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Abstract

Background: The effects of diet-induced obesity on skeletal muscle function are largely unknown, particularly as it relates to
changes in oxidative metabolism and morphology.

Principal Findings: Compared to control fed mice, mice fed a high fat diet (HFD; 60% kcal: fat) for 8 weeks displayed
increased body mass and insulin resistance without overt fasting hyperglycemia (i.e. pre-diabetic). Histological analysis
revealed a greater oxidative potential in the HFD gastrocnemius/plantaris (increased IIA, reduced IIB fiber-type percentages)
and soleus (increased I, IIA cross-sectional areas) muscles, but no change in fiber type percentages in tibialis anterior
muscles compared to controls. Intramyocellular lipid levels were significantly increased relative to control in HFD
gastrocnemius/plantaris, but were similar to control values in the HFD soleus. Using a novel, single muscle fiber approach,
impairments in complete palmitate and glucose oxidation (72.866.6% and 61.869.1% of control, respectively; p,0.05) with
HFD were detected. These reductions were consistent with measures made using intact extensor digitorum longus and
soleus muscles. Compared to controls, no difference in succinate dehydrogenase or citrate synthase enzyme activities were
observed between groups in any muscle studied, however, short-chain fatty acyl CoA dehydrogenase (SCHAD) activity was
elevated in the HFD soleus, but not tibialis anterior muscles. Despite these morphological and metabolic alterations, no
significant difference in peak tetanic force or low-frequency fatigue rates were observed between groups.

Conclusions: These findings indicate that HFD induces early adaptive responses that occur in a muscle-specific pattern, but
are insufficient to prevent impairments in oxidative metabolism with continued high-fat feeding. Moreover, the
morphological and metabolic changes which occur with 8 weeks of HFD do not significantly impact muscle contractile
properties.
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Introduction
Sedentary behavior and consumption of high-energy diets favor

the early development of disease states such as obesity, insulin

resistance, and ultimately type 2 diabetes mellitus. These activities

have created a serious health crisis in our society. In the United

States alone, it is estimated that approximately 57 million people

have pre-diabetes (impaired glucose tolerance preceding type 2

diabetes mellitus development). Of this, over 2 million are under

the age of 20 years old; an age group that until recently was

generally unaffected by these disorders [1].

As skeletal muscle plays a major role in energy expenditure and

insulin-stimulated glucose disposal, understanding changes that

occur to this tissue with obesity and pre-diabetes development are

critical to elucidating the underlying causes for insulin resistance

and type 2 diabetes. Though a number of studies have investigated

the effects diet-induced obesity on skeletal muscle oxidative

capacity and insulin sensitivity, we are unaware of any that relate

these changes with alterations in skeletal muscle morphology and

functional capacity. Undertaking a comprehensive analysis in a

variety of muscles is particularly important given that the

disparities in model used, length and composition of diet

intervention, muscles analyzed and analytical techniques have

made comparisons between studies very challenging. For example,

an increased [2], decreased [3–5] or unchanged [4] capacity for

oxidative metabolism with high fat diet intervention have all been

demonstrated. Furthermore, an increase in oxidative phosphory-

lation protein complexes have been measured in the gastrocne-

mius muscles following 4 weeks of high fat feeding [6], while a

decreased expression of oxidative phosphorylation genes and

cytochrome C protein has been demonstrated in the quadriceps

muscles in response to 3 weeks of high fat diet consumption [7]. It

is worth noting that studies assessing oxidative metabolism have
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investigated changes through the utilization of homogenized

muscle, skinned fibers and/or isolated mitochondria. While these

techniques are valuable tools for the assessment of specific aspects

of mitochondrial oxidative capacity, the disruption of the muscle

may eliminate potential impairments in fatty acid uptake,

transport, and trafficking inside the cell caused by high fat diet,

precluding extrapolation of this data to the intact whole muscle.

Thus, it was the aim of the current study to comprehensively

analyze skeletal muscle morphology, metabolism and contractile

function in young adult skeletal muscle. Specifically, we assessed

skeletal muscle glucose and fatty acid oxidation rates in isolated

muscle fibers and in intact oxidative and mixed muscles along with

key oxidative enzyme activities, skeletal muscle morphology, and

contractile properties in mice fed either a high fat diet (HFD) or

standard rodent chow (control) for 8 weeks. Our findings indicate

that the skeletal muscle of mice with diet-induced obesity

undergoes significant alterations in fiber type, fiber area and

intramyocellular lipid (IMCL) levels and that these changes occur

in a muscle-specific manner. However, complete glucose and

palmitate oxidation rates were decreased in all muscles analyzed,

suggesting that elevated IMCL levels and alterations in SCHAD

activity do not solely explain the insulin resistance and impaired

oxidative capacities. Moreover, peak tetanic force and overall

fatigue rates were maintained despite significant changes in muscle

morphology and oxidative capacity.

Results

High fat diet induces insulin resistance and excessive
weight gain in young adult mice

Young adult mice fed a standard chow diet continued to gain

weight during the first 4 weeks of experimental assessment,

verifying that these mice were still within the growth and

maturation phase of development (Figure 1A). Mice consuming

a diet with 60% kcal from fat (HFD) are significantly heavier than

the standard chow fed controls as early as 4 weeks from the onset

of HFD. After 4 weeks of diet intervention, the body weight of

control mice stabilized, whereas HFD mice continued to increase,

such that by the time of harvest, there was nearly a 40% gain in

body mass (Figure 1A).

There was an approximate 2.5-fold increase in epididymal fat

mass (Figure 1B) without any differences in absolute tibialis

anterior (TA) or soleus muscle masses between groups (Control

TA: 52.261.4 mg, Control soleus: 7.760.7 mg; HFD TA:

51.761.4 mg, HFD soleus: 7.760.5 mg).

There was no difference in fed blood glucose levels after 6 weeks

of diet intervention (Control: 10.260.3 mM; HFD:

11.660.7 mM) or fasted blood glucose levels after 7 weeks of diet

intervention (Figure 1C, time 0). However HFD mice displayed a

significantly reduced capacity for glucose clearance in response to

an intraperitoneal glucose tolerance test (IPGTT), indicating

insulin resistance (Figure 1C). Insulin resistance was further

demonstrated by elevated resting plasma insulin levels at 4 weeks

of diet intervention and at the 45 minute time point of the IPGTT

in HFD mice (Figure 1D).

HFD results in a shift towards more and larger oxidative
fibers

In HFD gastrocnemius/plantaris muscles, type I and IIA fiber

type proportions increased (IIA: 40.363.5% vs. 32.961.9%, I:

9.8061.8% vs. 5.561.8%, HFD vs. control, respectively), while

type IID and IIB fiber types were decreased in number (IID:

20.262.1% vs. 23.863.9%, IIB: 29.761.5% vs. 37.762.7%,

HFD vs. control, respectively; main effect of interaction,

Figure 1. Eight weeks of a high fat diet (HFD) elicits pre-diabetes. (A) Fasted body mass was assessed before experimental diet began and
after 4 and 8 weeks (N = 19 CON, 20 HFD). (B) Epididymal fat mass after 8 weeks of diet intervention (N = 19 CON, N = 20 HFD). (C) Intraperitoneal
glucose tolerance test (IPGTT) performed after an overnight fast (16 hrs) 1 week before harvest (N = 19 CON, N = 18 HFD). (D) Plasma insulin levels
assessed 4 weeks into diet intervention (8 hr fast, N = 10) and at IPGTT 45 minute time-point (16 hr fast, N = 4). Significance is represented by * vs.
CON at same time point (A–D), a or b vs. 0 weeks within diet group, and c vs. 4 weeks within diet group, p,0.005.
doi:10.1371/journal.pone.0007293.g001
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p,0.05). Considering that type IIA and IIB fibers represent the

most oxidative and glycolytic fiber types in mouse skeletal muscle

respectively [8], and that these two fiber types comprise more

than 70% of all fibers we quantified in gastrocnemius/plantaris

muscles, we specifically compared the change in fiber type

percentages between these two fiber types (Figure 2A middle

panel). HFD caused a significant rise in the percentage of

oxidative IIA fibers and a significant decrease in the percentage

of glycolytic IIB fibers in the gastrocnemius/plantaris muscles. In

the TA and soleus muscles, no change in fiber type percentages

were observed between HFD and control groups (Figure 2A left

and right panels).

Assessment of cross-sectional area per fiber type revealed no

differences in the gastrocnemius/plantaris muscles (Figure 2B

middle panel) between groups. However a significant increase in

the cross-sectional area of both type I and IIA muscle fibers (which

comprise the entire muscle) was observed in HFD soleus compared

to control (Figure 2B right panel).

Histological staining for succinate dehydrogenase (SDH) activity

in the control muscle was greatest in fibers identified by

metachromatic stain as type IIA followed by IID$I.IIB,

respectively. This finding validated the fiber type (metachromatic)

staining results. No significant differences in SDH enzyme

activity were detected between HFD and control in either the

Figure 2. Morphometric changes are muscle-specific. Serial cross-sections from control (CON, white bars in all graphs) and high fat diet (HFD,
black bars in all graphs) fed mouse muscles [TA (top left only), gastrocnemius/plantaris complex (GP, all middle graphs), and soleus (all right graphs)]
were examined for (A) fiber type composition, (B) area, (C) SDH stain intensity, and (D) IMCL stain intensity. Representative images of all stains used,
performed on GP muscle cross-sections are shown to the left of graphs B–D with fiber type (type I, and types II- A, D, B) labeled with CON on the left
and HFD on the right. (B) Metachromatic fiber type stain was used to assess fiber type. (C) SDH and (D) Oil-Red-O stains are graphically represented by
arbitrary units (A.U.) of optical intensity measurements, with greater values for more intense stains and normalized to a percentage of all the control
value means for each graph (% CON). All measurements were taken on an average of 51–331 total fibers/animal with a Nikon Eclipse 90i microscope
(N = 3–4). Significance is represented by * vs. CON, p,0.005.
doi:10.1371/journal.pone.0007293.g002
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gastrocnemius/plantaris or soleus muscles, regardless of fiber-type

(Figure 2C middle and right panel).

As expected, the IMCL levels across fiber types were different;

with oxidative fiber types displaying greater absolute IMCL levels

than glycolytic fiber types. HFD gastrocnemius/plantaris muscles

displayed a significant increase in IMCL levels compared to

control muscles (Figure 2D middle panel). All fiber types within the

HFD gastrocnemius/plantaris displayed a similar percent increase

(,50–60%) in IMCL levels above that measured in the respective

control fiber type. Interestingly IMCL levels relative to cross-

sectional area in the soleus muscles were not different between

control and HFD regardless of fiber type (Figure 2D right panel).

The observed increase in HFD soleus muscle cross-sectional area

may have allowed for dispersion of IMCLs such that the density of

IMCLs was unchanged between diet groups.

Complete palmitate and glucose oxidation rates are
impaired in HFD skeletal muscle

Complete glucose and fat oxidation (to CO2) were assessed

using a novel, intact single muscle fiber protocol, as well as the

well-established whole skeletal muscle preparation [9,10]. The

whole muscle preparation was used to confirm the palmitate

oxidation results in single fibers and by assessing glucose oxidation

and glycogen synthesis we could further demonstrate insulin

resistance within the intact skeletal muscle of HFD mice. Palmitate

oxidation rates in intact fibers from extensor digitorum longus

(EDL) and peroneus longus muscles of the HFD were approxi-

mately 65% of that measured in control muscle fibers (Figure 3A).

Using this single fiber technique, we also demonstrated that basal

glucose oxidation rates were significantly diminished in single

fibers from HFD muscle compared to single fibers from control fed

mice (Figure 3B).

Similar results to those acquired in intact single fibers were

obtained when intact EDL and soleus muscles were used to assess

palmitate (Figure 4A–B). While whole body insulin resistance was

demonstrated by IPGTT and elevated insulin levels at rest and in

response to IPGTT, we were interested in validating skeletal

muscle insulin resistance and determining if there were muscle-

specific differences in insulin resistance in HFD mice. Using intact

soleus and EDL muscles, we undertook insulin stimulated glucose

oxidation and glycogen synthesis assays (N = 4–6 muscles per

group). A consistent blunting of the insulin-stimulated response

was observed in all HFD muscles (Figure 4C–F). Importantly, this

observation is made despite the soleus being a purely oxidative

muscle (type I and IIA) and the EDL being a mixture of glycolytic

(type IIB) and oxidative (type IID) fiber types. Note that synthesis

rates were higher in soleus compared to EDL muscles as would be

expected based on their fiber type distribution [11,present study].

Metabolic enzyme activities in HFD and control muscles
Citrate synthase (CS) and SCHAD are key enzymes in the TCA

(tricarboxylic acid) cycle and b-oxidation pathways, respectively.

No difference between HFD and control muscle CS or SCHAD

activity was observed in homogenates from the TA muscles

(Figure 5A–B). In homogenates from the soleus muscles, CS

activity was not different between groups, though a significant

increase in SCHAD enzyme activity was observed with HFD

compared to control (Figure 5C–D).

As mentioned previously, an SDH activity stain was undertak-

en. In fibers identified as type IIB by metachromatic staining,

SDH staining was of the lowest intensity, while fibers identified as

type IIA by metachromatic staining displayed the most intense

SDH staining. Thus, SDH activity staining validated the fiber type

data obtained by metachromatic staining. This analysis also

allowed us to determine if fiber type specific adaptations to SDH

enzymatic activity and mitochondrial content were occurring in

HFD versus control muscle. No differences in mean SDH staining

intensity were observed between HFD and control muscles in the

soleus or gastrocnemius/plantaris muscles, regardless of fiber type

(Figure 2C).

Muscle contractility is not significantly altered following 8
weeks of high-fat diet

The peak tetanic force pre- and post-fatigue was not

significantly different between control and HFD (Figure 6A).

When the pre-fatigue force-frequency curve was plotted, an

insignificant, though consistently lower force production at each

stimulation frequency was observed in the HFD fed mouse

compared with control (main effect of diet: P = 0.089; Figure 6B

top panel). Analysis of the post-fatigue force-frequency curve

revealed that the ability to immediately recover force following a

low-frequency fatigue protocol was impaired in HFD muscle

compared with control (main effect of diet: P,0.05; Figure 6B

bottom panel). Though a significant level of fatigue was induced in

both control and HFD groups, there was no difference between

groups in rate or degree of fatigue development (Figure 6C).

Discussion

Here we provide novel evidence that the skeletal muscles of

mice fed a high fat diet for 8 weeks develop pre-diabetes, undergo

muscle-specific morphological and enzymatic adaptations and

exhibit impairments in complete glucose and fat oxidation. These

Figure 3. Impaired palmitate and glucose oxidation in HFD single fibers. (A) Palmitate (N = 19, average of 17 fibers/dish) and (B) glucose
(N = 12 CON, N = 10 HFD, average of 23 fibers/dish) oxidation in single fibers derived from EDL and peroneus muscles was similarly impaired in mice
fed a high-fat diet (HFD) compared to control (CON). Values were normalized to control values for each experiment and significance is represented by
* vs. CON, p,0.005.
doi:10.1371/journal.pone.0007293.g003
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changes in muscle morphology and metabolism did not have

significant effects on peak tetanic force and low-frequency fatigue

rates. These results demonstrate for the first time that skeletal

muscle health is impaired in the pre-diabetic state and that despite

these significant impairments in oxidative metabolism, there is a

maintenance of muscle contractile properties.

A significant muscle-specific shift towards a greater contribution

of oxidative fibers was found in mice fed a HFD. In fact, the

gastrocnemius/plantaris muscles increased the percentage of

oxidative fibers, while the soleus increased fiber cross-sectional

area and the TA displayed no fiber type change. This is in line

with a recent study reporting that HFD led to increased soleus

muscle fiber areas, but not fiber type proportions and no change in

fiber type percentage or area in the EDL [12]. The shift in

oxidative potential of the soleus and gastrocnemius/plantaris, but

not the TA, may be the result of an increased activity in the calf

musculature compared to dorsiflexors in relatively sedentary

rodents. The shift towards a greater oxidative fiber contribution

seen in the present study is also consistent with that observed by

others [6,13,14]. Of note, deWilde et al. [6] found that following 3

and 28 days of high-fat feeding (45% kcal from fat) there was a

significant increase in the mRNA and protein expression of slow

myosin heavy chain and other markers of the slow oxidative fiber

phenotype. While myosin ATPase expression, demonstrated using

metachromatic staining, is often correlated with oxidative

potential of the muscle, a shift in myosin ATPase expression does

not directly indicate there is an increase in oxidative potential.

Here we substantiate the shift towards an increased oxidative

potential using SDH activity staining. The SDH enzyme catalyzes

the conversion of succinate to fumarate in the TCA cycle. It

consists of two large subunits which form complex II of the

mitochondrial respiratory chain along with two smaller subunits,

which attach SDH to the inner mitochondrial membrane. SDH

staining has been shown to be extremely useful for detecting

variations in the fiber distribution of mitochondria, particularly in

states of mitochondrial dysfunction [15,16].

In our experiments, the mean intensity of SDH staining per

fiber type was not different between control and HFD muscles,

although soleus muscle had increased fiber cross-sectional area

(Figure 2D). If increased fiber areas or a shift towards more

oxidative fibers were not associated with a concomitant increase in

mitochondrial content, then the mean pixel intensity for SDH

would have decreased proportionally. However, since there was a

proportional increase in SDH density in our study, we interpret

that a relative increase in mitochondrial content has occurred in

HFD muscles, indicating a shift towards an increased oxidative

potential. This could represent an early positive adaptation to the

abundance of lipids and elevated IMCL levels typical of the HFD.

Figure 4. Impaired oxidation, glycogen synthesis, and insulin stimulated response in HFD muscle. Palmitate oxidation in whole (A) EDL
(N = 4) and (B) soleus (N = 4) muscles is impaired with HFD. Both glucose oxidation in whole (C) EDL and (D) soleus and glycogen synthesis in whole
(E) EDL and (F) soleus muscles with HFD demonstrate a significant blunted response to insulin pre-incubation (INSULIN), vs. no insulin pre-incubation
(BASAL), in HFD muscle (N = 4–6, two-way ANOVA with Bonferonni post-tests between insulin conditions within diet). Significance is represented by *
vs. CON (A–B), and vs. INSULN (C–F), p,0.005.
doi:10.1371/journal.pone.0007293.g004
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In fact, IMCL levels were increased with HFD in this study,

albeit in a fiber type and muscle-group specific manner. There

were a number of ways in which an increased IMCL deposition

was observed in this study including greater IMCL density

(observed in the gastrocnemius/plantaris), increased oxidative

muscle fiber area with unchanged IMCL density (observed in the

soleus), and increased oxidative muscle fiber percentages (observed

in the gastrocnemius/plantaris). Although our findings suggest an

early attempt to enhance oxidation in response to high-fat feeding,

after 8 weeks of such a diet a downward spiral seemed to develop

leading to impaired glucose and lipid oxidation rates. This is

consistent with previous observations showing time-dependent

alterations in mitochondrial density or structure within the

gastrocnemius muscles of mice fed a high-fat/high-sugar

(HFHSD) diet [17]. In fact, Bonnard and colleagues [17] found

that significant alterations in mitochondrial density or structure

occurred only after 16 weeks of HFHSD. It was further reported

that 4 weeks of diet intervention was associated with some

metabolic perturbations that could reflect the initiation of

deleterious processes in pre-diabetic skeletal muscle. Our study

also provides evidence of early adaptive responses to HFD, which

are followed by impairment in complete glucose and lipid

oxidation. Furthermore, it is important to note that the changes

in muscle morphology and metabolic enzyme activities are

occurring in a muscle-specific and time-dependent manner.

Therefore, caution is warranted when deriving conclusions based

on the analyses of one specific muscle or limited metabolic

markers.

In an attempt to address the apparent discrepancy between a

shift towards an oxidative muscle phenotype and the reduced lipid

and glucose oxidation rates, we assessed the activity of CS and

SCHAD in muscles that either demonstrated an increase (soleus)

or no change (TA) in oxidative potential in response to HFD. We

did not find any significant differences in CS and SCHAD

activities in the TA muscles of control and HFD mice. These

results were consistent with the lack of change in fiber type

proportion in this muscle. Interestingly, we found a significant

increase in SCHAD, but not in CS activity, in the HFD soleus.

Whether the increase in SCHAD activity in the HFD soleus is the

result of the increased cross-sectional area and proportionate

increase in mitochondrial content remains to be determined.

However, since oxidative muscle fiber types increased in size

(soleus) or number (gastrocnemius/plantaris) and a concomitant

rise in SDH staining intensity was found, it suggests that 8 weeks of

HFD did not decrease mitochondrial content. In fact, we would

argue that the uniform increase in staining throughout the fibers is

indicative of an increase in SDH content resultant from an overall

increase in mitochondrial content and not solely increased SDH

activity. Importantly, regardless of whether there was an increase

in mitochondrial content or a fiber type specific increase in

oxidative potential of muscles exposed to HFD, a significant

impairment in complete glucose and palmitate oxidation was

detected in our studies. These observations were made using a

novel isolated single fiber technique and validated with the

classical, isolated muscle methodology [9,10]. The isolated single

fiber approach facilitates exchange of substrates and gases with the

incubation medium and maintains all populations of mitochondria

(subsarcolemmal and intermyofibrillar). Furthermore, it preserves

the mitochondria and metabolic enzymes in their natural

surrounding. Therefore, both approaches allowed us to study the

ability of both the skeletal muscle cell and the skeletal muscle tissue

from mice fed a HFD to metabolize glucose and fatty acids.

A number of studies have demonstrated that a prolonged

exposure to elevated levels of fatty acids lead to insulin resistance

and impair skeletal muscle glucose and lipid metabolism. The

buildup of harmful lipid metabolites including long-chain fatty acyl

CoA, diacylglycerol, and ceramides have been proposed to cause

these deleterious metabolic effects in skeletal muscle [18–20].

Furthermore, a recent study using rats fed a HFD (45% fat for 12

weeks) demonstrated an increase in incomplete b-oxidation with

Figure 5. Oxidative enzyme alterations are muscle specific. Citrate synthase (CS) activity is unaltered in both (A) TA and (C) soleus muscle
between control (CON) and high fat diet (HFD). Short chain 3-b-hydroxyacyl coenzyme-A dehydrogenase (SCHAD) activity is unaltered in (B) TA
muscle, though (D) soleus muscle from HFD mice exhibits SCHAD activity 136% of CON. Significance is represented by * vs. CON, p,0.005.
doi:10.1371/journal.pone.0007293.g005
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excess acid-soluble metabolites being produced, indicating deple-

tion of intermediates of the TCA cycle [4]. These authors also

demonstrated the importance of fatty acid entry into the

mitochondria, and not simply increased IMCL, to elicit HFD

induced insulin resistance [4]. In this context, our findings that the

increase in SCHAD activity was not followed by a proportional

increase in CS activity suggest a flux through b-oxidation that is

not proportionally matched by the TCA cycle. Furthermore, the

fact that soleus muscles displayed insulin resistance and impaired

complete oxidation of lipids and glucose even in the face of

elevated SCHAD activity and normal IMCL levels, support the

idea that HFD causes insulin resistance through lipotoxicity

specifically within mitochondria [4,21].

Despite significant alterations in muscle morphology and

metabolism, no significant impairment in peak tetanic force either

pre- or post-fatigue was observed. However when we analyzed the

force-frequency curves, we see that at all stimulation frequencies

tested, HFD skeletal muscle consistently displayed reduced force

production regardless of stimulation frequency in the pre-fatigue

state (P = 0.089). We hypothesize that the early adaptations that

occurred in response to HFD attenuated muscle force loss and

continued exposure to a HFD would ultimately result in significant

decreases in contractile force, consistent with that observed in

humans [22]. The absence of a difference between groups in

response to a low-frequency fatigue protocol is likely explained by

the low intensity and short duration of this protocol. That is, this

submaximal fatigue protocol was insufficient to elicit differences

due to changes in oxidative metabolism. Though no change in

peak tetanic force post-fatigue was observed, analysis of the force-

frequency curve revealed a significant main effect of diet

(Figure 6B). This finding would imply that following fatiguing

contractions, the ability to immediately recover force is attenuated

in HFD muscles compared to control muscles. Given the impaired

metabolic capacity in the HFD muscles, this result was not

unexpected. While it would be premature to extrapolate too much

from this result, we hypothesize that the ability to respond to

exercise or exercise- training may be impaired in these pre-

diabetic mice.

Overall, the current study provides, for the first time, a

comprehensive analysis of skeletal muscle morphology, metabo-

lism and function following 8 weeks of high fat diet consumption.

Our findings substantiate the proposal of deWilde and colleagues

[6] that skeletal muscle responds to high fat diet intervention with

an early, positive adaptive response. However, with continued

high-fat diet exposure, perturbations in gene and protein

expression will ultimately result, causing decreased oxidative

capacity at a later stage. Taken together, this work advances our

understanding of skeletal muscle health prior to the development

of type 2 diabetes mellitus and, in part, aids in explaining the

variability that has been observed in previous studies investigating

pre-diabetic skeletal muscle. Furthermore, these results support the

undertaking of early therapeutic interventions in obese, pre-

diabetic youth prior to significant long-term effects on muscle

growth and function.

Materials and Methods

Animals and blood sampling
All experimental protocols were approved by the York

University Animal Care Committee in accordance with Canadian

Council for Animal Care guidelines.

Male C57BL/6J mice were obtained from Jackson Laboratories

(Bar Harbor, ME). Animals were housed in temperature and

humidity-controlled facility with a 12/12 h light/dark cycle and

Figure 6. In situ contractile analysis reveals trend towards force
decrements, yet unaltered peak force and fatigue. Relative
tetanic force production [in Newtons (N) per gram (g) of wet muscle
mass] in the gastrocnemius/plantaris muscle group of high-fat diet
(HFD) mice compared to control (CON) was (A) not different before (Pre)
or after (Post) the fatigue protocol. (B) There was no difference between
diets over all frequencies used to test force production pre-fatigue,
however there was a significant main effect of diet post-fatigue. (C)
Contractile force, relative to initial (% initial), throughout a 2 minute
low-frequency fatigue protocol was not different between diet groups.
Significance is represented by * vs. CON, p,0.005.
doi:10.1371/journal.pone.0007293.g006

Muscle Health in Pre-Diabetes

PLoS ONE | www.plosone.org 7 October 2009 | Volume 4 | Issue 10 | e7293



had ad libitum access to water and food. After an initial

acclimatization, animals (10 weeks of age; N = 20 per group) were

randomly assigned to either a high fat diet [HFD; TestDiet,

cat#58126: energy (kcal/g) from protein (18.3%), fat (60.9%),

carbohydrate (20.1%)] or standard mouse chow [LabDiet 5015

Mouse Diet: energy (kcal/g) from protein (20%), fat (25%),

carbohydrate (55%)]. Body mass and blood glucose (via tail nick;

OneTouch Ultra glucometer; Johnson & Johnson) were assessed in

the fed state on biweekly basis. Fasted body weight was assessed at

4 weeks (following an 8 hr fast) and 8 weeks (following a 16 hr fast)

of diet intervention. Fasted (8 hr) plasma insulin was assessed at 4

weeks of diet intervention as described below for insulin from the

intraperitoneal glucose tolerance test (IPGTT).

An IPGTT was performed on mice fasted overnight (16 hrs)

after 7 weeks of diet intervention. Glucose was injected IP (2 g/kg

of body weight) and blood glucose was assessed by tail bleeds at 0,

15, 30, 60, 90, 120, 150 min. Plasma was collected by tail bleed at

45 min and later analyzed for insulin, in duplicate, using 5 ml in

the Ultra Sensitive Mouse Insulin ELISA Kit (cat#90080, Crystal

Chem, Illinois), according to the manufacturer’s instructions.

Experimental procedures
Following 8 weeks of diet, mice were fasted overnight (16 hrs)

and weighed. Subsequently, mice were anaesthetized, the muscle

stimulation protocol (described below) was performed and tissues

were harvested. Immediately prior to the electrical stimulation

protocol, the left and right tibialis anterior (TA), extensor

digitorum longus (EDL), peroneus, and soleus muscles were

removed from the muscle-stimulation leg (left). EDL and peroneus

longus muscles were used for single fiber isolation and soleus was

used for intact muscle oxidative capacity, snap frozen or mounted

with tissue freezing medium and frozen in isopentane cooled by

liquid nitrogen. The TA muscles were snap frozen for future

analysis or mounted with tissue freezing medium and frozen in

isopentane cooled by liquid nitrogen. Following electrical

stimulation, the gastrocnemius/plantaris complex was weighed

and then either mounted with tissue freezing medium and frozen

in isopentane cooled by liquid nitrogen for subsequent histological

analysis or snap frozen in liquid nitrogen for future analysis.

Muscle stimulation protocol
Prior to surgery, mice were injected with ketamine/xylazine

(150 mg/kg: 10 mg/kg) and the left gastrocnemius/plantaris

complex was isolated from its distal insertion, attached to a force

transducer and optimal voltage and length were determined

[23,24]. A force-frequency curve was determined before (pre-) and

after (post-) a fatigue protocol consisting of 2 minutes of low-

frequency (30 Hz) stimulations lasting 333 ms in 1 s trains. Pre-

fatigue force determination consisted of 1 s stimulation every 30 s

at increasing frequencies of 10 Hz starting at 20 Hz [23,24]. Post-

fatigue force determination was similarly conducted except that

stimulations were spaced 10 s apart, instead of 30 s, in order to

ensure that peak force determination was completed prior to

recovery from the fatigue protocol as determined by pilot studies.

The post-fatigue force-frequency curve provided an assessment of

immediate force recovery following the fatigue protocol. All

muscle function data were collected through an AD Instruments

Bridge Amp and Powerlab 4/30, and analyzed with Chart5

PowerLab software.

Single muscle fiber isolation
Single skeletal muscle fibers were harvested from the EDL and

peroneus longus muscles using a collagenase digestion protocol as

previously described [25]. Single fibers were collected using glass

blown Pasteur pipettes and placed in matrigel-coated 35 mm

culture dishes (BD Biosciences, Canada) containing plating media

[10% horse serum (Invitrogen, USA), 0.5% chick embryo extract

(MP Biomedicals, Ohio) in Dulbecco’s Modified Essential Medium

(DMEM; Invitrogen, USA)].

Fatty acid and glucose oxidation in single fibers
Approximately 18 hours following isolation, palmitate and

glucose oxidation rates were assessed on groups of single fibers

in 35 mm cell culture dishes. The 18 hour incubation period was

critical to allow fibers to recover from the isolation procedure,

settle onto the matrigel-coated dishes and allow any non-viable

fibers to hypercontract and hence be removed with rinses. After

the incubation period, wells were slowly rinsed three times with

warm PBS and viable fibers were counted. On average, 15 to 30

viable, healthy fibers from each mouse muscle were used for

oxidation rate assessment. Fiber viability was assessed by the

presence of cross-striations along the length of fiber and the

absence of sarcolemmal damage. Fibers were then serum-starved

for 3 hours in low-glucose DMEM supplemented with sodium

bicarbonate and pH adjusted. Following starvation fibers were

incubated with either [U-14C]glucose (0.2 mCi/ml) + cold glucose

(5.5 mM) for the determination of glucose oxidation or [1-14C]pal-

mitic acid (0.15 mCi/ml) + cold palmitate (100 mM) complexed

with fat-free BSA + L-carnitine (500 mM) for the determination of

palmitate oxidation. Each well was incubated with the palmitate or

glucose mixture for 2 hours in a closed system then the CO2

produced was assessed as previously described [9,10].

Whole muscle glucose and fatty acid oxidation and
glycogen synthesis

Following 8 weeks of diet intervention, mice were fasted

overnight and anesthetized with ketamine/xylazine (150 mg/kg:

10 mg/kg) prior to removal of soleus and EDL muscles. Palmitate

oxidation (N = 4 per muscle group), glucose oxidation (N = 4–6 per

muscle group), and glycogen synthesis (N = 4–6 per muscle group)

were assessed as previously described [9,26,27]. Briefly, isolated

EDL and soleus muscles were quickly extracted and mounted onto

thin, stainless steel wire clips to maintain resting length. The

incubations were performed immediately after extraction and the

muscles were placed in plastic scintillation vials containing 2 ml of

gassed (O2:CO2 – 95:5%) Krebs-Hanseleit bicarbonate (KHB)

buffer with 4% fat-free BSA and 5.5 mM glucose. The scintillation

vials were then sealed with rubber stoppers and gasification

(O2:CO2 – 95:5%) was continued during all incubations. After

pre-incubation, the muscles were transferred to a second set of

vials with 1.5 ml of KHB buffer containing either [U-14C]glucose

(0.2 mCi/ml) + cold glucose (5.5 mM) for the determination of

glucose oxidation and glycogen synthesis or [1-14C]palmitic acid

(0.15 mCi/ml) + cold palmitate (0.2 mM) complexed with fat-free

BSA + L-carnitine (500 mM) for the determination of palmitate

oxidation. Assessment of the effects of insulin on glucose oxidation

and glycogen synthesis was performed in the presence of 100 nM

of the hormone.

Enzymatic assays
Determination of citrate synthase (CS) and short chain fatty acyl

CoA dehydrogenase (SCHAD) was performed using pulverized

TA (,25 mg) or soleus (,5 mg) muscle powder sonicated with

1:20 (w/v) of extraction buffer as previously described [28],

assayed using a spectrophotometer (BioRad SmartSpecPlus, CA)

and normalized to protein concentration determined by Bradford

assay [28]. CS activity was assessed in duplicate or triplicate and
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measurements were taken every 10 s over a 3 min period.

SCHAD activity was assessed using both 5 ml and 10 ml samples

to determine optimal volume, measurements were taken every 2 s

over a 2.5 min period.

Histochemical analyses
Fiber type and IMCL were assessed using the metachromatic

and Oil-Red-O staining methods respectively [24,25,29,30].

Metachromatic stained muscle sections were used to assess fiber

type areas for gastrocnemius/plantaris (N = 4, average 187 fibers/

muscle) and soleus (N = 3, average 214 fibers/muscle) and fiber

type percentages for gastrocnemius/plantaris (N = 4, average 187

fibers/muscle), soleus (N = 3, average 328 fibers/muscle), and TA

(N = 4, average 331 fibers/muscle) using Scion Image. Succinate

dehydrogenase (SDH) activity was assayed by incubation of muscle

sections in medium consisting of 100 mM phosphate buffer

(pH 7.6), 1 mM KCN (Sigma, 207810), 6.3 mM EDTA, and

1.22 mM nitroblue tetrazolium (Sigma, N6876). IMCL and SDH

intensity were quantified in representative mixed fiber type regions

in serial sections of the gastrocnemius/plantaris (IMCL: N = 4

average 187 fibers/muscle; SDH: N = 4, average 187 fibers/

muscle) and soleus (IMCL: N = 4–5, average 51 fibers/muscle;

SDH: N = 3, average 62 fibers/muscle). To measure SDH activity

per fiber, images were converted to grey scale, fibers were

encircled in Adobe Photoshop and the mean pixel intensity/

optical intensity, graphically represented as arbitrary units (A.U.)

relevant to the overall control mean, in the area of interest was

recorded. Consequently, the darker the stain per fiber, the more

SDH activity, the greater the mean pixel intensity. The same

procedure was undertaken to assess IMCL levels using Oil-Red-O

staining with the increase in lipid droplets resulting in a greater red

color and thus a greater value for mean pixel intensity. All images

were acquired with a Nikon Eclipse 90i microscope and Q-

Imaging MicroPublisher 3.3 RTV camera with Q-Capture

software. All control and HFD images for each morphometric

analysis were taken at the same exposure with the same

microscope settings.

Data analyses
All statistical analyses were performed with GraphPad Prism 5

software. Differences between groups were determined using the

appropriate student t-test, one-way or two-way ANOVA followed

by Bonferonni post-hoc tests when appropriate. P values less than

0.05 were considered significant. All data presented are mean6

standard error of the mean.
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