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Abstract

To identify gene expression responses common to multiple pulmonary diseases we collected microarray data for acute lung
inflammation models from 12 studies and used these in a meta-analysis. The data used include exposures to air pollutants;
bacterial, viral, and parasitic infections; and allergic asthma models. Hierarchical clustering revealed a cluster of 383 up-
regulated genes with a common response. This cluster contained five subsets, each characterized by more specific functions
such as inflammatory response, interferon-induced genes, immune signaling, or cell proliferation. Of these subsets, the
inflammatory response was common to all models, interferon-induced responses were more pronounced in bacterial and
viral models, and a cell division response was more prominent in parasitic and allergic models. A common cluster containing
157 moderately down-regulated genes was associated with the effects of tissue damage. Responses to influenza in
macaques were weaker than in mice, reflecting differences in the degree of lung inflammation and/or virus replication. The
existence of a common cluster shows that in vivo lung inflammation in response to various pathogens or exposures
proceeds through shared molecular mechanisms.
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Introduction

Microarray gene expression profiling has become a common

method for gaining insight into molecular disease mechanisms that

are involved in host-pathogen interaction, and the outcome of the

infection process, in terms of development of disease. The

increasing public availability of microarray data allows for

combining data in a meta-analysis, to identify common clusters

of genes induced upon infection. Since most innate immune

responses, especially those to pathogen-associated molecular

patterns, are evolutionary conserved, it is likely that such common

responses can be found. Indeed, it has been shown that under

controlled in vitro conditions macrophages respond to a broad

range of bacteria with a shared gene expression pattern [1] and

similar findings have been described for dendritic cells [2] and

peripheral blood mononuclear cells [3]. The meta-analysis of in

vitro data by Jenner and Young [4] revealed a common infection

cluster across a larger number of pathogens and studies, that

included several genes for which this role was not recognized in the

underlying studies. However, whether these findings in in vitro

infection models are representative for what happens in vivo is

unknown. Our laboratory recently published data on in vivo lung

infection responses to respiratory syncytial virus (RSV) [5] and

Bordetella pertussis [6,7]. Comparing these data sets showed several

similarities as well as differences in the genes involved, although

the kinetics of the responses was completely different [5–7]. To

make additional comparisons and identify a common set of

upregulated genes in different inflammatory diseases of the lung,

we collected additional data for acute lung inflammation models

from literature studies and other studies at our institute. As

interpreting pair wise comparison between models is hampered by

the large data size for each study, our goal was to use the data in a

meta-analysis. Because the number of different pathogens or other

exposures in each group is small compared to e.g. toxicogenomics

experiments, it is not possible to determine pathogen-specific

responses with sufficient certainty. The dataset is, however,

suitable to detect responses common to all – or to a substantial

number of – pathogens, or to reflect the ‘‘acute phase response’’ in

the lung. Therefore, our aim was to employ a meta-analysis to

identify gene expression changes in in vivo lung inflammatory

models that are common to all, or subsets of, inducers of lung

inflammatory lesions and pathogens.

Results

We combined microarray data from 12 studies [5–17] to

compile a table containing gene expression data for 4551 genes

upon 45 treatment conditions causing pulmonary pathology.

These include 4 exposures to chemical (i.e. air pollution) sources,

namely ozone and particulate matter (PM); 12 to bacterial

infection models (including LPS, a mimic of infection); 19 to viral

infections; 5 to parasitic infections; and 5 to allergic asthma
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models. More details on these exposures are given in Table 1.

Hierarchical clustering on the data showed that there was one

cluster showing a similar response pattern across the rodent and

macaque pulmonary inflammation models. This cluster contains

383 genes and is available as supplementary data at the journal’s

website (Supporting Dataset S1). Please note that, because gene

symbols for rodents and macaques differ in which typecase is used,

we will refer to genes in uppercase throughout this paper and

supplementary data to connect to conventions for writing human

gene symbols.

Initial inspection showed that among the 383 genes there were a

considerable number of immune and inflammation-related genes.

Gene Ontology (GO) term enrichment analysis by the DAVID

resource website (http://david.abcc.ncifcrf.gov/) [18,19] showed

that 100 of the 383 genes are annotated with the GO-term

‘‘immune response’’ (Fisher Exact p-value = 4.1E-43) and 40 genes

are annotated with the term ‘‘inflammatory response’’ (Fisher

Exact p-value = 1.1E-29) (Supporting Dataset S1). Also, the list

shows substantial overlap with genes previously identified in in vitro

experiments on host-pathogen responses. This includes 120 genes

that were previously found by Jenner and Young [4] as being

involved in the host-pathogen response; 82 genes described by

Huang et al. [2] as dendritic cell common responsive genes; 42

genes described by Nau et al. [1] as being induced as part of the

macrophage activation program; and 30 genes described by

Boldrick et al. [3] as common responsive genes in peripheral blood

mononuclear cells (Supporting Dataset S1). The largest overlap

between the in vivo and in vitro responses is found for inflammatory

cytokines and chemokines.

Within the common up-regulated set of 383 genes, several

immunological processes are represented by a substantial number

of genes. These can be summarized in order of decreasing overlap

with the in vitro studies.

The functional class of genes that is most prominently up-

regulated consists of cytokines and chemokines. Among these

genes are interleukins (IL1A, IL1B, IL5, IL6, IL12B, IL13, IL15),

CC-chemokines (CCL2 (MCP1), CCL4 (MIP-1B), CCL5 (RANTES),

CCL7 (MCP3), CCL8 (MCP2), CCL11 (eotaxin), CCL17 (TARC),

CCL19 (MIP-3B), CCL20 (MIP-3A), CCL22), CXC-chemokines

(CXCL1 (GRO1), CXCL2 (MIP-2A), CXCL5, CXCL9 (MIG),

CXCL10 (IP-10), CXCL13) and other cytokines such as CSF1 (M-

CSF), CSF3 (G-CSF), TNF, SPP1 (osteopontin), AREG (amphir-

egulin). These genes not only show a consistent up-regulation in in

vivo pulmonary inflammation studies, but also a clear overlap with

genes found to be induced in vitro [1–4] (Supporting Dataset S1),

corroborating the pivotal role these genes play in response to a

wide range of agents.

A second major group among the up-regulated genes are

interferon-induced genes. These include guanylate binding

proteins 1 and 2 (GBP1 and GBP2), myxovirus resistance 1 and

2 (MX1 and MX2), chemokines CXCL9 and CXCL10, indolea-

mine-pyrrole 2,3 dioxygenase (INDO), and tryptophanyl-tRNA

Table 1. Data and studies used in the meta-analysis; including labels used in Figure 1.

Source data Species Exposure Time points, labels

Chemical

Kooter, 2007 mouse ozone A: 12 h

Kooter, 2005 rat Particulate matter B: 2–6 h, C: 15–21 h, D: 24–40 h

Bacterial

Banus, 2007 mouse (two strains : C3H and HcB28) Bordetella pertussis A: C3H 1 d, B: C3H 3 d, C: C3H 5 d, D:
HcB28 1 d, E: HcB28 3 d, F: HcB28 5 d

Lewis, 2008 mouse LPS aerosol G: 4 h

Mycoplasma pulmonis H: 7 d

Pseudomonas aeruginosa I: 2 h

Rosseau, 2007 mouse Streptococcus pneumoniae J: 1 d, K: 2 d, L: 4 d

Viral

Janssen, 2007 mouse Respiratory Syncytial Virus A: 1 d, B: 3 d

Kash, 2004 mouse Influenza (three strains: 1918, NC, and WSN) C: 1918 1 d, D: 1918 3 d, E: NC 1 d, F: NC
3 d, G: WSN 1 d, H: WSN 3 d

Rosseau, 2007 mouse Influenza I: 1 d, J: 2 d, K: 4 d

Baskin, 2004 macaque Influenza A: 4 d, B: 7 d

Kobasa, 2007 macaque Influenza (two strains: K173 and 1918) C: K173 3 d, D: K173 6 d, E: K173 8 d, F:
1918 3 d, G: 1918 6 d, H: 1918 8 d

Parasitic

Lewis, 2008 mouse Nippostrongylus brasiliensis A: 5 d

Reece, 2006 mouse Nippostrongylus brasiliensis B: 2 d, C: 3 d, D: 4 d, E: 8 d

Allergic asthma

Kuperman, 2005 mouse OVA A: 1 d

Lewis, 2008 mouse OVA B: 1 d

Aspergillus extract C: 4 h

Zimmermann, 2003 mouse OVA D: 18 h

Aspergillus extract E: 18 h

doi:10.1371/journal.pone.0002596.t001
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synthetase (WARS). In addition, these are several functionally less

well characterized interferon-induced genes such as IFI27, IFI30,

IFI35, IFIT1, IFIT2, and IFITM3. This set of genes contains both

IFNa/b and IFNc regulated genes. Other markers that are

consistent with activation of the IFNc response are several

immunoproteasome components (PSMB8, PSMB9, PSMB10,

PSME2). Increased expression of interferon-induced genes is

mainly found for bacterial and viral infection models, illustrating

the role of interferon in the innate immunity system’s first line of

defense against both viral and bacterial pathogens. Most of the

genes in this class are also induced in in vitro models (Supporting

Dataset S1).

Although not as strongly induced as the previous classes, several

genes involved in immunological signaling pathways were found to

be consistently up-regulated. These belong to pathways such as

interferon signaling (IFNAR2, IRF1, IRF4, IRF7, ISGF3G, JAK2,

STAT1, STAT2), NF-kB signaling (NFKB2, NFKBIB, NFKBIE,

IKBKE, REL, RELB, TNFAIP3), AP-1 signaling (JUNB, FOS, FOSL1,

FOSL2), MAPK signaling (MAPK13, MYC), and TLR signaling

(TLR2, CD14, MYD88, PIK3CD, PIK3CG, and TBK1). These

pathways are interconnected, and several of the genes mentioned

play a role in more than one signaling process. These interconnec-

tions between the various signaling routes makes the immunological

signaling as a whole more robust and may also explain why the

common in vivo response extends across all these pathways and even

several dozens of other transcription factors that are not directly

connected to these pathways. It is interesting to note that although

the majority of the common up-regulated signaling genes activate the

immune response, several inhibitory genes are also found for the NF-

kB signaling pathway, namely NFKBIB, NFKBIE, TNFAIP3. The

expression patterns for these three genes are similar to other signal

transduction genes. This indicates that the induction of these

inhibitory genes is an equally important aspect of the response, as

these genes will help restore the host cell to its normal state when the

inflammatory stimulus is no longer present, thus keeping the system

in check. For the immunological signaling genes, the overlap with in

vitro studies is less pronounced than for cytokines and chemokines

and interferon-induced genes.

In addition to these three groups of immune-related genes, there

are several smaller gene classes involved in the immune or infection

response. These include known inflammation markers (such as

S100A8, S100A9, LCN2, SAA2), genes involved in the complement

cascade (C1QA, C1QB, C3, C3AR1, C5R1), cytotoxicity (GZMA,

GZMB), or tissue remodeling (CHI3L1, MMP8, MMP9, MMP12,

MMP15). Others play a role in immune cell adhesion such as

VCAM1, integrins (ITGAM, ITGAX, ITGB2), or selectins (SELE,

SELL, SELP). Finally, some genes are not exclusive to the immune

system but connect this to other cellular functions such as genes

involved in leukotriene and prostaglandin metabolism (ALOX5AP,

ALOX12, ALOX15, PTGS2, PTGES), nitric oxide metabolism (NOS2

(iNOS) and ARG2), or protection against oxidative stress (SOD2,

HMOX1). Taken together, these processes play various roles in the

immune or inflammatory response. The finding that a broad range

of immune-related processes are induced across the different

exposure categories shows that the in vivo pulmonary inflammatory

response to various pathogens or exposures proceeds through – at

least partly – shared molecular mechanisms.

Apart from genes involved in immune or infection-related

processes, we also found a substantial number of genes involved in

cell division or proliferation. These include CCNA2, CCNB1, CCNF,

CDC2A, CDC6, CDC20, CDKN1A (P21), CDKN2D, AURKB, BUB1B,

MKI67, and UBE2C. For these genes, the strongest induction was

observed for parasitic (helminth) and protein sensitization (allergic

asthma) models. Surprisingly, there was practically no overlap

between these genes and the genes mentioned in in vitro studies,

suggesting a mechanism specific for the in vivo response.

To further characterize gene expression response patterns, the full

4551-gene dendrogram was reduced to the most significant

branches. Using the GeneMaths option Cluster Plot (see Methods

section for details) provided a recommended branch cutoff level of

88% cluster similarity. Clipping the dendrogram at this level resulted

in a total number of fifteen branches, ranging in size from 23 to 1713

genes. Most of these show no apparent induction or down-regulation

upon exposure or show only a (moderate) change within a single

study (data not shown). Five branches – which together form the

common pulmonary inflammation response cluster of 383 genes –

show an induction pattern that is consistent across multiple studies

and/or exposures (Fig. 1, subset A–E). These five subsets display

different levels and/or patterns of induction (Fig. 1, subset A–E).

Among the five subsets group C, containing 23 genes, shows the

strongest and most common response to lung inflammation in

rodents, even extending to particulate matter. In primate influenza

models this subset is also up-regulated, although not as strong as in

rodent models. GO-term enrichment showed that this is the only

subset clearly enriched for inflammatory response genes (Supporting

Dataset S1). This is also reflected in the regulated genes (Table 2),

which include several known genes involved in inflammatory

response such as the TLR4 co-receptor CD14; inflammatory

cytokines such as IL1B and IL6; and chemokines like CCL2, CCL4,

CXCL9, and CXCL10. Additionally, several well-known inflamma-

tion markers were present, including S100A8 and S100A9 (Cal-

granulin A and B), LCN2 (lipocalin 2 or NGAL), and serum amyloid

A2 (SAA2). Pathway analysis by MetaCore (GeneGo, San Diego,

CA) showed a high rank for the pathway ‘‘Toll-like receptor (TLR)

ligands and common TLR signaling pathway leading to cell

proinflammatory response’’, which is consistent with up-regulation

of proinflammatory cytokines and chemokines.

A second subset showing a general response to pulmonary

inflammation is group A. This subset is particularly induced upon

bacteriological and viral infections in mice. Functional and

pathway analysis showed that the genes in this subset are

especially involved in interferon signaling, with the three highest-

ranking MetaCore pathways being ‘‘Antiviral actions of Interfer-

ons’’, ‘‘IFN alpha/beta signaling pathway’’, and ‘‘Antigen

presentation by MHC class I’’. The last of these pathways is also

mediated by interferon gamma through the formation of

immunoproteasomes and the synthesis of the proteasome activator

PA28 [20]. Among the 50 genes in this cluster are genes involved

in interferon signaling such as STAT1 and STAT2, and more than

15 interferon-induced proteins such as myxovirus resistance 1

(MX1), tryptophanyl-tRNA synthetase (WARS), and indoleamine-

pyrrole 2,3 dioxygenase (INDO) (Supporting Dataset S1).

Subset D, containing 29 genes, shows mainly a gene expression

response in parasitic and asthma models in mice. Both of these

models are associated with T helper 2 (Th2) responses [15,17].

DAVID and MetaCore revealed that this is the only subset that is

not enriched for immunological genes. Instead, it is enriched for

cell cycle related genes, especially those involved in cell division

such as cyclins A2, B1, F, and antigen MKI67.

Finally, there are two subsets with a general, although less

pronounced, response. The larger of these is subset B, containing

182 genes. MetaCore indicated that this subset is enriched for

several cytokine and chemokine signaling pathways, such as NF-

AT, NF-kB, and MAPK signaling. This is reflected by the

presence of genes such as IL5, IL13, NFKB2, NFKBIB, and

MAPK13 in this cluster.

The smaller of the two subsets is cluster E, containing 99 genes.

DAVID and MetaCore analysis indicated that this subset contains

Common Lung Response
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a broad range of immunological genes. High ranking MetaCore

pathways were ‘‘Classic complement pathway’’, ‘‘Lectin Induced

complement pathway’’, and ‘‘Alternative complement pathway’’,

based on complement and integrin genes such as C1QA, C1QB, C3,

C3AR1, ITGAM, ITGAX, and ITGB2. Other immunological genes

in this subset include CCL8, AREG, and NFKBIE. Unlike the other

subsets, which are induced in rodents and (albeit to a lesser extent)

in macaques, this subset is not induced in macaques but only in the

rodent models.

In addition to the common set of up-regulated genes, we also

identified a cluster that displayed a general down-regulation. This

cluster (which we will refer to as subset Z) contained 157 genes.

DAVID and MetaCore showed this subset was enriched for

development-related terms such as cell differentiation, organ

development, blood vessel development, and growth factor activity.

Some of the genes involved in these processes include BDNF, BMP4,

FGF1, FIGF, IGFBP3, TNNI3, and WNT3A. Other processes that

were overrepresented in this subset are muscle contraction and

several metabolic processes. Only three immunological genes (CD81,

PLUNC, EFNB1) were found among this subset. A complete listing of

this subset is available as supplementary data at the journal’s website

(Supporting Dataset S2).

Discussion

Combining gene expression data from multiple studies creates

the possibility to compare effects and look for common or specific

responses. In this study, we focused on in vivo acute lung

inflammation models. We included allergic asthma models and

exposures to air pollutants, as these also cause pulmonary

inflammation and therefore provide gene expression data to

which the nature and the extent of infection responses can be

compared. When data from different studies are combined, it

should be kept in mind that not al studies are equally comparable,

as there are differences between inflammation models as well as

between species, time points, as well as other practical details on

how the study was performed. However, combining studies also

results in a larger data set, which allows for an analysis to reveal

additional information that would not be apparent in the original

studies used. When more microarray data on pulmonary

inflammation models will become available in the future, it can

therefore be expected that the number of identifiable common and

specific responsive genes and pathways will increase.

When different studies employ different methods in analyzing

raw data this can cause unwanted (study-dependent) differences on

the normalized data. For this reason we used the same

normalization procedure on all raw two-color array data.

Downloaded Affymetrix data were already normalized according

to standard methods. Also, as the included studies used several

kinds of microarrays, the initially collected data contain a large

number of genes (mostly ESTs) for which only data from one or

two studies are available. Therefore, to reduce the influence of

missing data on the analysis, we also applied a filtering on the set

of included genes, as described in the Methods section. The

criteria were chosen so that a sufficiently large number of genes

was included and small adjustments to the criteria had only a

minor effect on the resulting clustering (data not shown).

The data used contained information for 45 compared

exposures that could be grouped into five main categories, namely

chemical (air pollution related), bacterial, viral, parasitic, and

Figure 1. Gene sets with common expression responses. Fragment of the hierarchical clustering dendrogram containing the abridged clusters for
five common up- (A–E) and one down-regulated (Z) gene cluster. Expression changes compared to control levels are indicated by the color bar and
corresponding ratio: green represents down-regulation, yellow no difference, red up-regulation. The heat map color gradient within each block indicates
the variation within that block. Full details on the exposures used and the corresponding labels can be found in Table 1 and Supporting Table S1.
doi:10.1371/journal.pone.0002596.g001
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allergic asthma models. These data led us to identify a common

cluster of 383 genes with a similar in vivo response pattern

characterizing acute lung inflammation. Of these 383 genes, 120

were previously identified as belonging to an in vitro common

infection response [4]. Within this cluster there were subsets

associated with more specific functional roles such as the response

to bacterial and viral infection (subset A), cytokine and chemokine

signaling (subset B), general inflammatory response (subset C), and

the response to parasites and allergic asthma models (subset D). A

closer analysis on these subsets could enable us to identify new

genes that are of mechanistic importance and suitable as

biomarkers to evaluate infection with unknown pathogens.

When we compare gene expression profiles for the various

exposures, it becomes apparent that the differences within each

treatment category were smaller than those between categories.

This indicates that in addition to a general common infection

response there are additional, more dedicated, responses for

categories of pathogens or treatments. An example of this is the

difference we observed between responses to parasitic versus

bacterial or viral infection. Although further elucidation of such

responses would require data from a larger number of infection

studies, the five subsets identified could serve as an initial starting

point to see which processes are associated with a shared infection

response to all or some categories of exposure.

Among the chemical exposures, the most pronounced response

was observed for subset C. This subset is involved in a general

inflammatory response to pathogens, allergic asthma, and even air

pollutants. An inflammation-related gene expression response to

air pollutants corresponds to the finding that both particulate

matter (PM) and ozone cause lung inflammatory and cytokine

responses [11,12]. The response to ozone in the several subsets is

both up- and down-regulated. This can be explained by the finding

that in addition to an inflammatory response, ozone also causes

suppression of immune responsive genes [12,21]. It has been

suggested that the inflammatory response to PM is caused by the

presence of bacterial endotoxins such as LPS in particulate matter

[22–24]. Indeed, the response to PM correlates best with the

bacterial infection models (including a mimic of infection, LPS), as is

visualized in Fig. 1. Our data underline that the response to LPS may

be an important element of the response to PM.

Bacteria induce gene expression in several subsets, and the

response to LPS aerosol matches the other responses to bacterial

infection in these subsets. Even though LPS aerosol is not an actual

infection, it mimics exposure to a pathogen and accordingly

induces an inflammatory response. Interestingly, this response is

not strictly LPS-specific as the bacterial infections used include not

only gram negative (Bordetella, Pseudomonas) bacteria, but also the

LPS-lacking Mycoplasma and Streptococcus. This indicates that the

response to bacterial infection is not only dependent on LPS

signaling via TLR4 but signaling through other Toll-like receptors

also plays an important role.

A shared response in non-immunological genes was observed

for parasitic (helminth) and protein sensitization (allergic asthma)

models. Considering that both induce a Th2 response, this is not

surprising. However, subset D, which shows the strongest response

upon these exposures, did not include any Th2-associated

cytokines, suggesting that the major expression changes take place

downstream of Th2 cytokine signaling. The shared response

between helminth infection and allergic asthma involves increased

expression of cell cycle-related genes. In these models there is

apparently a more rapid turnover or proliferation of cells than in

other models. This can be explained by an increased lung

epithelial renewal or proliferation, or alternatively by an increase

in proliferation for immune cells involved. Although the latter

possibility is feasible, the former matches known clinical pathology

for asthma models. Asthma is associated with hyperplasia of the

mucin-secreting goblet cells [25] and in the studies used this is also

described for asthma as well as helminth infection [14,15]. This is

in agreement with the finding that these genes are not found to be

induced in in vitro models using isolated immune cells.

As pulmonary inflammation often involves leukocyte infiltra-

tion, it raises the question whether the common responses occur

primarily in sessile lung cells or can be attributed to infiltrating

immune cells. Although the common upregulated cluster contains

some markers associated with monocytes and macrophages (e.g.

CD14, CD68) or lymphocytes (e.g. CD72, CD80), these do not show

a parallel expression pattern, as would be expected if the gene

expression responses are caused by cellular influx. In addition, the

common cluster does not include several other markers associated

with these types of immune cells, nor those associated with

granulocyte lineages, even though several of these are present in

the initial 4551 gene set used (e.g. CD36, CD19, CD3E, CD7, CD4,

CD8A, MPO). For these markers that are not part of the common

cluster, the expression changes to the controls are much weaker

than those in the common cluster and the responses are also much

less consistent across the various models (data not shown). Finally,

two of the studies include time points where gene expression

responses are at their maximum before a detectable cellular influx

is found by pathological analysis, namely the response one day

after RSV infection [5] and the early response (2–6 h) after PM

Table 2. Subset C of the common lung inflammation
response, containing the 23 genes with the strongest and
most common response across the various pathogens and
exposures.

Symbol Gene Name

CCL2 Chemokine (C-C motif) ligand 2

CCL4 Chemokine (C-C motif) ligand 4

CCL7 Chemokine (C-C motif) ligand 7

CD14 CD14 antigen

CXCL1 Chemokine (C-X-C motif) ligand 1

CXCL2 Chemokine (C-X-C motif) ligand 2

CXCL5 Chemokine (C-X-C motif) ligand 5

CXCL9 Chemokine (C-X-C motif) ligand 9

CXCL10 Chemokine (C-X-C motif) ligand 10

FCER1G Fc receptor, IgE, high affinity I, gamma polypeptide

FCGR3 Fc receptor, IgG, low affinity III

GBP2 Guanylate binding protein 2, interferon-inducible

IFIT1 Interferon-induced protein with tetratricopeptide repeats 1

IL1B Interleukin 1, beta

IL1RN Interleukin 1 receptor antagonist

IL6 Interleukin 6 (interferon, beta 2)

LCN2 Lipocalin 2

S100A8 S100 calcium binding protein A8 (calgranulin A)

S100A9 S100 calcium binding protein A9 (calgranulin B)

SAA2 Serum amyloid A2

TGFBI Transforming Growth Factor, beta-Induced, 68 kDa

TGTP T-cell specific GTPase

TIMP1 TIMP metallopeptidase inhibitor 1

doi:10.1371/journal.pone.0002596.t002
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exposure [11]. Therefore, it can be concluded that the common

infection response can be predominantly attributed to gene

expression changes in sessile pulmonary cells rather than to

leukocyte influx.

Besides a common up-regulated cluster, we also identified a

cluster characterized by a common down-regulation in response to

inflammation. This cluster contained a large number of genes

involved in growth and development, both of which are important

processes for continuous renewal of lung epithelium. As can be

seen from Fig. 1, the extent of the down-regulation in this cluster is

moderate compared to the effects in the common up-regulated

subsets. This suggests that the effects found are not a direct

targeted response, but rather a secondary effect that reflects tissue

damage or that the induction of an inflammatory response goes at

the expense of normally active processes in lung tissue. The finding

that the degree of down-regulation is strongest in groups with a

stronger up-regulation for subsets A–D and especially E

corroborates this assumption.

In comparison with the transcriptional changes found in mice,

the effects in primates are generally weaker. More specifically, the

inflammatory response-related subset C, which shows the strongest

response in mice, shows considerably less up-regulation in

macaques. The degree of induction for the interferon signaling-

related subset A is also reduced, albeit to a lesser extent. The other

subsets show a more moderate response to influenza in both mice

and macaques and for these subsets the difference in response is

comparatively small, although it is interesting to note that the

induction of subset E is virtually absent in macaques. A minor

difference in effect is also found for subset Z, which is down-

regulated in mice as well as macaques. These differences in

expression response can not be ascribed to mere study differences

as the effect was reproducible in two studies carried out with

different species, namely cynomolgus macaques (Macaca fascicularis)

in the study by Kobasa et al. [10] and pigtailed macaques (Macaca

nemestrina) in the Baskin et al. [8] study. It can not be ascertained

whether these differences are characteristic for either influenza or

macaques, as microarray data for primate infections with other

pathogens were not available. However, it is likely that differences in

expression response between mice and macaques can be explained

by different disease characteristics between these species. First,

differences in effect are most distinct for the two subsets (A and C)

where the mouse response upon influenza is strongest, which suggest

an association between these responses and disease severity. Second,

the influenza studies in mice [9,16] both reported more severe lung

inflammation and pathology than those in macaques [8,10]. In

macaques, the most severe pathology was observed in those infected

with the 1918 virus strain. Of the three influenza strains used in the

macaque studies, this particular strain causes a gene expression

response that compares best to the common mouse response. This

corroborates our assumption that the different expression response

between rodents and macaques reflects the extent in which lung

tissue is infected and/or the virus multiplies.

In conclusion, our study shows that there is a shared in vivo

expression response to different inducers of lung inflammation.

This response comprises several processes involved in host defense

and inflammation, and the extent of the response represents the

degree of lung inflammation. Our meta-analysis shows consider-

able overlap with findings from in vitro studies (Supporting Dataset

S1), especially in cytokines, chemokines, and interferon-induced

genes. Some of the differences can be attributed to complex cell-

cell interactions, that are absent from in vitro systems, such as the

induction of the cell division-related subset D. However, as

additional microarray data will allow for a more powerful meta-

analysis that reveals more common genes for both the in vivo and in

vitro response, genes that do not overlap between the common in

vivo and in vitro response will not always be specific for either

response and merely represent the developing knowledge in this

field. In the future, additional microarray data from rodents,

primates, and perhaps other mammals will contribute to a further

understanding of the common in vivo response and, ultimately,

identification of disease mechanisms that are unique to specific

agents or pathogens.

Methods

We searched Pubmed, GEO (www.ncbi.nlm.nih.gov/geo/), and

ArrayExpress (www.ebi.ac.uk/arrayexpress/) for gene expression

profiling studies related to acute lung inflammation. If corresponding

microarray data were available, they were downloaded from

websites indicated by the authors. Data were included in the meta-

analysis if they met the following conditions: (a) complete microarray

raw or normalized data are available; (b) a suitable uninfected or

mock infection control is included in the study; (c) time points are at

most eight days after infection (to exclude chronic effects).

Furthermore, we excluded experiments with transgenic pathogens

or hosts focused on specific research questions, as these typically

show inflated responses that are not representative of normal disease.

Based on these criteria, we included 45 treatment conditions from 12

experiments [5–17]. Of these studies, 4 were carried out in our

laboratory and 8 were from the literature. Note that we count the

data from the two related articles by Banus et al. as one study. Full

details of the studies are given in Table 1.

Affymetrix probe sets identifiers were converted to gene symbols

using probe set annotation data downloaded from the Affymetrix

website (www.affymetrix.com). When necessary, gene symbols in

two-color or Affymetrix data files were adjusted to remove tags

such as ‘‘predicted’’ and converted to uppercase symbols for

further handling. All further calculations were carried out in R

[26] or Microsoft Excel. To minimize the influence of data

handling procedures, we normalized all raw two-color data with

the same algorithm [5,27]. This consisted of a four-step approach

of (1) natural log transformation, (2) quantile normalization of all

scans, (3) taking the sample/reference ln-ratio, and (4) averaging

replicate spot data. To remove negative values and inflated ratios,

MAS4 normalized Affymetrix data were cut off at a lower value of

100, based on the findings of Grundschober et al. [28]. MAS5

normalized Affymetrix data were used without adjustment.

Affymetrix data were ln-transformed and values for replicate gene

symbols were averaged. Finally, for all data sets, the average ln-

ratio for treatment to control was calculated per gene. Treatment

ratio data for the various studies were merged into one table. To

minimize the impact of missing data and non-regulated genes on

further analysis, we restricted the initial table of 39312 genes to

4551 genes that were measured in at least 6 out of 12 studies, 30

out of 45 treatment conditions, and had a ratio exceeding 61.5 in at

least one condition. Hierarchical clustering on these 4551 genes was

performed in GeneMaths (Applied Maths, St-Martens-Latem,

Belgium), using Euclidian distance and Ward linkage. The

GeneMaths option Cluster Plot was used to plot the logarithm of

the cluster size versus the cluster similarity. This method typically

results in a graph with data points that lie closely along a curve that

drops off sharply at a level where the number of branches is sufficient

to show enough detail, but increasing the number of branches does

not result in much additional information. This level can be

considered as a recommended cluster similarity cutoff. The resulting

value of 88% cluster similarity was used to abridge dendrogram

branches above this similarity value. The resulting dendrogram was

used to identify branches or clusters with up- or down-regulation that
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cover multiple studies or pathogens and therefore indicate a

common response.

Functional annotation and Gene Ontology (GO) term enrich-

ment analysis were performed with the DAVID website (http://

david.abcc.ncifcrf.gov/) [18,19]. For GO-term enrichment, the

functional annotation clustering option was used, with default

settings. Functional annotation terms were considered enriched for

an Enrichment Score larger than 3, which corresponds to a

geometric average p-value of 0.001. MetaCore (GeneGo, San

Diego, CA) was used for additional pathway enrichment and

visualization.

Supporting Information

Dataset S1 Genes involved in the common up-regulated

infection response

Found at: doi:10.1371/journal.pone.0002596.s001 (0.25 MB

DOC)

Dataset S2 Genes involved in the common down-regulated

infection response

Found at: doi:10.1371/journal.pone.0002596.s002 (0.12 MB

XLS)

Table S1 Full information on the studies and treatments

included

Found at: doi:10.1371/journal.pone.0002596.s003 (0.00 MB

PDF)
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