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Background. Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen associated molecular
patterns and trigger innate immunity leading to initiation of adaptive immunity. TLR-mediated activation of dendritic cells
(DCs) is known to be a critical event in the initiation of cellular and humoral immune responses. Recent work however suggests
that B cells also express TLRs, and that they can be activated via TLR ligands. However, whether such B cell activation occurs
only on memory B cells, or whether it can also occur on truly naı̈ve B cells remains controversial. Furthermore, the expression
and functional relevance of TLRs on distinct subsets of B cells, which are known to play differential roles in humoral responses
is not known. Methodology/Principal Findings. In this study, we investigated the expression pattern of different TLRs in
distinct subsets of murine B cells (naı̈ve, memory, follicular, marginal zone, B-1 and peyer’s patch). In contrast to the reported
restricted expression pattern of TLRs in human peripheral blood naı̈ve B cells, murine splenic naı̈ve B cells express a variety of
TLRs with the exception of TLR5 and 8. Consistent with this relatively broad expression pattern, murine naive B cells proliferate
and secrete antibody to a variety of TLR agonists in vitro, in the absence of B-cell receptor cross-linking. In addition, we
observed subtle differences in the antibody secretion pattern of follicular, marginal zone, B-1 and peyer’s patch B-cell subsets.
Conclusions/Significance. Thus various B cell subsets, including truly naı̈ve B cells, express multiple TLRs, and signaling via
such TLRs results in their robust proliferation and antibody secretion, even in the absence of dendritic cell activation, or T-cell
help.
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INTRODUCTION
TLR-mediated recognition of microbial stimuli often leads to

activation of innate immune cells including dendritic cells (DCs)

[1,2,3]. TLR signaling promotes activation and maturation of DCs

which instruct and support T-cell activation, leading to cell-

mediated adaptive immune response [4]. Cognate interaction

between activated antigen-specific T cells and naı̈ve B cells

promotes B-cell clonal expansion and differentiation leading to

a humoral immune response. Differential expression pattern of

TLRs have been reported in human and murine DC subsets [5,6].

In humans, myeloid DCs express TLR2 and 4, whereas

plasmacytoid DCs express TLR7 and 9 [7].

Recent studies suggests that in addition to TLR signaling in

DCs, direct TLR mediated activation of B cells is also required for

eliciting humoral immune response [8]. Thus chimeric mice in

which only B cells are deficient in TLR signaling, fail to mount

antibody responses to protein antigens given with adjuvants [8].

Consistent with this observation, previous work suggests that

murine B cells can be stimulated in vitro by TLR4 and TLR9

ligands to proliferate and secrete antibody [9,10]. ln contrast to

murine B cells, naı̈ve human B cells do not express TLR4 or

TLR9 and hence do not respond directly to LPS or CpG [11].

However, it was recently reported that human memory B cells in

the blood do express TLR9 and respond to CpG DNA [12], and

consistent with this, cross-linking of BCR results in upregulation of

TLR9 expression, and responsiveness to TLR9 ligands [12]. In

contrast to this, recent studies revealed no differences in TLR

expression in naı̈ve versus germinal center versus memory B cells

in human tonsils [13,14].

Therefore, TLR activation of B cells likely plays a critical role in

the regulation of humoral immunity and memory, and un-

derstanding the precise roles played by different TLRs in this

regard is a critical first step in exploiting this in the design of

vaccines that induce rapid and persistent neutralizing antibody.

However, this is complicated by the fact that there are several

subsets of B cells that play distinct roles during immune responses.

For example, follicular B cells are shown to be important for T-

dependent immune responses whereas marginal zone B cells are

important for T-independent immune responses [15]. Marginal

zone B cells are shown to be in a pre-activated state and respond

rapidly to LPS and secrete antibody in vitro [16]. Peyer’s patch B

cells in the intestine play critical role in mucosal immune response

by secreting IgA that binds to pathogens and prevents enteric

infections [17]. B-1 B cells, a subset of B cells in the peritoneal

cavity is the source of natural IgM present in the serum and plays

an important role in immunity against blood borne pathogens

[18]. However, the expression patterns of TLRs on distinct B-cell

subsets, and their responsiveness to various TLR ligands is poorly

understood.

To understand the importance of TLR signaling in B cells and

to clarify the differences reported to exist between mouse and

human B cells, we determined the expression pattern of TLRs in
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distinct murine B cell subsets and their response to TLR agonists

in vitro in the absence of antigenic stimulation (BCR cross-linking).

Our data suggest that mouse naı̈ve follicular B cells express and

undergo polyclonal expansion and differentiation to almost all

known TLRs except TLR5 and 8. We demonstrate that different

B-cell subsets including follicular, marginal zone, B-1 and peyers

patch B cells proliferate and secrete polyclonal antibodies to

a variety of TLR agonists in vitro.

MATERIALS AND METHODS

Mice
C57BL/6 mice were purchased from Jackson Laboratory (Maine).

ROSAYFP [19] and germinal center-cre (GCC) [19] mice were

genotyped via PCR of genomic DNA derived from tail-tip

biopsies. Primers for ROSAYFP PCR and Cre-PCR have been

described [19] . All GCC mice were maintained by mating with

C57BL/6 and housed under specific pathogen-free conditions at

the Emory Vaccine Center. All animal studies were approved by

the Institutional Animal Care and Use Committee of Emory

University.

Flow cytometry
Splenic B cells were bead purified using CD19 microbeads

(Miltenyi Biotech). CD19 enriched B cells were stained for

Cychrome anti-CD45R/B220 (RA3-6B2), PE anti-CD23 and

FITC anti-CD21 (BD Pharmingen, San Jose, CA). B-cell subsets

were FACS sorted using a MoFlo cell sorter (DakoCytomation,

Fort Collins, CO).

Real-time PCR
Total RNA was isolated from FACS sorted B cell subsets with the

RNA miniprep (Invitrogen, Carlsbad, CA). RNA was quantified

by OD260 using a DUH 530 Life Science UV Spectrophotometer

(Beckman Coulter Inc, CA) and 2 mg of total RNA was

subsequently used to make cDNA using the Superscript II reverse

transcriptase (Invitrogen Corp., Carlsbad, CA) according to the

manufacturer’s protocol. RT-PCR was performed using Biorad

apparatus (Biorad Laboratories, Hercules, CA). Primers for

murine TLRs were used as reported previously [5]. The b-actin

specific primers were used for loading control (IDT technologies,

Corallevielle, IA).

Proliferation Assay
FACS sorted B-cell subsets were incubated at 26105 cells/well

in triplicate in 96-well flat-bottom plates in medium consisting

of RBMI-1640 supplemented with 10 mM glutamine, 10 mM

HEPES, 0.5 mg/ml gentamicin, and 561025 2-ME (Complete

IF-12 media). Stimuli added included (Fab’)2 goat anti-IgM

(m-chain specific; ICN Pharmaceuticals, Cappel, ICN Pharma-

ceuticals, Aurora, OH)) LPS (Invivogen), CpG ODN 1826

(Coley Pharmaceuticals, Wellesley, MA), Pam3Cys (EMC

microcollections, Germany), MALP-2 (Invivogen, San Diego,

CA), and 3M-003 (kind gift from Dr. Sefik Alkan, 3M

pharmaceuticals, St. Paul, MN). After 66 h, all cultures were

pulsed with 1 mCi of [3H]thymidine and harvested 6 h later onto

filter mats using a cell harvester (Packard, Meriden, CT). The

levels of radionucleotide incorporation were measured with

a Matrix 96 ß-radiation counter (Packard, Downers Grove, IL).

Results were presented as arithmetic mean of triplicate cultures

6SE.

ELISA
FACS sorted B-cell subsets were incubated at 26105 cells/well in

triplicate cultures in 96-well flat-bottom plates for 5 days. Day 5

Figure 1. TLR expression profile of murine B-cell subsets. Real-time PCR profile of TLR expression in FACS sorted follicular B-cells (CD19+

B220+CD23+CD212, panel A), marginal Zone B (CD19+ B220+CD232CD21+, panel B), peritoneal B-1 (CD19+B220+CD232, panel C) and peyer’s patch B
cells (CD19+B220+, panel D) as indicated with b-actin as loading control. CD11c+ dendritic cells were used as a positive control (panel E). Values
represent the ratio of the TLR to b-actin.
doi:10.1371/journal.pone.0000863.g001
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supernatants were analyzed for antibody isotypes using ELISA kit

(BD Biosciences, San Jose, CA).

Immunization
C57BL/6 mice were immunized with sheep RBC (SRBC) 10% v/

v intraperitoneally. On day 12, mice were sacrificed and B220+

PNA2 IgG+ splenic memory B cells FACS sorted using a MoFlo

cell sorter (DakoCytomation, Fort Collins, CO) as described

previously [20].

RESULTS AND DISCUSSION

Expression profiles of TLRs in different B-cell subsets
We determined the expression pattern of TLRs1-9 in the following

murine B-cell subsets i) splenic follicular ii) splenic marginal zone,

iii) peritoneal B-1 and iv) mucosal peyer’s patch B cells. In initial

experiments, splenic follicular, marginal zone, peritoneal B-1 and

peyer’s patch B-cells were screened for expression of 9 known

TLRs. Total B cells were isolated from murine spleen using CD19

microbeads and stained with antibodies to B220, CD23 and CD21

to distinguish different subsets. Splenic follicular (B220+CD23+

CD212) and marginal zone (B220+CD232CD21+) B cells were

sorted by cell sorting. The expression of different TLRs was

assessed by real-time PCR with b-actin as loading control. All B-

cell subsets expressed TLRs 1, 2, 3, 4, 6, 7 and 9 to varying

degrees but not TLRs 5 and 8 (Figures 1A–D). As a positive

control, CD11c+ murine splenic DCs were used. CD11c+ DCs

express all known TLRs (Figure 1E). B-1 B cells (B220+CD19+

CD232), a subset of B cells important for T-independent immune

response present in the peritoneal cavity expressed a similar TLR

pattern like splenic B cells except TLRs 1/2 and 6 (Figures 1C).

Follicular, marginal zone, B-1 and peyer’s patch B

cells proliferate and secrete polyclonal antibodies to

various TLR agonists
First, we studied the functional relevance of TLR expression by

various B-cell subsets. We found that murine B-cell subsets

proliferate in response to 1 mg/ml of Pam3Cys (TLR2 agonist),

LPS (TLR4 agonist), TLR2/6 (MALP-2), 3M-003 (TLR7/8

agonist) and CpG (TLR9 agonist) (Figures 2A-D) with varying

degrees. Follicular B cells proliferate robustly in response to most

of the TLR agonists except for TLR3 and TLR6, where the

response is weak or absent and for TLR5 where the response is

absent. Interestingly, marginal zone B cells proliferate robustly in

response to TLR2 (Pam3Cys) and TLR6 (MALP-2) agonists but

weakly to TLR4, 7 and 9 agonists. B-1 B cells respond weakly to

most of the TLR agonists except TLRs 4, 7 and 9. Robust

proliferation of peyer’s patch B cells was observed in response to

TLR2, 6 and 7 ligation but not other TLRs. Alternately, CFSE

Figure 2. TLR-induced proliferation of murine B-cell subsets. A, FACS sorted follicular B-cells (CD19+ B220+CD23+CD212) were cultured in vitro with
various TLR ligands as indicated for 3 days and proliferation measured as described in Materials and Methods. B-D, FACS sorted marginal zone, B-1,
and peyer’s patch B-cells (CD19+ B220+CD232CD21+ for marginal zone B, CD19+B220+CD232 for peritoneal B-1 B and CD19+B220+ for peyer’s patch B
cells) were cultured in vitro with various TLR ligands as indicated for 3 days and proliferation measured by thymidine incorporation as described in
Materials and Methods.
doi:10.1371/journal.pone.0000863.g002
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dilution of follicular B-cells in response to various TLR agonists was

measured and B-cells appear to undergo multiple cell divisions in

vitro (data not shown). The dose we used to stimulate B cells is

optimal since dendritic cells stimulated with 1 mg/ml of TLR

ligands secrete cytokines like IL-6, IL-12p40 and IL-10 depending

on the stimulus [21,22]. Follicular and marginal zone B cells not

only clonally expand in response to TLR ligation but also secrete

antibodies of all isotypes except IgA which was abundantly secreted

by B-1 and peyer’s patch B cells (Figures 3A-D). Consistent with

their pre-activated phenotype, B-1 B cells have higher background

IgM response and Peyer’s patch B cells have higher IgA response in

unstimulated conditions (Figure 3C & D) [18,23]. The isotype

profile appears to be different depending on the subset studied and

the ligand used. Thus, our studies demonstrate that not only do

different B-cell subsets express TLRs, but that they can also be

stimulated directly by TLR ligands.

Both naı̈ve and memory murine B cells respond to

TLR agonists in vitro in the absence of BCR cross-

linking
In humans, memory but not naı̈ve B cells express and respond to

TLR9 ligands in the absence of BCR triggering [12,24]. However,

in mice previous studies suggest that so-called naı̈ve splenic B cells

do respond directly to TLR stimulation [9,10]. In our preliminary

experiments, we sorted B220+CD23+CD212 IgG2, putative naı̈ve

B cells and stimulated them in vitro with TLR ligands and

observed proliferation and antibody secretion (data not shown).

However it was formally possible that putative IgM+ memory B

cells might have been present in the B220+CD23+CD212 IgG2

fraction. To definitively address the issue of whether bona fide

naı̈ve B cells express TLRs and are responsive to TLR ligands, we

utilized the recently described transgenic mouse system where

memory B cells are marked based on YFP expression and can be

tracked in vivo [19]. This transgenic system utilized the I-Ea
d

promoter and gene expression from this promoter was restricted in

B lineage cells that had entered the germinal center (GC) pathway

of B cell differentiation. The transgenic mice were subsequently

bred to the ROSAYFP cre-reporter strain, in which constitutive

expression of YFP occurs upon cre-mediated recombination of the

ROSAlocus [19]. We FACS sorted naı̈ve follicular (B220+ CD23+

YFP2 IgM+) B cells from these transgenic mice thereby effectively

excluding the contaminating memory B-cell population

(Figure 4A). In parallel, we FACS sorted memory (B220+

CD23+ IgG+) B cells from sheep RBC (SRBC) immunized mice,

and studied the expression and functional role for TLRs.

Figure 3. TLR-induced B-cell differentiation and immunoglobulin secretion of murine B-cell subsets. A, FACS sorted follicular B-cells (CD19+

B220+CD23+CD212) were cultured in vitro with various TLR ligands as indicated for 5 days and antibody profile of culture supernatants measured by
ELISA as described in Materials and Methods. B-D, FACS sorted marginal zone, B-1 and peyer’s patch B-cells (CD19+ B220+CD232CD21+ for marginal
zone B, CD19+B220+CD232for peritoneal B-1 B and CD19+B220+ for peyer’s patch B cells) were cultured in vitro with various TLR ligands as indicated
for 5 days and antibody secretion measured by ELISA as described in Materials and Methods.
doi:10.1371/journal.pone.0000863.g003
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Interestingly, the TLR expression profile of naive and memory B

cells was almost identical (Figure 4B). Unlike human peripheral

blood naı̈ve B cells, murine splenic naı̈ve B cells respond to TLR

ligation (proliferation and antibody secretion) equally well

compared to unsorted B cells, ruling out potential memory B cell

contamination in the subsets studied (Figure 4C & D).

In summary, we report here the expression pattern and function

of TLRs in different murine B-cell subsets including follicular,

marginal zone, B-1 and Peyer’s patch. B-cell subsets express all

known TLRs except 5 and 8. Consistent with their expression

pattern, FACS sorted purified B-cell subsets respond to TLR

ligands in vitro (Figure 5). Robust proliferation and antibody

secretion of follicular B cells was observed in response to various

TLR ligands, particularly ligands to TLR2/1, TLR2/6, TLRs 4, 7

and 9 (Figure 5). Marginal zone B cells have a similar pattern of

TLR expression and response (Figure 5). However, B-1B cells do

not respond strongly to TLR2 ligands. In contrast, Peyer’s patch B

cells respond robustly to TLR2, 6 and 7 ligation, but poorly to

ligands for TLR9 and 4. Our results are consistent with a very

recent report that B-cell subsets that participate in T-independent

immune response express and respond to TLR agonists in vitro

[25]. But in contrast to their observations, we show that follicular

B cells that participate in T-dependent immune response do

express and secrete antibodies of IgG3 and IgM isotypes in

response to a variety of TLR agonists in vitro [25]. The observed

differences between our study and the previous study could be due

to different CpG motifs that were used (CpG 1826 versus CpG

1668). It is possible that the CpG ODN we used (CpG 1826) was

more potent than the one used in the previous study (CpG 1668)

[25,26].

Furthermore, we addressed the issue of TLR expression and

function in naı̈ve versus memory B cells and found that mouse

Figure 4. TLR induced proliferation and immunoglobulin secretion of naı̈ve follicular B cells. A, Splenocytes taken from naive GCCxRosaYFP mice
were stained with anti-B220-allophycocyanin and anti-CD23-phycoerythrin to detect follicular B cells. B220+ CD23+ cells were further gated for YFP
and IgM expression. Numbers shown in each plot indicate frequency of gated cells within total lymphocytes. FACS profile of Naı̈ve (B220+ CD23+

eYFP2 IgM+) B cells pre-sort and post-sort. The purity of post-sort was ,99%. B, FACS sorted naı̈ve B cells as described in panel A and memory B cells
(B220+ CD23+ IgG+) from 10% v/v SRBC immunized mice (day 12) were probed for TLR expression by Real-time PCR, C, FACS sorted naı̈ve B cells were
cultured in vitro in the presence of various TLR ligands for 3 days and proliferation measured by thymidine incorporation as described in Materials
and Methods. D, FACS sorted naı̈ve B cells were cultured in vitro in the presence of TLR ligands for 5 days, culture supernatants were harvested and
ELISA was performed as described in Materials and Methods. Experiments were performed three times with similar results and a representative profile
is shown.
doi:10.1371/journal.pone.0000863.g004
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naı̈ve follicular B cells express multiple TLRs and respond to

a variety of TLR agonists in vitro. The extent to which TLR

signaling in B cells modulate antibody responses to vaccines needs

to be examined. Surprisingly, a recent report from Gavin et al

demonstrated that certain commonly used adjuvants including

CFA and Ribi do not require TLRs for eliciting antibody

responses [27]. In contrast, it was shown that VSV induced IgM

neutralizing antibody was partially dependent on TLR7 [28].

Furthermore, our recent study suggests that the yellow fever

vaccine-17D, one of the most effective vaccines stimulates T cell

responses by activating multiple TLRs [29], although to what

extent TLR signaling influences humoral immune responses need

to be determined.

In conclusion, the data presented here highlight the importance

of TLR expression and function in different murine B-cell subsets

which contribute to T-dependent and T-independent responses

and signifies the potential fundamental differences that exist

between human and mouse naı̈ve B cells.
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Figure 5. A heat map summary of TLR expression and responsiveness to different TLR ligands by distinct murine B cell subsets. The values for
TLR expression profile, proliferation and antibody secretion in response to various TLR ligands by different B-cell subsets shown in Figures 1–3 were
plotted on a log scale, and represented as a heat map. For TLR expression, blue represents an 1 fold increase relative to b-actin, green represents 2
fold increase, yellow represents 3 fold increase, red represents 4 fold increase and dark brown represents $5 fold increase. For proliferation, blue
represents an 1 fold increase relative to unstimulated medium controls, green represents 2 fold increase, yellow represents 3 fold increase, red
represents 4 fold increase and dark brown represents 5 fold increase. For antibody secretion, blue represents an 1 fold increase relative to
unstimulated medium controls, green represents 2 fold increase, yellow represents 3 fold increase, red represents 4 fold increase and dark brown
represents 5 fold increase.
doi:10.1371/journal.pone.0000863.g005

TLRs and B Cell Responses

PLoS ONE | www.plosone.org 6 September 2007 | Issue 9 | e863



REFERENCES
1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking

innate and acquired immunity. Nat Immunol 2: 675–680.
2. Beutler B (2005) The Toll-like receptors: analysis by forward genetic methods.

Immunogenetics 57: 385–392.
3. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive

immune responses. Nat Immunol 5: 987–995.

4. Pulendran B (2004) Modulating vaccine responses with dendritic cells and Toll-
like receptors. Immunol Rev 199: 227–250.

5. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, et al. (2003)
Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by

CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines.
Eur J Immunol 33: 827–833.

6. Ito T, Liu YJ, Kadowaki N (2005) Functional diversity and plasticity of human

dendritic cell subsets. Int J Hematol 81: 188–196.
7. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, et al. (2001)

Subsets of human dendritic cell precursors express different toll-like receptors
and respond to different microbial antigens. J Exp Med 194: 863–869.

8. Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors.

Nature 438: 364–368.
9. Whitlock CA, Watson JD (1979) B-cell differentiation in the CBA/N mouse. I.

Slower maturation of mitogen and antigen-responsive B cells in mice expressing
an X-linked defect. J Exp Med 150: 1483–1497.

10. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, et al. (1995) CpG

motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.
11. Janeway CA Jr, Medzhitov R (1999) Lipoproteins take their toll on the host.

Curr Biol 9: R879–882.
12. Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in

acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells
and constitutive expression in memory B cells. Blood 101: 4500–4504.

13. Huggins J, Pellegrin T, Felgar RE, Wei C, Brown M, et al. (2007) CpG DNA

activation and plasma-cell differentiation of CD27- naive human B cells. Blood
109: 1611–1619.

14. Mansson A, Adner M, Hockerfelt U, Cardell LO (2006) A distinct Toll-like
receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-

837 and CpG-2006 stimulation. Immunology 118: 539–548.

15. Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:
323–335.

16. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF (1997) Marginal
zone B cells exhibit unique activation, proliferative and immunoglobulin

secretory responses. Eur J Immunol 27: 2366–2374.

17. Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal

immunity. Nat Rev Immunol 4: 699–710.

18. Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on

the role of CD5. Annu Rev Immunol 20: 253–300.

19. Chappell CP, Jacob J (2006) Identification of memory B cells using a novel

transgenic mouse model. J Immunol 176: 4706–4715.

20. Shinall SM, Gonzalez-Fernandez M, Noelle RJ, Waldschmidt TJ (2000)

Identification of murine germinal center B cell subsets defined by the expression

of surface isotypes and differentiation antigens. J Immunol 164: 5729–5738.

21. Dillon S, Agrawal A, Van Dyke T, Landreth G, McCauley L, et al. (2004) A

Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of

extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos

in dendritic cells. J Immunol 172: 4733–4743.

22. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected

Toll-like receptor agonist combinations synergistically trigger a T helper type 1-

polarizing program in dendritic cells. Nat Immunol 6: 769–776.

23. Vitetta ES, McWilliams M, Phillips-Quagliata JM, Lamm ME, Uhr JW (1975)

Cell surface immunoglobulin. XIV. Synthesis, surface expression, and secretion

of immunoglobulin by Peyer’s patch cells in the mouse. J Immunol 115:

603–605.

24. Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, et al. (2005)

Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I

IFN. J Immunol 174: 4043–4050.

25. Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, et al. (2007) TLR

agonists selectively promote terminal plasma cell differentiation of B cell subsets

specialized in thymus-independent responses. J Immunol 178: 7779–7786.

26. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, et al. (2004)

Characterization of three CpG oligodeoxynucleotide classes with distinct

immunostimulatory activities. Eur J Immunol 34: 251–262.

27. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, et al. (2006) Adjuvant-

enhanced antibody responses in the absence of toll-like receptor signaling.

Science 314: 1936–1938.

28. Fink K, Lang KS, Manjarrez-Orduno N, Junt T, Senn BM, et al. (2006) Early

type I interferon-mediated signals on B cells specifically enhance antiviral

humoral responses. Eur J Immunol 36: 2094–2105.

29. Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, et al. (2006) Yellow fever

vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to

stimulate polyvalent immunity. J Exp Med 203: 413–424.

TLRs and B Cell Responses

PLoS ONE | www.plosone.org 7 September 2007 | Issue 9 | e863


