CCDS12752.1 CGB5 1st 36

CCDS41378.1 NBPF11 19th 36

CCDS43407.1 FAM153C 4th 36

CCDS5931.1 MLL3 42nd 36

CCDS34703.1 STAG3 33rd 34

CCDS5590.1 POMZP3 1st 34

CCDS10638.1 EIF3C 8th 32

CCDS30836.1 NBPF14 22nd 31

CCDS: Consensus coding sequence. Exon: the specific exon in which the
variants are detected.
doi:10.1371/journal.pone.0038470.t002
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The gene/exon lists, either by Ju et al. [28] or by our work, and

cutoff values for spurious genes may vary depending on different

runs and platforms. However, the main features of high coverage

and low proportion of high-quality reads are typical for these

genes. While the genes in Table 2 display the need for investigators

to take extra caution, we suggest they check for the local alignment

or draw similar figures in their specific NGS projects. Manual

examination of the local alignment environment could remove

most of these genes effectively. This examination is performed

after SNV/indel calling and before experimental validation.

In conclusion, we systematically examined the major factors

that could potentially improve validation rates in next-generation

sequencing data and summarized four parameters aiming to

provide general guidelines. These parameters are (1) both quality

and read depth are important factors in variant detection; (2)

realignment and recalibration help improving variant calling; (3)

there are allele and strand difference between the positions that

have been successfully validated and those that have failed in

validation; and (4) manual check could help filter spurious genes.

These points provide useful and timely guidelines in the selection

of software/pipelines for calling SNVs/indels and in the follow up

selection of variants for validation. A high validation rate not only

reduces the cost and labors in experimental validation of NGS

data, but also avoids reporting false discoveries in literature or

public databases. Although we identified these points primarily

based on exome data, they could also readily be applicable to

WGS data.

Materials and Methods

A total of 18 lung tumor:normal pairs were captured using the

Agilent SureSelect 38 M kit and sequenced on an Illumina HiSeq

2000 platform. On average, 48 Mb paired-end reads were

generated per sample with an average sequencing depth of 636
on targeted regions. This study was approved by the Institutional

Review Board of the Fudan University Shanghai Cancer Center,

Shanghai, China. All participants gave written informed consent.

Details of the sequencing strategy and description of the datasets

are provided elsewhere (manuscript in preparation).

The overall pipeline is shown in Figure 1. Briefly, all three

resultant variant sets were based on the same mapping results

initially generated using BWA [20] to map reads of each sample to

the human reference genome (hg18). Duplicate reads and reads

with a Phred-based quality score ,15 were removed from

subsequent analyses. Cleaned alignment result files in the BAM

format were then prepared for variant calling. The NGS data

analyses were conducted in a high performance computing cluster

comprising 3700 processor cores and having a theoretical peak

performance of 12 TeraFLOPS available at the Vanderbilt

Advance Computing Center for Research and Education

(ACCRE, http://www.accre.vanderbilt.edu/).

For the tier one variant set, we called SNVs/indels using the

SAMtools:mpileup function and filtered the resultant variations

using the varFilter function provided by the vcfutils.pl script in

SAMtools using ‘‘-d3 -D10000’’ option, i.e., requiring 3 or more

but no more than 10,000 read depth for each putative variant. For

the tier two variant set, we performed base quality score

recalibration and local realignment around known indels based

on the initial alignment results, followed by SNV/indel detection

in the same way we did for the tier one set using the

SAMtools:mpileup function and filtering. For the tier three variant

set, we called SNVs/indels using the initial alignment files as we

used for tier one set, but we used the SAMtools:pileup function.

A filtering step using ‘‘$3 = = ‘‘*’’&&$6. = 50) ||

($3! = ‘‘*’’&&$6. = 20’’ was applied on the resultant file by

varFilter implemented in the samtools.pl script [23]. The detailed

functional commands are available upon request.

Supporting Information

Figure S1 Distribution of Pearson correlation coeffi-
cient of the QUAL values by SAMtools:pileup and
SAMtools:mpileup in one representative lung cancer
sample. Each node represents one putative SNV or indel called

by both functions. The red line is y = x.

(PDF)
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