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Abstract

Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack
targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify
TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to
therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a
metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new
BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we
substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize
patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively
stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified
patients identified as having a good or poor prognosis by other signatures including the MammaprintH and OncotypeH
clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients.
We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results
reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond
effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.
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Introduction

The application of gene expression array technology to breast

cancer has emphasized the heterogeneity of this disease and also

provided new tools to classify breast cancers into subtypes based

on gene expression patterns. Ideally each subtype would reflect

distinct molecular characteristics corresponding to discrete cancer

phenotypes. This information could be used to gain prognostic

insight and, eventually, to predict response to therapy. In addition

to the traditional clinical parameters (size, grade and node status)

and pathological markers (ER, PR and HER2 status), breast

cancer can be classified into at least 5 ‘intrinsic’ subtypes (Luminal

A, Luminal B, HER2-enriched, Basal-like, Normal-like) that were

derived from a hierarchical clustering analysis of expression

profiles of human breast tumors [1,2]. This classification has

generated a gene-expression predictor, the PAM50 Classifier, that

measures the expression of 50 genes to establish the intrinsic tumor

subtypes and has been useful as a prognostic marker but has not

yet reached its potential impact on clinical care [3].

Recently other gene expression signatures have been developed

in order to stratify patients by survival and to provide more

accurate prognostic tools [4–10]. Most of these signatures however

identify a few groups of patients that are mainly separated based

on ER status, HER2 status and proliferation markers and thus

partially overlap with the molecular subtyping [4]. Supervised

analysis of expression data has also led to clinical assays like the

OncotypeDXH, a diagnostic test that analyzes expression of 21

genes and provides a likelihood of recurrence for early stage,

estrogen receptor positive (ER+) patients [5]. Similarly, Mamma-

printH analyzes the expression of 70 genes, mostly related to

proliferation, and can stratify early-stage, node negative patients

based on the risk of recurrence [6]. Both these tests have a

prognostic significance but their applicability with respect to

targeted therapy is primarily limited to a well defined group of

patients whose tumors express ER or HER2.

One of the main challenges in the breast cancer field is to gain a

better knowledge of the biology of triple negative (ER-/PR-/

HER2-) breast cancer (TNBC) in order to develop clinical

approaches to this disease. TNBC represents 14 to 20 percent of

all breast cancers, has a high incidence in young women, is more

frequent in African American women compared to Caucasian,

and is often associated with BRCA1 mutations [11]. TNBC
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represents the most aggressive type of breast cancer and the one

with the poorest prognosis. This is due in part to the fact that there

is no targeted therapy available and in part because of the high risk

of recurrence. Moreover, recurrence occurs generally within a few

years and often involves metastasis, especially to the brain and

lung. TNBC largely comprises a subset of basal-like breast tumors.

Although chemotherapy is often initially beneficial in basal-like

tumors, those with residual disease after treatment have a high risk

of relapse [12]. Targeted therapy has potential value for treatment;

however, it is important to first identify the subpopulations of

patients that are most at risk.

We previously defined a signaling pathway-based gene signature

named the RKIP pathway metastasis signature (RPMS) that is

predictive for metastasis-free survival in a heterogeneous cohort of

breast cancer patients [13–15]. This signature was based upon

statistically determined regulatory relationships that were exper-

imentally validated and then applied using a cut-off based model.

These include the metastasis suppressor gene Raf Kinase

Inhibitory protein (RKIP), targets of the downstream let-7

microRNA family including the pro-metastatic let-7 targets

BACH1 and HMGA2, and finally their downstream targets

MMP1, CXCR4 and OPN. We experimentally demonstrated that

the microRNA let-7 suppresses breast cancer metastasis, and

BACH1, a leucine zipper transcription factor, promotes breast

cancer metastasis. By basing prognostic signatures for TNBC

patient survival on signaling pathway information, it is theoreti-

cally possible to identify drug targets that will enable effective

response of this patient cohort to treatment.

Our present goal is to improve the RPMS to make it more

clinically relevant and more targeted to specifically discriminate

among subgroups of TNBC patients. We used new gene

expression array data, obtained using a TNBC cell line, to

experimentally define the BACH1 target genes. Using this refined

set of genes, we then applied an optimization process to gene

expression data from human breast tumors to obtain a prognostic

signature. Finally, we added the capability of being a single sample

predictor. We thus define a novel BACH1 pathway metastasis

signature (BPMS) and show that it functions as a prognostic

indicator of metastasis-free survival in a heterogeneous cohort of

patients as well as TNBC patients. In addition, because the BPMS

is based on a signaling pathway, it also has the potential for

guiding the development of new therapy targeted to genes within

this signaling network that promote metastasis in TNBC patients.

Materials and Methods

Breast Cancer Patient Tumor Datasets
Three datasets on the Affymetrix hg-u133a platform were

assembled and utilized: BrCa871 (n = 871) and BrCa443 (n = 443),

and BrCa341 (n = 341). The training set BrCa871, consisting of

871 patients, contains five cohorts identified by their GEO

accession numbers: GSE1456, GSE2990, GSE3494, GSE7390,

and GSE11121. The first testing data set BrCa443 (443 patients) is

composed of three cohorts: GSE5327, GSE2034, and GSE2603

and the second testing set BrCa341 (341 patients) is also composed

of three cohorts: GSE6532, GSE12093, GSE31519. These

datasets were RMA pre-processed, median centered by sample,

and z-score transformed. One further dataset, METABRIC [16],

was also utilized for validation. For details on dataset composition

as well as preprocessing methodology, see Methods S1. The

BrCa871 set was split into two sets for training purposes: BrCa436-

Train for training and BrCa435-CV for cross-validation. BrCa341

and BrCa443 were not utilized in the training process and used

only for validation. A further dataset consisting of genes regulated

by shBACH1 depletion in breast tumor cells was generated to

identify potential genes of interest but was not used for training

purposes. All data was analyzed using R.

Generation of stable cell lines, RNA isolation and
microarray analysis

Stable depletion of BACH1 in MDA-MB-231-derived 1833 (also

termed BM1) human metastatic breast cancer cells was achieved

using shRNA lentiviral vectors as described previously [15]. RNA

was isolated from cells using RNeasy Mini Kit according to

manufacturer’s instruction (Qiagen) and reverse transcription was

performed as described previously [11]. Affymetrix GeneChip

Human Gene 1.0 ST arrays were used for expression analysis of

RNA samples, in triplicate, from 1833 cells expressing shBACH1

or a scrambled control RNA (3x scrambled RNA control and 3x

shBACH1 accessible as GSE50226). All microarray data (includ-

ing both cell line and patient tumor gene expression data) were

preprocessed using the Robust Multi-array Average (RMA)

framework (R Bioconductor libraries ‘oligo’ and ‘pd.hugene.

1.0.st.v19); samples were then median-centered by subtracting the

median expression value from each sample.

Generation of let-7-TG and BACH1 meta-genes
A high-confidence set of let-7 target genes was previously

generated using target prediction programs [14]. A list of BACH1

target genes was generated by analyzing differences in expression

levels between control and shBACH1 1833 cells using the

Significance Analysis in Microarrays package (R library ‘samr’)

with a high stringency cutoff (median FDR = 0.125; p,0.001)

[17]. The lists of both significantly up-regulated and down-

regulated genes were imported into DAVID for annotation of

global function-related themes [18].

Meta-genes were constructed as previously described [14,18]

(see Methods S1 for detailed description). Briefly, downstream

targets of let-7 and BACH1 were combined into weighted averages

to serve as an estimate of regulation by both the microRNA (let-7)

and the transcription factor (BACH1). As let-7 suppresses its

downstream targets, an increase in let-7 should cause a decrease in

the overall let-7 target gene meta-gene (meta-let-7-TG). Converse-

ly, as BACH1 activates its downstream targets, an increase in

BACH1 should cause a net increase in the BACH1 target gene

meta-gene (meta-BACH1). The meta-genes serve to define activity

of these regulators in individual patients relative to RKIP

expression.

Threshold selection and Cost Function Optimization
Overview

In order to find a set of cutoff values for the genes in the

signature that was significant and also remained prognostic across

multiple datasets, we treated the problem as an inversion and

optimization problem. A cost function was formulated to reflect

significance using the logrank test p-value and well as cohort size.

All p-values are logrank p-values unless otherwise noted.

Furthermore, all survival data was right-censored at 5 years with

the exception of the training sets. Cutoff values were adjusted to

minimize the cost function using a non-linear optimizer. In this

case, we utilized the Nelder-Mead algorithm natively in R (R

function ‘optim’) to find local minima of the cost function.

We utilized the BrCa871 dataset as the overall training set and

the BrCa443 and BrCa341 datasets as the testing sets. An

additional dataset, the METABRIC, was also used as a validation

set [16]. It is important to note that the BrCa443 and BrCa341

datasets are independent datasets and were never utilized in the
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entire training process. Furthermore, the cell line data was not

utilized for training or validation but only for gene selection. The

BrCa871 dataset was separated into two smaller sets of approx-

imately the same size: a training set including 436 patients

(BrCa436-Train) and a cross-validation set of 435 patients

(BrCa435-CV). A series of 24,800 potential combinations of

cutoffs was first generated in the BrCa436-Train set by minimizing

the cost function. Of these, 556 combinations produced a

significant P-value in both BrCa436-Train and BrCa435-CV

and for each gene the mean was calculated from these 556

significant cutoffs, yielding the final set of cutoff values.

Signaling System Model
In our system, we are primarily concerned with the conse-

quences of RKIP suppression. Using relationships between genes

previously demonstrated [12], we hypothesize that RKIP suppres-

sion should reduce expression of let-7. Since let-7 inhibits BACH1

and HMGA2, suppression of let-7 should activate both BACH1 and

HMGA2. Similarly, activation of both BACH1 and HMGA2 should

induce activation of MMP1, CXCR4, and OPN. Summation over

the d function (equation 2) returns values between 0 and 7. Values

less than 7 represent incomplete pathway activation, while values

exactly equal to 7 indicate that the entire BPMS pathway is

activated. Given information on either complete or incomplete

activation, our classifier function (equation 1) returns a value of

either 0 or 1. If the sample’s gene expression values are consistent

with complete RKIP pathway activation, the function’s output is

1. Otherwise, if at least one gene in the RKIP pathway does not

properly reflect complete activation, the function’s output is 0.

The BACH1 Pathway Metastasis Signature functions as a

classifier between high risk and low risk of future metastasis when

applied to a 2-dimensional data matrix X of gene expression

values with elements Xi,j representing the ithgene of the jthsample.

Our classifier function, designed to reflect pathway activation in

downstream targets of RKIP and BACH1, is written,

FBPMS X,j ,c
� �

~
1 if S7

i~1di Xi,j ,ci

� �
~7

0 otherwise

(
ð1Þ

di a,bð Þ~
1 if awb, i=RKIP

1 if avb, i~RKIP

0 otherwise

8><
>: ð2Þ

Here, di a,bð Þ is the thresholding/activation function for gene,

and ci is our corresponding threshold. These thresholds were

trained on gene expression values running from i = 1 through 7,

representing RKIP, meta-let-7-TG, meta-BACH1, HMGA2,

MMP1, CXCR4, and OPN respectively. With the exception of

meta-let-7-TG, if a given gene’s expression levels are greater than

its threshold, that gene is said to be activated; similarly, if the same

gene’s expression levels are less than its threshold, it is said to be

repressed. Since the meta-let-7-TG is an aggregation of various

downstream targets of let-7, suppression of let-7 should cause an

overall increase in meta-let-7-TG. Therefore, if meta-let-7-TG is

greater than its threshold, let-7-TG is said to be activated.

Inherent to this methodology is an inverse relationship between

the number of gene-parameters and the predicted size of cohorts

identified.

Cost Function
The aim of the classifier function is to demonstrate within a

specified subpopulation of breast cancer patients a correlation

between the mRNA expression values of our given set of BPMS

genes and the phenotype of decreased likelihood of metastasis-free

survival. Therefore, we sought a relationship between the relative

expression levels of our 7 BPMS genes and certain statistical

properties of the BPMS subpopulation. In order to increase the

predictability and effectiveness of the classifier function, we

searched for a set of thresholds that simultaneously maximizes

the size of the potential BPMS subpopulation, and minimizes the

metastasis-free survival stratification of that subpopulation. To that

end, we defined a cost function whose parameters are the

expression levels of the 7 genes and whose values are a linear

sum of functions a and b. a (equation 4) is a discretization of the

raw log-rank p-value of the potential BPMS cohort reflecting the

significance of the potential solution; b (equation 5) is a linear

transformation of the relative proportion of BPMS patients,

reflecting the effect size (patient population size) of the solution. By

optimizing a, we select for solutions that maximize the significance

of the signature. However, to avoid over-fitting for significance,

optimizing the b function selects for solutions that maximize the

effect size of the signature.

An alternative statistical parameter to the log-rank p-value that

can be directly interrogated by the function a is the hazard ratio.

However, the hazard ratio can be shown to be simply a linear

transformation of raw log-rank values. Raw log-rank values go to a

chi-squared distribution, and we are using the p-values on the

extreme end of the chi-squared distribution. Therefore, the hazard

ratio (to a high approximation) can be explained linearly as a

function of the log-rank p-value.

We minimized the cost function using a numerical optimizer.

We now describe these steps in detail.

The cost function’s first component a was discretized to match

the discrete nature of the second component b. Similarly, the

range of b for typical parameter values was roughly scaled to

match the range of a. The net effect of this discretization and

scaling is the creation of a very frugal cost function that rejects

small changes that merely add a patient or two and instead

rewards larger jumps that drastically change the raw log-rank p-

value of potential BPMS thresholds.

Our cost function f X ,cð Þ is written as,

f X ,cð Þ~a X,cð Þzb X,cð Þ ð3Þ

where

a X,cð Þ~

2| Pr Q X ,cð Þwq½ �
0:05

0:03

0:01

0:005

8>>>>>><
>>>>>>:

Pr Q X ,cð Þwq½ �w0:05

0:05§ Pr Q X,cð Þwq½ �w0:03

0:03§ Pr Q X,cð Þwq½ �w0:01

0:01§ Pr Q X ,cð Þwq½ �w0:005

otherwise

ð4Þ

and

b X ,cð Þ~ 1

2
| 0:1{

NBPMS

NALL

� �
ð5Þ
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Pr Q X,cð Þwq½ �is the log-rank p-value of our potential BPMS

cohort, NBPMS is the number of potential BPMS patients, and

NALLis the total number of patients in X .

Optimizer
The optimizer used to produce solutions was the default R

implementation (R function optim) of the downhill simplex

algorithm [19]. Random solutions drawn from a normal

distribution with mean zero and variance one were selected as

starting points.

Survival analysis
To determine the significance of differential survival between

BPMS and non-BPMS patients, the logrank test was performed on

annotated metastasis-free survival (MFS) data paired to each

sample. Kaplan-Meier plots were also generated for each dataset

to provide a visualization of survival stratification. Comparisons of

five year survival were determined using right-censoring of survival

data in all validation sets.

When assessing the overall significance of the BPMS compared

to other prognostic signatures, an analysis of variance (ANOVA)

test was performed. To compare two models in an ANOVA, a

hypothesis test called the likelihood ratio test can be performed.

The likelihood ratio test compares the ratio of likelihoods for a

given multivariate Cox model (e.g. published prognostic signa-

tures) relative to a second model (e.g the published prognostic

signatures plus the BPMS) and determines whether or not a

particular regressor (e.g. BPMS) imparts significant information to

the first model. The ANOVA utilizes repeated application of the

likelihood ratio test from a null model to a full model by

successively adding single prognostic signatures. Thus, using

multivariate Cox proportional hazards models, we calculated the

Table 1. Gene targets comprising the let-7 meta-gene (left) and BACH1 meta-gene (right).

Let-7 Targets BACH1 Targets

ARID3B AT rich interactive domain 3B (BRIGHT-like) BMPER BMP binding endothelial regulator

CCNJ cyclin J DYM dymeclin

GOLT1B golgi transport 1B FBXO42 F-box protein 42

HIC2 hypermethylated in cancer 2 FRMPD4 FERM and PDZ domain containing 4

IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3 HERC3 HECT and RLD domain containing E3 ubiquitin protein ligase 3

IL13 interleukin 13 HS3ST3B1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1

MAP4K4 mitogen-activated protein kinase kinase kinase kinase 4 IL1RAP interleukin 1 receptor accessory protein

NF2 neurofibromin 2 (merlin) IL7 interleukin 7

PAPPA pregnancy-associated plasma protein A, pappalysin 1 MAGEC1 melanoma antigen family C, 1

SLC6A1 solute carrier family 6 (neurotransmitter transporter, GABA),
member 1

MYCT1 myc target 1

TGFBR1 transforming growth factor, beta receptor 1 PDE1C phosphodiesterase 1C, calmodulin-dependent 70 kDa

ZC3H3 zinc finger CCCH-type containing 3 PRDM1 PR domain containing 1, with ZNF domain

RCAN3 RCAN family member 3

doi:10.1371/journal.pone.0082125.t001

Figure 1. The optimized solutions yield larger cohort sizes and better p-values. Distribution density plots for non-optimized (control) and
optimized signatures verify that significantly better cohort sizes (A) and p-values (B) were generated using a cost function in conjunction with the
Nelder-Mead optimization algorithm.
doi:10.1371/journal.pone.0082125.g001
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significance of the BPMS when compared to all other prognostic

signatures examined. For more information on the multivariate

ANOVA test, see Methods S1.

BPMS on Alternate Array Platforms
To test the BPMS for cross platform compatibility, we utilized

the METABRIC expression array dataset of 2000 breast tumors

performed on the Illumina BeadArrays [16]. To compare survival

we applied the BPMS as above in these datasets and compared

metastasis-free survival using the logrank test on Kaplan-Meier

survival curves.

Signature Comparisons
Implementation of intrinsic subtype, proliferation, triple-

negative, MammaprintH, OncotypeH, GAB2 signaling scaffold,

28-kinase metagene, glucocorticoid receptor, and 76-gene signa-

tures were performed as previously described [1,2,4–8,10,20,21].

Comparisons to intrinsic subtyping, proliferation, GAB2 signaling

scaffold, 28-kinase metagene, glucocorticoid receptor and triple-

negative signatures were used to demonstrate the significance of

the BPMS within basal breast cancer populations. Further

comparisons to the 76-gene signature were used to predict overall

survival, and Mammaprint and Oncotype signatures were

included to establish the complementarity of the BPMS signature

to these clinically-relevant signatures. Patient subgroup survival

was compared in a pairwise manner using the logrank test (R

library ‘survival’) and across the combination of all signatures

using the multivariate likelihood ratio/ANOVA test.

Software Code
All of the code used to perform the analyses is included in the

supplementary documents.

Results

Analysis of gene expression changes in a BACH1-
depleted TNBC cell line and generation of meta-genes

To build a BACH1 pathway metastasis signature (BPMS), we

determined whether the use of experimentally derived BACH1

targets to build the BACH1-metagene could reduce the number of

genes included in the signature and improve the ability of our

signature to predict patient outcome. Meta-genes combine the

individual expression of a group of genes into a single value. For

the RPMS signature [13–15], we used meta-genes as surrogates

for let-7 and BACH1 since expression of their target genes could

reflect their activity better than their expression level alone.

Moreover, the meta-gene was necessary for estimating the level of

let-7 expression, as its expression level was not measured directly

on the Affymetrix hgu133a platform. The BACH1 meta-gene was

built in order to estimate the level of transcriptionally active

BACH1 as its activity is regulated at multiple levels including

cofactor association and cytoplasmic sequestration [22,23]. The

original BACH1 meta-gene in the RPMS was based on predicted

targets for BACH1 obtained from the TRANSAFAC database

[14].

To build a new BACH1 meta-gene, we stably depleted BACH1

via shRNA transfection of 1833 cells, a bone tropic derivative of

MDA-MD-231 TNBC cells [24]. We performed microarray

Figure 3. The BPMS is a single patient predictor. Using frozen
RMA pre-processed data, the BPMS was trained to be applied on a
patient-to-patient basis. The BrCa871 set was processed using fRMA,
divided into the BrCa436-Train and BrCa435-CV sets and 7,500 potential
solutions were optimized. Using a cross-validation strategy, a final set of
BPMS parameters were trained for fRMA processed data. Shown is the
application of these parameters to the fRMA processed BrCa341 data
set.
doi:10.1371/journal.pone.0082125.g003

Figure 2. Optimization procedure for the BPMS. After separating the overall training set (BrCa871) into a training set and a cross validation set,
(A) a series of 24,800 potential solutions are produced by optimizing our cost function using the Nelder-Mead downhill simplex algorithm. These
solutions were trained on survival data with no year-specific endpoint defined to maximize signal sensitivity (See Figure 4). Using these 24,800
potential solutions, (B) significance in both training and cross-validation sets was assessed. To control for over-fitting solutions, 556 solutions yielding
significance in both sets were extracted and used to estimate the final BPMS signature.
doi:10.1371/journal.pone.0082125.g002

TNBC Prognostic Gene Signature
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analysis on these cells and identified a group of genes that had

significant (p,0.001) differential expression following BACH1

depletion. Specifically, 80 genes were increased and 88 genes were

decreased (Table S1). Using the functional annotation software

tool DAVID, we determined that BACH1 expression correlated

positively with genes in categories related to the cytoskeleton and

extracellular matrix including actin-binding to Wiskott-Aldrich

homology 2 (WH2), extracellular/secreted and EGF-like. BACH1

expression correlated negatively with genes in categories related to

phospholipid metabolism including calcium binding, sterile alpha

motif, inositol phosphate metabolism, plasma membrane and

phospholipase activity. These results are consistent with previous

findings demonstrating that BACH1 promotes breast cancer

metastasis [14,25].

We utilized the experimentally-derived BACH1 target genes to

minimize the number of components required to generate

meta-genes in order to facilitate clinical application of the new

BACH1-based signature. The RPMS signature was comprised of

Figure 4. The BPMS is prognostic for metastasis-free survival (MFS). Patients from three breast cancer datasets, (A) BrCa871 (35 BPMS+ out
of 871 patients), (B) BrCa443 (24 BPMS+ out of 443 patients) and (C) BrCa341 (6 BPMS+ out of 341 patients), were stratified for MFS using the BPMS.
BrCa871 is shown with no year-specific clinical endpoint to reflect the training data. Red indicates patient tumors that express the BPMS signature
while black indicates patient tumors that do not. Survival curves were generated by Kaplan–Meier analysis, and the indicated P-values were
calculated by the log-rank test.
doi:10.1371/journal.pone.0082125.g004

Figure 5. The BPMS is prognostic for metastasis-free survival of breast cancer patients with tumors of the basal subtype. PAM50 was
used to categorize breast tumors into (A) Basal (16 BPMS+ patients out of 120 Basal patients, x2 = 13.7), (B) luminal A (0 BPMS+ patients out of 110
luminal A patients), (C) luminal B (1 BPMS+ patient out of 97 luminal B patients, x2 = 0.5), (D) HER2 (4 BPMS+ patients out of 67 HER2 patients, x2 = 0)
and (E) normal (3 BPMS+ patients out of 48 Normal patients, x2 = 0.8) subtypes as indicated. BrCa443 patients were stratified for MFS using the BPMS.
Red indicates patient tumors that express the BPMS signature while black indicates patient tumors that do not. Survival curves were generated by
Kaplan–Meier analysis, and the indicated P-values were calculated by the log-rank test.
doi:10.1371/journal.pone.0082125.g005

TNBC Prognostic Gene Signature
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approximately 100 genes of which most were contained in the

BACH1 TG meta-gene. To reduce the number of genes that act as

surrogates of BACH1, we determined the variance of each gene

across 871 gene expression arrays conducted on resected breast

cancer tumors (termed the BrCa871 training dataset) and filtered

the BACH1 targets by selecting genes with the lowest variance. A

similar analysis was conducted for let-7 TG. This procedure

yielded a list of 12 genes for the let-7 TG meta-gene and 13 genes

for the BACH1 meta-gene (Table 1). The new let-7 meta-gene is a

subgroup of the one we used previously [14]. By contrast, the new

BACH1 meta-gene has no genes in common with those in the

RPMS and thus had to be further tested to assess how well it

represents BACH1 as a component of the RKIP signaling

pathway.

let-7-TG and BACH1 meta-genes correlate to other
components of the RKIP signaling pathway and to
previous meta-genes

In order to test if the new let-7-TG and BACH1 meta-genes

behave as elements of the RKIP signaling cascade and maintain

the expected correlation to other components of the pathway in

patient datasets, we performed gene set analysis [13]. As observed

previously, expression of the genes that we selected as let-7 targets

(meta-let-7-TG) correlated inversely to RKIP expression when

tested as a set (p,0.001, FDR,0.001, score = 20.46). Similarly,

expression of the BACH1 target set (metaBACH1) correlated

positively to the let-7-TG meta-gene, to BACH1 expression and to

the BMS gene set when tested using the BrCa871 dataset

(scores = 1.06, 0.93, and 1.60, respectively; p,0.001,

FDR,0.001 for all). To determine whether these newly defined

meta-genes for let-7 TG and BACH1 are representative of the let-

7-TG and BACH1 meta-genes used for the RPMS, we correlated

the distributions of these two sets of meta-genes across the

BrCa871 dataset. Analysis yielded a Pearson correlation of 0.71

for the let-7-TG meta-genes and 0.69 for BACH1 meta-genes.

These results showed a high degree of correlation between the

respective meta-genes suggesting that the newly created meta-

genes are a good representation of the old one when interrogated

using breast cancer patient gene expression data.

We then determined whether these new meta-genes follow a

normal distribution. Initially, the preprocessing approach and the

Central Limit Theorem ensured that all genes in all datasets that

we used in this study were distributed normally. However, it is

possible that our processing method for creating meta-genes

engendered major bias. To test this possibility, we generated Q-Q

plots for the let-7-TG and BACH1 meta-genes. The results indicate

that each meta-gene is extremely linear in this representation and

thus is normally distributed (Figure S1).

Figure 6. The BPMS is prognostic for metastasis-free survival of TNBC patients. The proliferation signature was used to categorize breast
tumors into (A) ER-HER2- (15 BPMS+ patients out of 121 ER-HER- patients, x2 = 10.5), (B) TNBC (18 BPMS+ patients out of 118 TNBC patients, x2 = 9.4),
(C) ER+HER2- (n = 1), and (D) HER2+ (8 BPMS+ patients out of 117 HER2 patients, x2 = 0). BrCa443 patients were stratified for MFS using the BPMS. Red
indicates patient tumors that express the BPMS signature while black indicates patient tumors that do not. Survival curves were generated by
Kaplan–Meier analysis, and the indicated P-values were calculated by the log-rank test.
doi:10.1371/journal.pone.0082125.g006
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Setting signature cutoffs using cost function
optimization and cross validation

Although our previous RPMS gene signature used a median

cutoff for individual genes to stratify patients, the median cutoff is

an arbitrary value and may not be the most appropriate way to

establish gene activity. The median cutoff assumes that the

threshold for activation is the same for all genes and corresponds

to the median value. To improve threshold selection beyond the

median cutoff, we developed a novel methodology involving cost

function optimization.

Specifically, we utilized a mathematical approach that opti-

mized the cost function to define the most effective gene cutoffs for

stratifying patients while maximizing the patient group size. To

accomplish this, we used the R implementation of Nelder-Mead

optimization (R function ‘optim’), setting the cutoffs of the genes

and meta-genes in the signature (5 genes and 2 meta-genes) as the

values to be optimized. Using a subset of the BrCa871 dataset

(BrCa436-Train), we optimized our cost function by adjusting the

cutoffs, thereby maximizing power and specificity. Instead of using

the median value as a cutoff for all genes, we chose a value for

each gene that was able to maximize significant differences in

metastasis-free survival.

As a control to determine whether the optimizer will yield better

solutions than non-optimized solutions, the cost function was

optimized 1444 times using the BrCa871 dataset. We compared

these optimized results to a set of 1056 randomly generated

solutions that were not optimized. We then analyzed the p-values

(statistical significance) and cohort size (number of patients

expressing the 7 gene signature) of these solutions. The optimized

solutions yielded an average p-value of 0.0868 with a variance of

0.0041 while also yielding an average cohort size of 14.43 with a

variance of 0.15. The random solutions yielded a mean p-value of

0.223 with a variance of 0.008 as well as an average cohort size of

10.82 with a variance of 0.16. Using a t-test to compare the two,

we found that the optimized solutions give significantly better p-

values (p,0.0001), as well as a significantly larger cohort size

(p,0.0001) (Figure 1A, B). These results indicate that optimization

over the cost function produces significantly better thresholds for

gene expression than random methods.

To build a predictive model, results were obtained from 24800

optimizations in BrCa436-Train and cross-validated using the

remainder of the data (BrCa435-CV) as a control for over-fitting.

Specifically all 24800 potential solutions were applied to the

BrCa435-CV dataset. Solutions that did not produce significance

in both the training as well as cross-validation sets were discarded,

leaving a remaining 556 potential solutions. Using this underlying

distribution of significant solutions (p,0.05), an estimate of the

final set of the cutoffs was generated (Figure 2). The final cutoff

Figure 7. The BPMS is prognostic for high risk patients among good prognosis patients. Good prognosis categories examined were: (A)
the 76-gene (20 BPMS+ patients out of 290 good-prognosis patients, x2 = 12.2), (B) 28-kinase metagene (8 BPMS+ patients out of 104 high immune
response patients, x2 = 6.9), (C) GAB2 Scaffolding (23 BPMS+ patients out of 429 good prognosis patients, x2 = 9.7), and (D) glucocorticoid receptor
signature (16 BPMS+ patients out of 121 GR-/ER- patients as defined by 50% cutoff, x2 = 10.5). Patients were stratified for MFS using the BPMS. Red
indicates patient tumors that express the BPMS signature while black indicates patient tumors that do not. Survival curves were generated by
Kaplan–Meier analysis, and the indicated P-values were calculated by the log-rank test.
doi:10.1371/journal.pone.0082125.g007
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values were set by averaging the results within each gene (or meta-

gene) using normalized (0, 1) data that was median-centered by

patient. This analysis generated 7 cutoff values: 20.27 for RKIP,

20.23 for MMP1, 0.19 for OPN, 20.20 HMGA2, 20.19 for

CXCR4, 20.020 for meta-let7-TG, and 20.15 for meta-BACH1.

These results identified a new metastasis gene signature with a

greatly reduced number of genes. We term this new signature the

BACH1 pathway metastasis signature or BPMS.

BPMS as a single sample predictor
Ideally, for clinical purposes, a prognostic signature would

enable one to predict survival for a single sample independent of

the context of a larger patient population. Since the previous

RPMS gene signature used a median cutoff for individual genes

that cannot be defined outside of a statistical distribution, the

RPMS cannot be applied on a patient-to-patient basis. Individual

patients may be added to already existing distributions of gene

expression values, but the addition of each patient would, in fact,

change the median threshold for each gene. Similarly, using RMA

preprocessing as above prevents us from generating a single

sample predictor (SSP) from the BPMS. An alternative approach is

to use the frozen RMA (fRMA) package (Bioconductor package

‘fRMA’) [21] to perform quantile normalization and pre-

processing of all samples. Unlike RMA, which calculates

normalization parameters using a given dataset, fRMA utilizes a

‘‘frozen’’ set of parameters that are independent of other samples

within a dataset.

To determine whether the BPMS can function as a single

sample predictor (SSP), the BrCa871 and BrCa341 datasets were

processed using fRMA. After splitting BrCa871 into both

BrCa436-Train and BrCa435-CV, 7500 solutions were trained

on BrCa436-Train. These 7500 solutions were then cross-

validated using BrCa435-CV, and solutions that did not produce

significance within both BrCa436-Train and BrCa435-CV were

discarded. All remaining solutions were averaged to yield a single

sample predictor. This SSP version of the BPMS was then

validated using fRMA-processed BrCa341 data (Figure 3). The

results indicate that the BPMS, when used as a SSP, has the

potential to significantly predict patient survival.

Signature hypothesis testing
To address concerns that random gene signatures of a similar

size are equally effective or even more significant at stratifying

patient data than our experimentally derived BPMS, we used a

Monte Carlo method to sample 1,520 sets of 7 random genes [26].

We ran optimizations over our 1,520 gene sets using identical

methodology to that used for analysis of the BPMS target genes.

To be specific, we optimized each gene set using the cutoff model

on the BrCa436-Train data, selected solutions that produced

significance in the BrCa435-CV data, and estimated the most

effective cutoff values of the gene set. We then applied the resulting

signature for each random gene set to the BrCa443 data, yielding

a log-rank p-value for each gene set. We used these 1,520 gene sets

to provide an estimate of the proportion of 7-gene permutations

that our BPMS gene set outperformed. The BPMS out-performed

a significant portion of the randomly produced signatures, yielding

a p-value of 0.0389. These results indicate that the group of genes

we chose for the signature is significantly different from a random

group.

BPMS is Prognostic for Metastasis-Free Survival
To determine whether the BPMS is associated with metastatic

risk, we performed logrank tests on different breast cancer patient

datasets, applying the cutoffs we generated previously. When

applied to the entire BrCa871 set that was used for training, the

analysis yielded a p-value of less than 4.061026. Similarly, analysis

of two other datasets, BrCa443 and BrCa341, yielded p-values of

6.361023, and ,2.061025 for 5 year survival, respectively

(Figure 4A–C). While a relatively low number of BPMS patients

in the BrCa341 set may suggest an instability in the signature, a

chi-squared test demonstrates that there is no significant deviation

from the expected number of patients when compared to the

BrCa871 dataset (x2 = 3.1657, dof = 1, p = 0.0752). These analy-

ses indicate that the BPMS signature is significant and has

prognostic value, effectively stratifying patients for risk of

metastasis.

BPMS stratifies patients identified by other signatures
Previous signatures have been used to classify breast cancer

patient tumors into molecularly defined groups based on gene

Figure 8. The BPMS is prognostic for high risk patients among the clinically predicted poor outcome and high recurrence patients.
Clinically relevant gene signatures (A) MammaprintH Poor (23 BPMS+ patients out of 226 Mammaprint Poor patients, x2 = 4.3) and (B) OncotypeDXH
Recurrence High (16 BPMS+ patients out of 257 RS High patients, x2 = 6.7) were stratified for MFS using the BPMS. Red indicates patient tumors that
express the BPMS signature while black indicates patient tumors that do not. Survival curves were generated by Kaplan–Meier analysis, and the
indicated P-values were calculated by the log-rank test.
doi:10.1371/journal.pone.0082125.g008
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expression levels. In addition, these gene signatures have been

applied as clinical tests for patient prognosis. Based on these

criteria, we defined two categories of signatures, molecular and

clinical, and then tested the prognostic value of BPMS patients

using the BrCa443 dataset with these two types of signatures.

Within the molecular classifiers, the PAM50 signature identifies

five subgroups: Luminal A, Luminal B, Normal, Her2+ and Basal.

The BPMS patients overlap primarily with basal patients.

However, the BPMS significantly enhances patient stratification

for MFS (p-value,261024; Figure 5A–E) Specifically, the BPMS

can significantly differentiate between higher and lower risk

patients within the highly aggressive basal subtype.

Within the molecular phenotypes, we first looked at the

proliferation signature, a classification that builds meta-genes to

predict whether patients are ER positive or negative as well as

Her2 positive or negative. Our analysis indicated that the BPMS

patients overlap the ER-/Her2- group, and the BPMS again

significantly stratifies them further for MFS (p-value = 0.0012;

Figure 6A–C). In addition, TNBC patients, although typically

defined through histological assays, were recently categorized by a

gene expression signature [18]. TNBC patients identified by this

signature significantly overlapped with the BPMS patients;

however, as above, the BPMS signature further stratified these

patients for MFS (p-value = 0.00214; Figure 6D). Using the entire

BrCa443 dataset, we also applied the BPMS to four other

molecular signatures: 1) a 76-gene signature predictive of distant

metastasis-free survival [7]; 2) a 28-kinase metagene signature

related to immune response of cytotoxic T-cells [8]; 3) a 205 gene

transcriptional GAB2 scaffold signature related to proliferation

and cell adhesion/migration/invasion [9]; and 4) a glucocorticoid

receptor signature whose stratification is dependent on ER status

[10]. In the latter case, we also analyzed only the top and bottom

25% of the patients as in the original report [10] (Figure S2).

Interestingly, in all four cases, the BPMS identified poor prognosis

patients within the good prognosis cohort (Figure 7). These results

suggest that the BPMS can be used in conjunction with other

molecular signatures to identify patients that might otherwise be

considered low risk.

Finally, we applied the BPMS to gene signatures that are

currently used in the clinic (OncotypeDXH and MammaPrintH).

The BPMS was able to further stratify patients in the poor

prognosis subgroup of patients analyzed by MammaprintH and the

high recurrence subgroup of patients analyzed by OncotypeDXH
(p-value = 0.04 and 0.01 respectively; Figure 8A,B; Figure S3A-C).

Thus, the BPMS gene signature is significantly different than these

other signatures and adds information when combined pairwise.

A multivariate analysis of common clinical factors consisting of

nodal status, grade, size, ER status, and age was also performed.

As clinical data was sparsely available, a combined set of BrCa443

and BrCa341 was used for this analysis. Using the methodology of

Sabatier, et. al. [8], we first fit univariate Cox models to each

clinical factor individually. Of those factors, only nodal status and

size were significant predictors on their own. We then fit a

multivariate Cox model to nodal status, size, and the BPMS

(Table 2). Analysis of variance using a likelihood ratio test with

competitive linear Cox models shows that the BPMS significantly

adds value independent of clinical factors (p = 0.0073, Survival,
clinical factors vs Survival,clinical factors+BPMS) (Table 2).

Additionally, a similar comparison of all the molecular and

prognostic signatures mentioned above indicates that the BPMS

signature significantly adds prognostic value to the combined

signatures (p = 0.028; Survival,combined signatures vs. Survi-

val,combined signatures+BPMS) (Table 3). Together, these

analyses show that the BPMS is a significant predictive variable

even after adjustment for all available clinical and prognostic

factors.

BPMS signature is effective in other array platforms
To test for the potential of cross platform use, we applied the

BPMS to the recently-derived METABRIC expression dataset

generated from 2000 heterogeneous breast cancer tumors using

Illlumina BeadArrays. Using the BPMS, we observed a more

Table 2. The BPMS is a significant predictor of metastasis-free survival (MFS) after adjustment for clinical variables.

Table 2A

Univariate Analysis Multivariate Analysis

Risk Factor HR (95% CI) p-value HR (95% CI) p-value

Nodal Status 1.47 (1.104–1.971) 0.0086 1.450 (1.0828–1.9425) 0.013

Grade (1, 2 vs 3) 0.872 (0.965–1.029) 0.36

Size (. vs #20 mm) 0.982 (0.9832–0.9915) 0.00017 0.982 (0.9726–0.9907) 0.000083

ER status 1.03 (0.7757–1.358) 0.86

Age 1 (0.9925–1.015) 0.54

BPMS 2.3 (1.406–3.762) 0.0009 2.183 (1.3057–3.6495) 0.0029

Table 2B

Model Log-likelihood

S,node+size 21472.7

S,node+size+BPMS 21469.1

22*(L0 – L1) 7.2

p-value = 0.0073

All available clinical data in a combined BrCa443/BrCa341 dataset was fit individually to Cox proportional hazards models. A) Clinical factors that were significant
univariate predictors of MFS were placed into a full model along with the BPMS. B) An analysis of the variance (likelihood ratio test) comparing the multivariate model
with and without the BPMS (L0 and L1 respectively) demonstrates the prognostic ability of the BPMS (p = 0.0073, x2 = 7.2, df = 1).
doi:10.1371/journal.pone.0082125.t002
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modest but significant stratification of high risk METABRIC

patients (p-value = 0.0481; Figure S4). Thus, the BPMS has utility

even when applied to different platforms.

Discussion

New tools to classify TNBCs are urgently required in order to

improve our prognostic capability and predict response to therapy.

Here we utilized a novel optimization strategy to define a gene

expression signature, BACH1 Pathway Metastasis Signature

(BPMS), that significantly and selectively stratifies metastasis-free

survival (MFS) in basal-like and, in particular, highest risk TNBC

patients. This signature stratifies high risk patients within the

TNBC cohort using only one-third the number of genes of our

previously published RKIP-based pathway signature. The BPMS

also further stratifies patients with apparent good prognosis as

assessed by multiple molecular signatures as well as identifying

patients at highest risk among those clinically classified as having

poor prognoses using the MammaprintH and OncotypeH signa-

tures. Finally, the BPMS has potential clinical application as a

single sample predictor.

The BPMS was derived from a previously defined RKIP

Pathway Metastasis Signature (RPMS) that identifies a cohort with

significantly poorer prognosis than patients outside the cohort.

The RPMS achieves patient selection by a process that utilizes the

expression levels of 7 gene products, which we defined as the

RPMS target gene set: RKIP, meta-let-7-TG, meta-BACH1,

HMGA2, MMP1, CXCR4, and OPN. By contrast, the BPMS

described here differs from the RPMS on several levels. First, the

BACH1 meta-gene was based on experimentally defined gene

targets in the BPMS rather than predicted targets as in the RPMS.

Second, the original RPMS signature utilized approximately 100

genes whereas this number was reduced to 30 in the BPMS. To

achieve this, we simply selected for gene targets with lowest overall

variance. Third, to set the threshold for patient selection for the

BPMS, we used an optimization approach that utilizes machine

learning rather than the median threshold that we used to generate

the RPMS. To assess the significance of our 7 selected genes, we

analyzed random gene sets in comparison to the genes in the

BPMS. We demonstrated that our signature using the BPMS

target gene list performs better than 95% of random 7-gene

signatures produced using our optimization and cross-validation

methodology. Together, our results demonstrate that the BPMS is

selective and significant as an analytical tool for patient outcome

related to MFS.

The BPMS has potential clinical relevance in that it significantly

enhances the ability of single tests to predict future prognosis for

patients. Surprisingly, analysis of four recent molecular signatures

using the BPMS shows that some patients classified as low risk

were in fact high risk. With the advent of targeted therapy, it is

possible that some of these signatures may be applied in a clinical

setting. For example, beta blocker treatment is currently being

evaluated for TNBC patients that could be stratified by a

glucocorticoid receptor signature [27]. However, our results

Table 3. The BPMS is a significant predictor of metastasis-free survival (MFS) after adjustment for 7 other prognostic gene
signatures.

Table 3A

Gene Signatures Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value

Proliferation Meta-gene: ER+/HER2- vs ER-/HER2- 0.65055 (0.1894–2.2341) 0.4946 0.62060 (0.17661–2.1808) 0.4569

Proliferation Meta-gene: HER2+ vs ER-/HER2- 0.30734 (0.1024–0.9226) 0.0354 0.28245 (0.09221–0.8652) 0.0269

Intrinsic Subtyping: HER2+ vs Basal 2.50472 (0.7916–7.9253) 0.1182 2.76312 (0.85292–8.9515) 0.0901

Intrinsic Subtyping: Luminal-A vs Basal 0.94615 (0.2521–3.5514) 0.9346 1.05112 (0.27204–4.0614) 0.9424

Intrinsic Subtyping: Luminal-B vs Basal 1.98719 (0.5674–6.9599) 0.2829 2.19388 (0.60928–7.8997) 0.2294

Intrinsic Subtyping: Normal vs Basal 1.29351 (0.4278–3.9114) 0.6485 1.38074 (0.44619–4.2727) 0.5756

Recurrence Score: Intermediate vs High 0.74021 (0.4402–1.2447) 0.2566 0.75085 (0.44564–1.2651) 0.2817

Recurrence Score: Low vs High 0.69454 (0.4449–1.0842) 0.1087 0.73289 (0.46809–1.1475) 0.1743

Mammaprint: Poor vs Good 1.48393 (0.9134–2.4109) 0.1109 1.39329 (0.85261–2.2769) 0.1856

76-Gene Signature: Poor vs Good 1.31577 (0.8733–1.9825) 0.1895 0.77205 (0.52729–1.1304) 0.1925

Sotiriou: Luminal-like vs Basal-like 0.80253 (0.5487–1.1737) 0.2567 0.53301 (0.23901–1.1886) 0.1836

Mira: Poor vs Good 0.53318 (0.2391–1.189) 0.1243 0.46635 (0.24924–0.8726) 0.1241

BPMS: BPMS- vs BPMS+ 0.4878 (0.261–0.912) 0.017

Table 3B

Model Log-likelihood

S,prolif + pam50 + RS + mamma + 76gene + sot + mira 2713.11

S,prolif + pam50 + RS + mamma + 76gene + sot + mira + BPMS 2710.71

22*(L0 – L1) 4.8

p-value = 0.028

A) Multivariate cox models for prognostic signatures. Survival data was fit in the BrCa443 validation set against the 7 combined signatures in a multivariate Cox
proportional hazards model. Similarly, the same data was fit in the BrCa443 set against the 7 combined signatures including the BPMS. B) Likelihood ratio test for
competitive models. Using the likelihood of the multivariate models, an analysis of variance (likelihood ratio test) demonstrates that the BPMS selects a cohort of
patients independent of all other gene signatures (p = 0.028, x2 = 4.8, df = 1).
doi:10.1371/journal.pone.0082125.t003
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suggest that a beta blocker alone will not be sufficient to treat the

patients with the poorest prognosis. In such cases, additional

application of the BPMS would have direct clinical impact by

identifying and removing this highest risk patient group from

treatment.

The potential clinical impact of the BPMS relates primarily to

targeted therapy. Among high risk patients, further stratification of

the patients at highest risk would have limited clinical impact if

standard therapeutic treatment is used for all patients with a poor

prognosis. Currently, effective targeted therapy is lacking for

patients with TNBC. However, further stratification using the

BPMS enables identification of the most at-risk subgroup for the

development of targeted therapies directed at this subgroup, a goal

of personalized medicine.

The BPMS has the potential to identify therapeutic targets for

some of the most invasive TNBC patients. Technically, the genes

in the signature are biomarkers for a specific signaling environ-

ment within tumor cells. However, we developed the signature

through a combination of experimental and clinical validation of

the key driver genes in the signature [13]. Thus the signature is

based upon a mechanistic signaling relationship between genes

that could potentially be disrupted to obtain a more favorable

outcome. Our previous studies have shown that genes forming the

basis of the BPMS such as BACH1 are promoters of metastasis and

would be important therapeutic targets [14]. For example, BACH1

is negatively regulated by hemin [28], an FDA-approved drug

used to treat porphyria (PanhematinH, Lundbeck Inc, Deerfield,

IL). Since BACH1 regulates antioxidants [29], there are likely to

be other potential FDA-approved therapies for targets down-

stream of BACH1 as well [30,31]. In contrast to gene expression-

based clustering and classification, the focus on molecular targets

that drive cellular signaling pathways in tumor cells in combina-

tion with the ability to use the BPMS to select these particular

patient populations has high potential as a future therapeutic

strategy.

The goal of personalized medicine is to provide a single patient

with detailed information that uniquely categorizes that individual,

indicating a personalized course of treatment. To that end, the

BPMS can be used to identify a high risk cohort of patients in

which our signaling pathway is driving metastatic events. With this

information, it may be possible to provide targeted therapy for

individuals classified as BPMS-positive using our knowledge of the

signaling pathway. Further application of our methodology may

also be used to identify different signaling pathways that drive

similar metastatic events in breast or other tumor types.

Supporting Information

Figure S1 The Let-7-TG and BACH1 meta-genes exhibit a

normal distribution of expression in breast tumors. Q-Q plots were

used to verify the normal distribution of (A) Let-7-TG and (B)

BACH1 meta-genes. Meta-gene values were analyzed using the

BrCa871 dataset. The red line refers to an idealized normal

distribution of gene expression.

(EPS)

Figure S2 The BPMS in GR-/ER-. BPMS within the cohort of

patients classified as GR-/ER-. GR- patients were classified using

GR probe expression below the 25th quartile. Similarly, ER-

patients were classified using ESR1 probe expression below

23.416.

(EPS)

Figure S3 The BPMS is limited as a prognostic signature for low

risk patients. Clinically relevant gene signatures (A) MammaprintH
Good, (B) OncotypeDXH Recurrence Low, or (C) OncotypeDXH
Recurrence Intermediate were stratified for MFS using the BPMS.

Red indicates patient tumors that express the BPMS signature

while black indicates patient tumors that do not. Survival curves

were generated by Kaplan–Meier analysis, and the indicated P-

values were calculated by the log-rank test.

(EPS)

Figure S4 The BPMS is prognostic for metastasis-free survival

(MFS) of patients in the METABRIC cohort. The METABRIC

expression data set was generated from 2000 heterogeneous breast

cancer tumors using Illlumina BeadArrays. Red indicates patient

tumors that express the BPMS signature while black indicates

patient tumors that do not. Survival curves were generated by

Kaplan–Meier analysis, and the indicated P-values were calculated

by the log-rank test.

(EPS)

Table S1 All genes differentially expressed (p,0.001) from

BACH1 depletion in a TNBC cell line. Gene up-regulated (left

three columns) and down-regulated (right three columns) through

stable expression of shBACH1 when compared to vector control in

MDA-MB-231 derived 1833 cells.

(DOCX)

Methods S1 Supplemental information regarding data pre-

processing methodology, meta-gene construction, multivariate

survival analysis, generation of the signature, and methodology

regarding signature comparisons.

(DOCX)
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