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Abstract

This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the
colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and
rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is
comprised of Firmicutes (50.9%621.3%), Bacteroidetes (40.2%623.8%) and Proteobacteria (8.6%64.7%), and that
interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at
high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax,
Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present
at an abundance ,7.0% of total microbial community. With the exception of one individual, the mucosal-associated
microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity
was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel
correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value =
0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study
provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-
heterogeneity within defined colonic sites for certain individuals.
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Introduction

As an extension of the Human Genome Project, the Human

Microbiome Project (HMP) was initiated to examine the

microorganisms that human hosts harbor. One of the important

objectives of HMP is to address the relationship between diseases

with changes in the human microbiome [1]. The working

hypothesis behind this objective is that host health status reflects

the presence or abundance of certain microbial groups, and that

these microbial groups can contribute either directly or indirectly

to disease susceptibility [1]. To illustrate, numerous recent studies

examined the gut microbiota present in various disease models:

obesity [2,3,4,5], and gastrointestinal diseases including ulcerative

colitis and colorectal cancer [6,7,8]. Although promising results

have been reported for some disease models, in particular obesity,

the correlation between health status and mutualistic microbiota

are still plagued by numerous confounding factors such as

differences in host genetics, the dietary regimen, and environ-

mental exposures. The approach of treating each person as their

individualized and internalized control overcomes these potential

confounding effects and technical challenges. This is particularly

relevant in gastrointestinal disease models, which typically involve

localized inflamed sites and adjacent healthy tissues. By compar-

atively examining mucosal-associated microbes present in both

healthy and diseased sites within the same individual, the

differences in the microbial communities can be better evaluated

for its correlation to health status. However, prior to this, it is

imperative to examine the baseline microbial diversity in each

individual, and determine how the microbial community varies

along the intestinal tract (i.e., longitudinal axis) and within sites of

close proximities (i.e. small scale biogeographical differences).

Past studies have relied on molecular-based fingerprinting

methods like denaturing gradient gel electrophoresis (DGGE)

and terminal restriction fragment length polymorphism (T-RFLP)

to examine the mucosal-associated microbiota [9,10,11]. It was

shown that the predominant bacterial phyla in mucosa biopsy

samples included Firmicutes, Bacteroidetes and Proteobacteria

[11], and the microbial community remained relatively homog-

enous throughout the intestinal tract [9,10]. However, finger-

printing methods are generally only able to identify predominant

commensal microbiota (.1% of total microbial community), and

this level of technical resolution means that DGGE and T-RFLP

may not provide a representative evaluation of the microbial

spatial distribution.

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e25042



This study revisited the baseline diversity of the mucosal-

associated microbiota by utilizing high-throughput sequencing

technology (i.e., 16S rRNA-based pyrosequencing). A total of

165,953 sequences (approximately 47416776 sequences per

sample) were obtained, and evaluated for the microbial commu-

nity that is associated with the colonic mucosa of five healthy

individuals. Besides elucidating the baseline mucosal microbiota in

these five individuals, the spatial heterogeneity in a longitudinal

axis (i.e., right colon, left colon and rectum) and between biopsy

duplicates in close proximity (i.e., spaced 1 cm apart) were also

examined in the healthy colonic mucosa.

Materials and Methods

Ethics statement
All procedures were approved by the Carle Foundation

Hospital (No. 0670) and University of Illinois (No. 07232)

Institutional Review Boards. Subjects provided written informed

consent prior to colonoscopy.

Sample collection
Five healthy subjects (2 women, both of age 50, and 3 men, of ages

50, 73 and 74), undergoing routine screening colonoscopy at Carle

Foundation Hospital (Urbana, IL USA), were recruited for this study.

Two of these individuals (A and B) were spousal partners living in the

same household. Individuals were prescribed 1.9 L of an oral

polyethylene glycol (PEG) and electrolyte solution (Golytely;

Braintree Laboratories, Braintree, MA) for bowel cleansing prior to

colonoscopy. The standard prescription includes consuming 240 ml

Golytely per time over the course of 8 h on the evening before

colonoscopy. The recruited individuals also fast overnight (without

breakfast), and had not been on antibiotics for at least 30 days prior to

sample collection. After obtaining informed consent, subjects were

given opioid analgesic (IV fentanyl) and amnesiac (midazolam),

respectively, to lessen discomfort during the procedure. Four mucosa

biopsies, approximately 1 cm apart, were collected from right colon

(ascending colon), left colon (descending colon) and terminal colon

(rectum), respectively, using Boston Scientific Radial JawTMJumbo

forceps (3.2 mm). Of the four biopsies taken from each site, two

adjacent biopsies of epithelial mucosa were immediately frozen in

liquid nitrogen and used for microbial analysis via 454 pyrosequenc-

ing. The remaining two biopsies were fixed in Bouin’s solution for

mucin histochemistry analysis. Fixed biopsies were sent to the Carle

Foundation Hospital Pathology Services Laboratory (Urbana, IL

USA) for processing, embedding, and sectioning. In total, 30 biopsy

samples were collected. Five pooled stool samples from a total of 20

other healthy individuals of the same age group were also collected to

provide an outgroup comparison against the colonic microbial

community. Subjects who submitted stool samples had been

informed of the stool sampling procedure. Briefly, stools were self-

collected at home by the enrolled individual, and were immediately

immersed in 100% ethanol for storage at room temperature. The

stools were then transported to laboratory within 24 h, and

immediately frozen at 220uC for storage.

Demographic information
Demographic information of the five subjects is summarized in

Table 1. In brief, all subjects had no known history of

gastrointestinal disease. However, subject C had mild diverticulosis

and a 7 mm flat adenomatous polyp in the sigmoid colon. Subject

E had diverticulosis in right colon and sigmoid colon. Endoscopic

findings confirmed that all subjects were free of gastrointestinal

diseases, and none of the mucosa tissues sampled exhibited

abnormalities. To identify acidomucins (sialomucins and sulfomu-

cins), biopsy sections were stained with high iron diamine (HID)

and alcian blue (AB), pH 2.5, as previously described [12], and

counterstained with nuclear fast red for 2 min. The stained biopsy

sections were then examined with a Zeiss Axiovert 200M

Microscope and the Mosaix module in Axiovision 4.5 software.

The Automeasure module in Axiovision 4.5 was used to select and

quantify the area of sialomucin and sulfomucin within goblet cells

based on pixel color. The scoring system was executed as

described previously [13]. In brief, the area of sialomucin and

sulfomucin within goblet cells was measured, and then normalized

to the area of epithelium containing the quantified mucin. A

scoring index (0–3) was formulated to categorize the percentage of

positive staining for sialomucin and sulfomucin, respectively

(Table 1).

DNA extraction, barcoded PCR and 454 pyrosequencing
Genomic DNA was extracted using QIAamp DNA Stool Mini

Kit (Qiagen, Valencia, CA). Modifications were made to the

Table 1. Demographic information of the five individuals.

Average score ± Standard Deviation

Sulfomucins Sialomucins

Subject Age Gender Race Endoscopic Findings RC LC RE RC LC RE

*A 50 F Caucasian Normal ileum, colon and rectum 2.260.3 2.360.8 2.160.7 1.360.6 1.160.2 2.460.5

*B 50 M Caucasian Normal ileum, colon and rectum 1.860.3 1.860.6 1.660.7 1.360.8 1.060.0 1.760.6

C 73 M Caucasian Mild diverticulosis and 7 mm flat adenomatous
polyp in sigmoid colon. Normal ileum, colon
and rectum.

1.960.2 1.760.6 1.360.5 1.560.4 2.460.8 2.760.6

D 50 F Caucasian Normal ileum, colon and rectum 1.860.8 1.860.5 1.360.5 2.161.0 1.060.0 1.360.3

E 74 M Caucasian Diverticulosis in right colon and sigmoid colon.
Otherwise normal ileum, colon and rectum.

2.060.0 2.260.8 1.860.8 1.260.4 1.860.5 1.860.5

Mucin staining was done to determine the abundance of sulfomucins and sialomucins in the epithelium. The abundance of mucin stained goblet cells was further
categorized according to a scoring index, where a score of 0 denotes no staining of that particular mucin type in epithelium, a score of 1 denotes 1–10% staining of that
particular mucin type in epithelium, a score of 2 denotes 11–50% of staining of that particular mucin type in epithelium, and a score of 3 denotes .50% staining of that
particular mucin type in epithelium. RC, LC and RE denote right colon, left colon and rectum, respectively.
*denotes spousal partners living in the same household.
doi:10.1371/journal.pone.0025042.t001
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extraction protocol to enhance recovery of the gram-positive

bacteria. Briefly, samples were added with enzymatic lysis buffer,

lysozyme and achromopeptidase, and incubated at 37uC for 1 h.

Proteinase K and lysis buffer AL were then added, and the

suspension was incubated at 56uC for an additional 30 min.

Genomic DNA was then subjected to spin column purification and

elution. The concentration of extracted genomic DNA was

measured with a Qubit fluorometer (Invitrogen, Carlsbad, CA).

Samples for 454 pyrosequencing were amplified for the 16S rRNA

hyper-variable regions (V4 to V5) with universal forward 519F (59-

Fusion A-Barcode -CAGCMGCCGCGGTAATWC-39) and re-

verse 926R (59-Fusion B-Barcode- CCGTCAATTCMTT-

TRAGTT-39) primer pairs (www.roche.com). PCR reaction

mixtures comprised 1 ng of genomic DNA, 25 ml of Premix F

(Epicentre Biotechnologies, WI), 200 nM (each) of forward and

reverse primers, 0.5 U of Ex Taq DNA polymerase (Takara Bio,

Japan), and the volume added up to 50 ml with molecular-biology

grade water. PCR with 35 cycles of thermal program (denatur-

ation, 95uC for 30 s; annealing, 55uC for 45 s; and extension,

72uC for 60 s) was performed. The use of 35 thermal cycles was

determined based on preliminary Q-PCR analysis, which denoted

a threshold cycle ranging from 29–38 cycles was required to

exponentially amplify the acetogenic, sulfate-reducing and me-

thanogenic microbial populations from 1 ng of genomic DNA

(data not shown). All amplicons were gel-excised, concentrated

and purified with Wizard DNA purification kit (Promega,

Madison, WI).

Pyrotag handling and analysis
454 pyrosequencing was carried out on 454 FLX Titanium

(Roche, Switzerland). The paired-end pyrosequencing services

were provided by Roy J. Carver Biotechnology Center, University

of Illinois. A total of 165,953 16S rRNA sequences (also referred as

16S pyrotags) were obtained and sorted based on their respective

barcodes to form a total of 35 pyrotag libraries. Raw sequence

reads were checked for their quality to minimize the effects of

random sequencing errors. Briefly, quality check included the

elimination of sequences that did not perfectly match the proximal

PCR primer, and those with short sequencing length (,150 nt).

All 16S pyrotags were then removed of their primers, barcodes,

and adaptor sequences, and had an average read length of 369 nt

after trimming (Table S1). 16S pyrotags identified with reverse

orientation were also reverse complemented on RDP Pipeline

Initial Process [14]. Processed pyrotags were then aligned based on

RDP Infernal [14].

Taxonomical classification and statistical analysis
RDP Classifier (version 10.21) was used for taxonomical

assignments of the 16S pyrotags at 95% confidence level [14].

Primer-E worksheets that detailed the percentage abundances of

individual bacterial genera were collated, and subsequently

analyzed by multidimensional scaling (MDS) with Primer-E

version 5 (http://www.primer-e.com/). Bray-Curtis dissimilarity

matrix and mantel correlation analysis were calculated using

the ‘‘vegdist’’ function in the Vegan package 1.17-3 in R (https://

r-forge.r-project.org/projects/vegan/) on the genus-level commu-

nity matrix. In addition, RDP Lib Compare was used to estimate

the probability of observing differences in the abundance of a

given phylogenetic taxon [15].

Rarefaction curves and identification of shared OTUs
Aligned sequences for each sample were generated with their

individual cluster files based on the RDP pyrosequencing pipeline.

The cluster files were in turn used to generate rarefaction curves

that defined the number of operational taxonomic units (OTUs,

identified at 97% sequence similarity level) with respect to the total

number of pyrotags read (Figure S1A). Regression analysis was

also performed with Sigma Plot to fit the rarefaction curves into

double rectangular hyperbola curve models (Table S2). Based on

the regression curves, the number of OTUs identified based on

4000 pyrotags were noted for comparison of microbial richness

(Figure S1B). A combined cluster file that includes all the mucosal-

associated pyrotag libraries was also generated. Dereplication at

97% gene similarity level was performed to determine the unique

OTUs present in all the mucosal-associated pyrotag libraries [14].

Given the relatively small number of individuals in our study

(n = 5), a more stringent criteria was imposed when defining the

ubiquitous bacterial groups. A Perl script was used to sort the

OTUs that were shared by (i) .90% of the 30 biopsy samples, and

(ii) were present in at least one of biopsy duplicates retrieved at a

particular colonic site of the individual. The OTUs were blasted

for their identity on RDP and then clustered into their respective

bacterial groups.

Results

Interindividual differences in the abundance of mucosal-
associated microbiota

Both mucosal-associated and stool microbiota were comprised

of three main phyla: Firmicutes, Bacteroidetes and Proteobacteria.

All three phyla were consistently present, albeit at varying

abundances in different individuals (Figure 1). Interindividual

differences were apparent in the mucosal-associated microbiota

(Bray-Curtis dissimilarity = 0.5060.11, Figure S2), and the

proportion of Bacteroidetes with respect to Firmicutes varied

among the individuals studied. For example, Firmicutes were

present in individual A at abundances ranging from 28.8% to

80.8% of total microbial community, while the abundance of

Bacteroidetes in the mucosa of this individual ranged from 3.4 to

63.9% of total microbial community. Individual E also harbored

significantly higher proportions (.21-fold) of Firmicutes compared

to Bacteroidetes in the right colon and rectal mucosa (Figure 1). In

contrast, individual B had a higher abundance of Bacteroidetes

(56.9 to 78.4% of total microbial community) in all of the sampled

biopsies compared to the Firmicutes (19.0 to 38.7% of total

microbial community). Besides Firmicutes and Bacteroidetes, the

abundance of Proteobacteria (1.7% to 19.2% of total microbial

community) also varied inter-individually, but was generally much

lower in abundance compared to Firmicutes and Bacteroidetes

(Figure 1). The three predominant phyla were mainly comprised

of bacterial classes Bacilli (35.2%), Clostridia (14.4%), Bacteroidia

(40.3%), Betaproteobacteria (2.3%) and Gammaproteobacteria

(5.8%). In addition, unclassified Bacteria and the phylum

Actinobacteria were also present in low abundance (,1% of total

microbial community) in all of the examined biopsy samples. Rare

phyla, namely Cyanobacteria, Fusobacteria, Acidobacteria, Ver-

rucomicrobia, Chloroflexi, TM7, Nitrospira, Lentisphaerae,

Synergistetes, Planctomycetes, Deinococcus-Thermus and Gem-

matimonadetes, sporadically occurred at low abundance (approx-

imately 0.1% of total microbial community) in some individuals

(data not shown).

Bacterial groups present in .90% of studied biopsy
samples

Ubiquitous bacterial groups that were present in .90% of the

30 studied biopsy samples were further evaluated and identified

based on the consensus model OTU sequences (Material S1).

These bacterial groups were also present in at least one of the

16S Pyrosequencing of Mucosal Microbiota
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biopsy duplicates retrieved at a particular colonic site of an

individual. The genus Bacteroides and lactic acid bacteria Leuconostoc

and Weissella were present at high abundance in all individuals,

ranging from 15.3% to 41.2%, 4.6% to 18.8%, and 6.4% to

24.1% of total microbial community, respectively (Table 2).

Besides Leuconostoc and Weissella, other lactic acid bacteria

including Lactococcus and Streptococcus were also present at an

average abundance ranging from 0.23% to 6.4% of total microbial

community. The bacterial genera that were ubiquitously present

also consisted of the genera Acidovorax, Acinetobacter, Blautia,

Faecalibacterium, Veillonella, and several unclassified bacterial groups,

although these latter genera were present at relatively lower

abundance than Bacteroides and the lactic acid bacteria (Table 2).

Differences in mucosal-associated microbiota along the
colon

Distinct differences in the taxonomical profiles of mucosal-

associated microbiota and pooled stool microbiota resulted in two

groups that clustered apart on the multidimensional scaling plot

(MDS) regardless of the host origins (Figure 2), suggesting that the

mucosal-associated microbiota examined in this study were not

contaminated with feces. Within an individual, the mucosal-

associated microbiota in the rectum, left and right colon clustered

separately in the MDS (Figure 2). Further evaluation of the Bray-

Curtis dissimilarity index along the colon showed relative

homogeneity in the mucosal-associated microbiota. On average,

the Bray-Curtis dissimilarity index obtained for all individuals was

0.3960.05 (i.e., 61% similarity) in mucosal-associated microbiota

along the colon, although the extent of dissimilarity differed

among individuals (Figure 3A). To illustrate, mucosal-associated

microbiota of individuals B and C was on average 0.2560.05

dissimilar (i.e., sharing 75% similarity) along the different sites of

colon. In the three remaining individuals, the Bray-Curtis

dissimilarities ranged from 0.44 to 0.55 (i.e., ,56% similarity),

indicating a relatively higher extent of heterogeneity in mucosal-

associated microbiota along the colon for these three individuals.

One-way ANOVA was carried out to determine if the Bray-Curtis

dissimilarity among the sampling sites of each individual varied

significantly. With the exception of individual E who harbored

Figure 1. Bacterial phyla in colonic biopsy samples of five individuals and stool pool. Firmicutes, Bacteroidetes and Proteobacteria
represent the three predominant phyla, and their respective abundance was listed accordingly. Y-axis denotes relative percentage abundance with
respect to total Bacteria. Abbreviations RC-1, LC-1 and RE-1 denote biopsy duplicate 1 from right colon, left colon and rectum, respectively.
Abbreviations RC-2, LC-2 and RE-2 denote biopsy duplicate 2 from right colon, left colon and rectum, respectively. Abbreviations S-1 to S-5 denotes
the five pooled stool samples.
doi:10.1371/journal.pone.0025042.g001
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significantly higher heterogeneity in mucosal-associated microbi-

ota along the colon (P-value = 0.01), the other four individuals did

not have significant differences in their Bray-Curtis dissimilarity

among sampling sites (P-values . 0.35).

Micro-heterogeneity among biopsy duplicates of some
individuals

We further evaluated if heterogeneity existed in biopsy

duplicates obtained at the same colonic location but spaced 1

cm apart. Given that the five studied individuals exhibited an

average of 0.39 Bray-Curtis dissimilarity along the colon, we used

the 0.39 index as a benchmark to elucidate the differences among

duplicate biopsies. The data indicated that the Bray-Curtis

dissimilarity index exhibited between biopsy duplicates at the

same colonic location was lower than 0.39 for most individuals

(Figure 3B), indicating that heterogeneity in mucosal-associated

microbiota at small biogeographical distances was lower than that

in the longitudinal direction. However, there were three

exceptions, namely, between right colon duplicates in individual

A (Bray-Curtis dissimilarity index = 0.40), between rectal

duplicates in individual C (Bray-Curtis dissimilarity index =

0.43), and between left colon duplicates in individual D (Bray-

Curtis dissimilarity index = 0.58). In addition, the biopsy

duplicates retrieved from the right colon of individual A and the

left colon of individual D exhibited a 1.6-fold and 2.3-fold

difference in the microbial richness (defined as number of OTUs

at 97% sequence similarity), respectively (Figure S1B).

Correlation between acidomucin staining and the
microbial community

We attempted to determine if micro-heterogeneity in the

localized mucosal-associated microbiota would correlate to

localized biochemical differences. Based on the acidomucin

staining, interindividual differences in the abundance of sialomu-

cins and sulfomucins were apparent (Table 1). Unlike the

microbial community, which exhibited no observable clustering

differences in relation to the colonic site (Figure 2), the abundance

of acidomucins (i.e., combination of both sialo- and sulfomucins) in

the rectum generally clustered together and apart from those in

the left and right colon (Figure S3). We further examined the

correlation between the abundance of acidomucins goblet cells

and the microbial community, and observed a weak but significant

correlation between the two parameters (Mantel correlation =

0.13, P-value = 0.04).

Discussion

The mucosa is the anatomical site at which the host first

encounters gut microorganisms [16], and it plays a key role in

intestinal homeostasis [17,18,19]. We inferred that microorgan-

isms that are associated with the colonic mucosa would play a

significant role in the modulation of host health, and are worthy of

a closer examination. To date, our understanding of mucosal-

associated microbiota has been derived primarily from culture-

based analysis as well as from earlier studies utilizing microbial

profiling methods (e.g., DGGE and T-RFLP) [20]. A limited

number of deep sequencing studies have been conducted to

elucidate the phylogenetic identities of colonic mucosal-associated

microbes, in particular, the microbiota from healthy individuals

(Table 3). This study therefore utilized 16S rRNA-based

pyrosequencing technology to provide a comprehensive insight

to the baseline microbial community that is closely associated with

the colonic mucosa.

It is interesting to note that two of the five individuals in this

study were spousal partners living in the same household. Yet, the

Table 2. Bacterial groups that were ubiquitously present in the mucosa of the five individuals.

Phylogenetic affiliations

Average percent abundance with respect to total microbial community ± standard deviation across the
three sampled sites in the same individual

A B C D E

Firmicutes

Blautia 0.1660.05 0.1660.05 0.5060.16 0.5360.29 0.2760.24

Faecalibacterium 0.9960.85 1.3160.39 0.3860.15 0.8960.47 0.4360.54

Lactococcus 5.5562.33 1.4060.77 3.3761.71 3.2462.98 6.3563.83

Leuconostoc 15.61610.11 4.5662.23 10.3365.03 9.9868.62 18.79610.24

Streptococcus 0.6960.57 0.2360.16 0.8460.35 0.5060.46 1.4360.42

Weissella 20.64613.48 6.3563.35 13.6766.50 13.32612.11 24.12613.16

Veillonella 0.4160.38 0.1460.12 0.3860.11 0.3260.33 0.5760.32

Unclassified Clostridiales 3.7662.57 4.4260.83 6.9660.95 6.9564.25 2.8562.56

Bacteroidetes

Bacteroides 28.07620.75 26.93613.94 41.18611.60 18.3969.37 15.26621.65

Proteobacteria

Acidovorax 0.0760.07 0.0260.02 0.0960.10 0.0360.04 0.1060.10

Acinetobacter 1.8061.24 0.5460.35 1.5060.78 1.2961.46 3.3762.23

Unclassified Enterobacteriaceae 3.5260.87 0.6860.47 3.3761.25 1.3961.32 3.8161.64

Unclassified Pasteurellaceae 0.3160.33 0.6160.23 2.1960.94 0.0760.05 1.2661.61

Ubiquity was defined based on the presence of related OTUs in (i) .90% of the 30 biopsy samples, and (ii) were present in at least one of biopsy duplicates retrieved at
a particular colonic site of the individual. The OTUs were blasted for their phylogenetic affiliations on RDP. The consensus model OTU sequences can be found in
Material S1.
doi:10.1371/journal.pone.0025042.t002
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mucosal-associated microbiota in both individuals clustered apart

on the MDS, indicating that each host harbors a unique mucosal-

associated microbiota and that the host effect is a significant

confounder on the gut microbiota. Our data demonstrate that

despite interindividual differences, the five individuals harbored

consistently high predominance of Firmicutes (50.9%) and

Bacteroidetes (40.2%), and the abundances of both phyla closely

approximate findings from previous studies (Table 3 and Table 4).

Closer examination at a finer taxonomical resolution however

revealed slight differences in the abundance of bacterial groups

that were ubiquitously observed in the mucosa. To illustrate, this

study showed a high abundance of Bacteroides spp. and lactic-acid

bacteria (LAB) including Leuconostoc spp., Weissella spp. and

Lactococcus spp. among the five individuals. In contrast, previous

studies reported Bacteroides spp. and microbial groups belonging to

Ruminococcaceae and Lachnospiraceae to be more commonly

found in mucosa-associated microbiota (Table 3 and Table 4).

Besides interindividual differences, the variations in our findings

may also be explained by slight differences in experimental

technicalities such as sequencing depth and DNA extraction

protocols.

Regardless, because of their high abundance and persistence in

the five individuals, Bacteroides spp. and LAB are postulated to form

the keystone groups in the breakdown of carbohydrates to provide

to the metabolic needs of these five individuals. In the human

intestinal tract, Bacteroides spp. and related species hydrolyze

complex dietary polysaccharides [21,22,23], and can also degrade

endogenous secretions such as exfoliated epithelial cells and mucus

fragments as well as residual dietary polysaccharides in the distal

colon and rectum [24]. Their versatility in utilizing a broad array

of polysaccharides may account for their predominance, and

possibly, their role in sustaining the presence of other microbes in

the intestinal tract. In contrast, Leuconostoc, Weissella and Lactococcus,

primarily utilize readily fermentable sugars (e.g., hexoses and

pentoses) to produce lactic acid [25]. Given the relatively low

abundance of such simple carbohydrates in the distal colon and

rectum, the provision of substrates for LAB may depend on the

degradation of complex polysaccharides by Bacteroides spp. The

utilization of different substrates and the resulting micro-niches

may explain the inverse relationship in the abundance of Bacteroides

and LAB that was observed in the biopsy samples in close

proximity to each other (Figure S4).

Our findings further indicate that some individuals exhibited a

certain extent of micro-heterogeneity, both along the colon (i.e.,

45% similarity for individual E) and in between locations that were

1 cm apart (i.e., on average 53% similarity for biopsy duplicates

Figure 2. Multidimensional scaling plot (MDS) of bacterial lineages in the mucosal-associated and stool microbiota. Mucosal-
associated microbiota within individuals varied along and within the sampling sites. The mucosal-associated microbiota is distinctly clustered apart
from the stool microbiota.
doi:10.1371/journal.pone.0025042.g002
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that differed in individual A, C and D). Numerous factors possibly

account for the presence of micro-heterogeneity in the mucosal-

associated microbiota. For example, diverticulosis in the right

colon of individual E (Table 1) may have perturbed the localized

microbial populations, and resulted in the relatively higher micro-

heterogeneity along the colon for this individual. Alternatively,

host genetics and dietary preferences are also major factors

influencing the differentiation of gut microbiota [26,27]. In

addition, mucins (i.e., neutral mucins and acidomucins) are a

source of endogenous substrates for the mucosal-associated

bacterial fermentation, and interindividual differences in the

mucin content may therefore be a factor to explain for differences

in gut microbiota [28]. Among the mucins, acidomucins are the

predominant mucin type in the colon [29]. The presence of sulfate

and sialic acids on the carbohydrate chains of acidomucins result

in higher viscosity and acidity that may be resistant to mucosal-

associated bacterial fermentation [30]. We inferred that varying

concentration of acidomucins in an individual can in turn lead to

differences in the bioavailability of endogenous substrates, which

may correlate to the micro-heterogeneity of colonic mucosal-

associated microbiota.

To address this inference, we observed localized differences in

the abundance of acidomucin-positive goblet cells, along and

within the colon of an individual. We further found that the

abundance of acidomucin in an individual is weakly correlated

with the mucosal-associated microbiota (Mantel correlation =

0.13, P-value = 0.04). Although weak, this correlation indicates

that the micro-heterogeneity in mucosal-associated microbiota

may relate, in part, to localized variation in the biochemical

environment associated with the duplicate biopsies. This observa-

tion is in agreement with published findings, which reported that

resident mucolytic bacteria may differ among individuals accord-

ing to the specific carbohydrate composition of intestinal mucins

[31,32]. In this study, the weak correlation and relatively small

sample size did not permit a conclusive identification of the

bacterial groups that were associated with variations in the

acidomucins abundance. However, past studies have found that

sulfate-reducing bacteria (e.g., Desulfotomaculum spp. and Desulfo-

bacter spp.) were more abundant in gastrointestinal sites with

greater numbers of sulfomucin-containing goblet cells [12,13]. In

addition, Bacteroides fragilis which can cleave sulfate from

sulfomucin and in turn utilize the remaining desulfated mucins

as carbon and energy sources, is also likely to correlate to the

abundance of acidomucins [33]. Future studies involving a larger

sample size would have to be conducted to verify the occurrence of

micro-heterogeneity in colonic mucosa, as well as the potential

correlation of microbial micro-heterogeneity to localized biochem-

ical characteristics.

In recent years, comparative studies which aim to evaluate for

the role of gut microbiota in relation to gastrointestinal diseases are

increasingly common. One of the common approaches to

addressing this aim is to examine differences in the gut microbiota

of diseased and adjacent healthy mucosal samples. To access the

mucosal samples, it is necessary to perform bowel cleansing prior

colonoscopy, particularly when sampling the right and transverse

colon. The bowel cleansing preparation may have altered the

loosely adherent microbiota and the lumen microbiota, and in

turn led to underestimation of the diversity or abundance of the

Figure 3. Bray-Curtis dissimilarity indices (A) along the GI tract, and (B) within biopsy duplicates of individuals A, B, C, D and E.
Abbreviations RC, LC and RE denote right colon, left colon and rectum, respectively. * denotes that individual E exhibited significant heterogeneity in
mucosal-associated microbiota in the three colonic sites. # denotes that biopsy duplicates at that particular colonic location was greater than the
0.39 Bray-Curtis dissimilarity index.
doi:10.1371/journal.pone.0025042.g003
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examined microbial communities. However, standardized cleans-

ing methodologies were used for collection of all biopsy samples,

hence validating the relative differences observed in this study.

Our findings revealed that certain individuals have micro-

heterogeneity in their gut microbiota at localized colonic sites,

and this micro-heterogeneity may potentially confound subsequent

comparative analysis. To overcome these issues, it is likely that

multiple biopsy duplicate pairs would have to be sampled at each

particular colonic site, alongside the stool samples from the same

individual, to better evaluate the extent to which dysbiosis affects

host health status.

In summary, our examination with 16S rRNA-based pyrose-

quencing provided insight into the mucosal-associated microbiota

in five healthy individuals. The data further emphasize that each

individual is unique in their abundance of particular microbial

taxa, and that micro-heterogeneity is in part due to localized

biochemical differences, which may exist in some host individuals.

Supporting Information

Figure S1 Rarefaction curves and microbial richness.
(A) Rarefaction curves of mucosal-associated microbiota obtained

from left colon (LC), right colon (RC) and rectum (RE) of

Individual A, Individual B, Individual C, Individual D, and

Individual E. At each sampling site, two biopsy samples were

retrieved and denoted as 1 and 2, respectively. Rarefaction curves

of stool microbiota from pooled stools were also shown. (B)

Microbial richness of mucosal-associated microbiota in individuals

A to E, and in the stool microbiota. Microbial richness was defined

as the number of operational taxonomic units (OTUs) identified at

97% 16S rRNA gene similarity, and based upon 4000 pyrotags.

(PDF)

Figure S2 Heat map illustrating the presence of pre-
dominant bacterial groups with relative abundance
.1% of total microbial community. Columns 1 and 2

denote the microbiota present in both left colon biopsy duplicates.

Columns 3 and 4 denote the microbiota present in both right

colon biopsy duplicates. Columns 5 and 6 denote the microbiota

present in both rectum biopsy duplicates. Columns 7 to 11 denote

the stool microbiota.

(PDF)

Figure S3 Multidimensional scaling plot (MDS) of
abundance of acidomucins (i.e. combination of sialo-
and sulfomucins) in the biopsy samples of individuals A
to E. Compared to the left and right colon biopsies, the

abundance of acidomucins in rectal biopsies were generally more

similar and clustered closer in the MDS (shown within the dotted

oval).

(TIF)

Figure S4 Heat plot illustrating the abundance differ-
ence in the bacterial groups of biopsy duplicates in
Individual A (A.Biopsy-1 and A.Biopsy-2), Individual C

(C.Biopsy-1 and C.Biopsy-2) and Individual D (D.Biopsy-1 and

D.Biopsy-2).

(TIF)

Table S1 Number of 16S pyrotags obtained for each
sample. Abbreviations RC, LC, and RE denote right colon, left

colon and rectum, respectively.

(DOC)

Table S2 Regression analyses of rarefaction curves.
Double hyperbola curve model was chosen to describe the

trajectory of the rarefaction curves. The number of OTUs (97%
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similarity) was estimated based on 4000 pyrotag reads. Abbrevi-

ations RC, LC, and RE denote right colon, left colon and rectum,

respectively.

(DOC)

Material S1 Consensus model OTU sequences for
ubiquitous bacterial groups present in the mucosa of
the five individuals.
(XLSX)
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