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Abstract

The identification of predictive biomarkers is at the core of modern toxicology. So far, a number of approaches have been
proposed. These rely on statistical inference of toxicity response from either compound features (i.e., QSAR), in vitro cell
based assays or molecular profiling of target tissues (i.e., expression profiling). Although these approaches have already
shown the potential of predictive toxicology, we still do not have a systematic approach to model the interaction between
chemical features, molecular networks and toxicity outcome. Here, we describe a computational strategy designed to
address this important need. Its application to a model of renal tubular degeneration has revealed a link between physico-
chemical features and signalling components controlling cell communication pathways, which in turn are differentially
modulated in response to toxic chemicals. Overall, our findings are consistent with the existence of a general toxicity
mechanism operating in synergy with more specific single-target based mode of actions (MOAs) and provide a general
framework for the development of an integrative approach to predictive toxicology.
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Introduction

One of the most challenging tasks in toxicology is the identification

of a potential toxicity via high-throughput screening, avoiding the use

of animals, at an early stage in the development programme of a

product such as a pharmaceutical or in the context of REACH [1].

Such screens can help to reduce attrition of products late in

development and can help to prioritise existing chemicals for more

complete safety assessment. In this context, the concept of

quantitative structure activity relationship (QSAR) analysis was

originally developed with the purpose of predicting a toxicity or

pharmacological response utilizing information on the physico-

chemical features (PCFs) of a chemical and the relationship to

biological effects. In the last 20 years QSAR analysis has been

characterized by an increasing level of sophistication as technological

and computational developments have made it possible to measure

or compute a higher number of chemical and physical parameters

[2]. In addition, recent reports have shown that the prediction

accuracy of QSAR models can be increased when additional

information from cell based assays is utilized [3,4] Independently to

these developments, the availability of functional genomics technol-

ogies facilitated the measurement of mRNA concentrations, proteins

and metabolites in single experiments. This, together with the

development of novel computational methods suitable for the analysis

and integration of very large multilevel datasets [5], have contributed

to demonstrate the usefulness of molecular fingerprinting in

predicting toxicity from an early readout of the response to chemical

exposure [5–9]. Toxicants can in some cases be discriminated

according to their mechanism of action and their target organs

[10,11]. However, there have been no successful attempts to model

the interaction between a drug PCFs with genome wide molecular

response to exposure and put this in context with toxicity response. It

is therefore still unclear whether a true integration between

traditional QSAR and functional genomics data may be possible.

In this paper we describe an analysis strategy which addresses this

issue by integrating gene expression profiling measurements in the

logical framework of QSAR analysis. We have applied this approach

to a publicly available expression profiling dataset, representing the

pre-phenotypic transcriptional response to chemical exposure in a rat

model of renal tubular degeneration which is a major toxicological

response contributing to attrition during drug development [12]. Our

approach has successfully linked a sub-set of PCFs to the activity of

signalling pathways known from the literature to drive effector

pathways differentially modulated between toxic and non-toxic

chemicals. This finding suggests the existence of general toxicity

mechanisms which operate in synergy with specific single-target

based MOAs. The approach we have used has general validity since

it can be applied to integrate different types of PCFs, molecular and

phenotypic measurements to identify predictors of toxicity within a

mechanistic framework for biological interpretation.

Results

Rational of the approach and data analysis overview
The dataset we have used in this analysis is based on a wide

range of chemicals. Some of them are known to work by different
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mechanisms of action and have diverse chemical structures.

Despite this heterogeneity it has been shown that it is possible to

identify early molecular response signatures predictive of in vivo

toxicity outcome [13]. So far, it is unclear whether these signatures

represent an early convergence of the different drugs MOAs

towards common toxicity pathways or whether a component of

them may represent a direct interaction between the chemicals

and cellular components. Here we address this question by using a

multi-step computational approach. Firstly, we simplify the

complexity of the transcriptional response by computing indices

of overall pathway transcriptional activity (Figure 1, Step 1). This

effectively reduces the dataset from thousands of individual gene

expression profiles to 148 pathway indices. We demonstrate that

toxic and non-toxic chemicals can be separated on the basis of

their ability to modify pathway activity (Figure 1, Step 2 and 3).

This proves the biological relevance of the pathway indices. We

then hypothesize that the defined set of a drug PCFs may be

representative of the ability of a chemical to induce changes in the

homeostatic state of the target organ. In line with this hypothesis

we search for statistical models based on combinations of PCFs

and predictive of the transcriptional response to drug exposure

(Figure 2, Step 1). In parallel we identified which pathways are

differentially modulated between samples treated with toxic and

non-toxic drugs (Figure 2, Step 2). If these two pathway subsets

truly represent the interaction between chemicals and underlying

molecular networks we may expect that they would be part of a

super-pathway. This hypothesis was addressed by mapping

pathways in the two on the KEGG pathway map and testing for

statistical association (Figure 2, Step 3).

Computing indices of molecular pathway activity
The overall aim of this study was to link PCFs to drug-induced

molecular responses and phenotypic outcome. A key challenge in

identifying subsets of PCFs predictive of transcriptional response is

the astronomical number of possible combinations of PCFs and

gene subsets that need to be tested within a statistical modelling

framework. In order to address this challenge we first simplified

the complexity of the dataset by reducing thousands of individual

gene expression profiles to a relatively small number of overall

pathway activity indices. This was achieved by summarizing gene

expression profiles representative of a given KEGG pathway with

the first two principal components (PCs) of the gene expression

matrix [14]. The choice of the number of PCs to construct the

pathway activity indices was driven by the simple criteria to

represent at least 80% of the variance present in the original

dataset. By using this strategy we built a new dataset representing

148 KEGG Pathways (44% of the KEGG pathway database). This

dataset represents 1676 out of the 7478 genes which were

originally present in the processed Iconix dataset. We found that

the apparent loss of gene representation was largely (77%)

associated to the high frequency of non-annotated genes (i.e.

function unknown or estimated by sequence homology). KEGG

Pathways represented in the derived dataset are a good

representation of the spectrum of functions covered by the KEGG

database (Table S1 and S2 for a detailed breakdown in the

functional representation of the KEGG pathways represented in

the dataset).

Molecular pathway activity in response to chemical
exposure is correlated to toxicity

In their original paper, Fielden et al [13] demonstrated that

using statistical modelling techniques it is possible to identify

subsets of genes predictive of late toxicity outcome. Since our

strategy is based on simplifying the complexity of the data using

indices of pathway activity we first asked whether these were also

effective indicators of toxicity response. We first approached this

question by clustering the chemicals on the basis of their ability to

modify the transcriptional activity of a given pathway. Figure 3A

shows that the profile of pathway perturbation is indeed

informative of chemical toxicity. In particular, cluster analysis

succeeded in grouping 12 out of 15 nephrotoxic chemicals within a

well-defined cluster (Figure 3A). Analysis of the individual PCs

revealed that the second PC on its own was sufficient to reproduce

clustering of toxic chemicals without significant loss of information

(Figure 3B and 3C). In order to identify the molecular pathways

differentially modulated in response to toxic chemicals we directly

compared the index of pathway activity between samples treated

either with nephrotoxic or non-nephrotoxic chemicals. This

analysis identified 21 pathways which were differentially modu-

lated (FDRv1%, Table 1). These can be grouped into three main

functional categories: 1) metabolic pathways such as Glyceropho-

spholipid metabolism or Aminosugar metabolism, 2) pathways with a

strong signalling component such as Parkinson’s disease, Phosphatidy-

linositol signalling and Prostate cancer and 3) cell communication

pathways such as Cell communication and Focal adhesion. The KEGG

pathway terms Parkinson’s disease, Prostate cancer, Pancreatic cancer and

Renal cell carcinoma do not specifically include the term ‘signalling’

in their definition but are indeed representing primarily signalling

pathways. More specifically, the pathway Parkinson’s disease

represents the molecular events downstream dopamine stimula-

tion, which is a major player in synaptic transmission and it is

effectively linked to signalling pathways controlling vasoconstric-

tion. This pathway is important for kidney physiology where

dopamine release induce an increase in renal blood flow, urinary

volume and excretion of sodium and potassium. This then leads to

an increase in glomerular filtration rate as well as a depletion of

plasma cyclic AMP [15]. The pathway Prostate cancer represents

components of the MAPK signalling and p53 signalling pathways which

are included in the response downstream of cytokine stimulation.

Specific signalling pathways associated to the Pancreatic cancer

pathway are ErbB, Jak-STAT, VEGF, TGF-b, MAPK and the p53

signalling pathway. These are not only relevant to the biology of

cancer (alteration in these signalling pathways destabilize growth

inhibition and promote tumour growth activity [16]) but also to

kidney response to stress and regeneration [17].

Chemical features are predictive of molecular pathway
activity

Having demonstrated that indices of pathway activity are

representative of the biological effect of chemicals we addressed

the hypothesis that a subset of PCFs may be correlated to the

kidney transcriptional response to drug exposure. The statistical

framework we have used to address this hypothesis (described in

detail in the methods section) relies on a regression model

explaining the activity of a given pathway (which we remind is the

first or second principal component computed from the gene

expression matrix associated to a given pathway) as a linear

combination of three chemical features. The model also includes

interaction components to take into account potential synergistic

effects between chemical descriptors. We successfully identified

predictive models (R2
w0:5) for 19 of the 148 pathways

represented in the Iconix dataset. It is worth noticing that,

pathway activity indices (Figure 3) as well as the original gene

expression data (Figure S1), separates toxic from non-toxic

chemicals across the second PC whereas the first component is

likely to represent non-specific effects (Figure S1). Therefore the

association between PCFs and the pathway activity indices build

using the second component is biologically reasonable. Among

Drug Features Link to Pathways
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pathways associated to chemical features we observed a large

number of signalling pathways as well as some metabolic pathways

(i.e. Glycolysis, Porphyrin metabolism, Chlorophyll metabolism and

Glutathione metabolism). Two of these pathways were also found to

be associated to toxicity in the analysis described in the previous

paragraph (Prostate cancer and Cell communication). PCFs selected in

the models could be assigned to several descriptor groups. Figure 4

summarizes in a graph format the most frequent combination of

features’ descriptors groups selected in the chemical feature

models. A key feature of the selected models is the importance

of interaction components which in most cases explain an average

of 50% of the model variance (Figure S2). Descriptor groups pairs

such as descriptors that describe patterns in the connection of

specific atoms with each other (ET-State) and Geometrical

descriptors or descriptors of special fragments that describe a

path or cycle (GSFRAG) with itself are predominantly chosen by

our method. All these descriptors classes capture different types of

structural information. For example, GSFRAG descriptors

identify specific chemical motives such as the size of a ring, or

the length of linear connections; ET-States descriptors describe

patterns in the connection of specific atoms with each other and

geometrical descriptors are designed to capture patterns in the

overall topology of the molecule.

Pathways whose activity is correlated to chemical
features are part of a signalling system closely connected
with cellular communication and related functions

Regression analysis described in the previous paragraph

identified 19 pathways whose activity could be predicted by a

combination of chemical features (See Figure 5 for some

examples). Because of the apparent similarity in the molecular

functions represented in these pathways we reasoned that these

may be closely connected within the KEGG pathway map. In

order to test this hypothesis we represented the relationship

Figure 2. Integrating pathways associated to PCFs and toxicity. Alongside using a regression based model to identify pathways associated to
PCFs (Step 1) we also identified pathways associated to toxicity by the use of the T2 statistics (Step 2). The resulting pathways were then mapped
onto a KEGG pathway map to identify clusters of pathways associated to both PCFs and toxicity (Step 3). Finally we asked the question if the PCFs we
have found to be associated to pathways are a better predictor of toxicity.
doi:10.1371/journal.pone.0012385.g002

Figure 1. Analysis strategy to compute indices of pathway activity. To compute the indices of pathway activity the first step is to summarize
the gene expression profiles using PCA according to KEGG pathways. This results in 148 pathway indices summarized using two PCs. These PC can
then be used as an input to a T2 Hotelling’s statistics to compute the perturbation index for a specific drug as compared to a matched control group.
The third step is to visualize the relationship between the drugs with the use of a hierarchical clustering. We can then show that the dimensionality
reduction in step 1 is biologically relevant to use in the subsequent analysis.
doi:10.1371/journal.pone.0012385.g001

Drug Features Link to Pathways
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between individual pathways (defined by their degree of overlap)

using hierarchical clustering. In this analysis KEGG pathways

which share a larger number of components are represented in

close proximity in the dendrogram. The visual inspection of the

dendrogram confirmed that pathways, whose overall activity can

be predicted by combinations of chemical features, were grouped

in a compact cluster within the KEGG map (Figure 6). This cluster

defines a KEGG super-pathway that represents a number of

signalling networks directly connected to effectors functions of

direct relevance with tissue morphogenesis such as Actin

remodelling and Cell communication. Interestingly, Cell communication

which we already mentioned to be associated to both PCFs and

toxicity represents multiple signalling and effectors components of

the cell to cell communication machinery. These include tight

Figure 3. Hierarchical clustering of chemicals based on pathway modulation profiles. The figure shows the clustering of chemicals on the
basis of the extent of change of transcriptional activity in molecular pathways after exposure. Panel A represent the relationship between the samples
when the change in pathway activity is represented simultaneously by the first and second PCs (multi-variate T2 Hotelling test). Panels B and C
represent respectively the results of cluster analysis when the change in pathway activity is estimated by the PC1 or the PC2 (univariate t-test). Notice
that toxic chemicals cluster (highlighted areas on Panels A and C) on the basis of the multivariate test and that the information associated to toxicity
is primarily represented by the PC2. Toxic chemicals have been highlighted using a red square on the left of each clustering.
doi:10.1371/journal.pone.0012385.g003
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junction, gap junctions, adherence junctions, desmosomes and

extracellular matrix components. The cluster of interconnected

KEGG pathways defined by the association with chemical

physical features therefore represents a network of signalling

components which directly interact with a toxicity associated core

of cell communication components.

PCFs correlated to molecular pathway activity are best
predictors of chemical induced toxicity

The functional link between pathways associated to PCFs and

toxicity may imply that the selected PCFs may be themselves

predictive of renal tubular degeneration. In order to test this

hypothesis we developed multivariate statistical models predictive

of toxicity selecting from PCFs associated to molecular pathway

activity. We then compared these with models developed from

PCFs which where uncorrelated to the pathway associated PCFs

subsets. Figure 7A shows that features predictive of molecular

response are more predictive of toxicity outcome (average

accuracy of 76% versus 68%, p-value v10{3). In order to

identify the most representative PCFs subset, we developed

representative models based on the three features which were

most frequently represented in the model populations. Consistent

with the previous result, the model built using PCFs associated to

molecular response has higher sensitivity and specificity (sensitivity

0.781, specificity 0.871) than the one build with uncorrelated

PCFs. This is reflected by a clearer sample separation in the PCA

plot (Figure 7B). Features represented in the most predictive model

combine two RDF descriptors and a WHIM descriptor whereas

the unselected features model contains a GSFRAG, a GETAWAY

descriptor and a 2D-autocorrelation descriptor. The model based

on PCFs predictive of transcriptional response shows that toxic

chemicals are characterized by high polarisability (RDF020p), low

electronegativity (RDF040e) and low symmetry (G2u). Although

the difference in accuracy (8%) is not particularly high, the results

confirm that PCFs chosen by our method have a significantly

higher ability to discern toxic from non-toxic chemicals.

Discussion

The most important finding of our study is the demonstration

that specific combinations of chemical descriptors can be

predictive of the transcriptional activity of pathways, always using

the second PC, representing the molecular state of a target organ

after chemical exposure. These pathways (i.e. ErbB Signalling, Wnt

signalling, Long-Term Depression, Long-Term Potentiation and several

cancer pathways) mainly represent signalling pathways which in

our model define the main domain of interaction between

chemicals and cellular molecular response (Figure 8). We have

shown that toxicity pathways with relevance to renal tubular

degeneration are closely associated to this domain in the context of

a KEGG pathway map. We explored close pathways by

integrating the networks and establish whether, beyond the

topological proximity, we could also identify a functional

relationship between them. In this context we devised three

interconnected pathways that could mechanistically explain the

observed connection between chemical features, pathway activity

and toxicity outcome. Figure 8A shows how a possible interaction

between the Wnt signalling pathway, Regulation of Actin Cytoskeleton

(linked to PCFs) and Focal Adhesion (predictive of toxicity outcome)

could lead to a perturbation of actin cytoskeleton polymerization.

More specifically, Wnt/Fz signalling activates the small GTPase

Rho to control cell migration during tissue remodelling and

development. This activation requires Dvl-Rho complex forma-

tion which is assisted by Daam1. From this it is clear that the

integration of these topologically linked pathways represent a true

series of biochemical events linking the binding of the Wnt ligand,

through activation of Daam1 to the actin polymerization

machinery. A plausible disturbance of mitochondrial respiration

and energy balance by means of reactive oxygen species (ROS)

generation is shown in Figure 8B. Lastly growth factor mediated

modulation of the cell cycle, adhesion and cell migration through

TGF-a is shown in Figure 8C. This pathway module results from

the integration of the ErbB signalling pathway (linked to PCFs) and

Pancreatic Cancer (predictive of toxicity outcome). In this case the

pathway linked to toxicity is a sub-network of the ErbB signalling

pathway which represents the specific effects on tissue remodelling

via regulation of cell growth, apoptosis and differentiation. The

common feature among these hypothetical mechanisms is the

association between chemical features and membrane associated

cellular signalling and the large overlap between this and effectors

pathways. Genes within each pathway are co-ordinately regulated

across exposures suggesting that what we are modelling is not the

effect of a small subset of highly regulated genes. Moreover, by

mapping the direction of change between toxic and non-toxic

chemicals on the KEGG pathway maps we observe that chemical

exposure is associated to a coordinate overexpression of genes in

signalling and effector genes (Figures S3, S4, S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16). It is therefore not

unreasonable to hypothesize that the diverse spectrum of toxic

chemicals used in this study may act via a general mechanism

involving interaction with cellular membranes. This hypothesis is

also consistent with the finding that polarisability is a key feature of

Table 1. This table shows 21 KEGG pathways that were found
to be significantly perturbed by nephrotoxic chemicals
(FDRv1%).

KEGG ID Pathway Name Size T2 Score

rno05020 Parkinson’s disease 10 31.71

rno00564 Glycerophospholipid metabolism 25 31.29

rno05215 Prostate cancer 52 26.66

rno02010 ABC transporters - General 13 26.35

rno04070 Phosphatidylinositol signaling system 32 22.56

rno04130 SNARE interactions in vesicular transport 24 21.54

rno00760 Nicotinate and nicotinamide metabolism 10 21.17

rno01430 Cell Communication 45 21.07

rno00530 Aminosugars metabolism 9 20.77

rno04120 Ubiquitin mediated proteolysis 65 20.40

rno05030 Amyotrophic lateral sclerosis (ALS) 16 19.64

rno03010 Ribosome 26 19.54

rno03050 Proteasome 20 19.35

rno05212 Pancreatic cancer 50 19.21

rno00230 Purine metabolism 64 16.14

rno04330 Notch signaling pathway 20 15.31

rno01031 Glycan structures - biosynthesis 2 17 14.96

rno04612 Antigen processing and presentation 23 14.96

rno04510 Focal adhesion 102 14.49

rno04320 Dorso-ventral axis formation 17 14.32

rno05211 Renal cell carcinoma 52 13.71

The number of genes in each pathway and the value of the T2 hotelling
statistics are shown respectively in the third and fourth columns size column.
doi:10.1371/journal.pone.0012385.t001
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the toxic chemicals studied (Figure 5 and 7). The interaction

between chemicals and cellular membranes may perturb receptor

signalling inducing changes in the expression of genes encoding for

signalling components and ultimately creating an unbalance in the

expression of effectors pathways involved in tissue dynamics and

homeostasis. The regression models we built showed that, in many

cases, there is a continuum of effects influencing the molecular

state of a target pathway and that, in specific pathways, (i.e. Gap

junction and ErbB signalling pathways) toxicity is observed either

above or below a given threshold of pathway activity (Figure 5).

This is showing that only chemicals that can substantially perturb

key signalling pathways are able to induce stress responses such as

disturbance of inter-cellular communication and mitochondrial

disturbances that are frequently associated with subsequent

cellular toxicity [18,19]. It is possible that the proposed mechanism

may be a general unifying mode of toxicity probably secondary to

a range of initial specific mechanisms and that may act in parallel

to the interaction with specific molecular targets. In this context, it

is known that multiple and target-specific mechanisms of action of

xenobiotics are responsible for drug induced nephropathy. For

example, the targets of the initial insult may be at the level of

altered blood flow, glomerular injury, direct proximal tubule

damage or other tubule or papillary targets [20]. Furthermore

nephropathy might be a direct action of the agent on nephrons or

an indirect action such as via a reduction of prostaglandin

production such as with salicylic acid, or via precipitation of liver-

derived alpha-2-u-globulin as a result of chemical binding (e.g. d-

limonene) [21]. Prominent as classes of nephrotoxic agents are

halogenated hydrocarbons such as chloroform and bromobenzene

and classes of therapeutic agents including nonsteroidal anti-

inflammatory drugs, aminoglycosides and the anticancer agent

cisplatin. These facts might suggest insurmountable difficulties in

prediction of effects from structural characteristics because of a

multiplicity of mechanisms. However, the focus of this paper is

predominantly on agents that directly act on the tubular

(principally proximal tubule) epithelial cells. Our study has shown

that there are features of signalling disturbance that associate with

both chemical structural parameters and also with additional

molecular pathways that associate with toxicity. Integration of the

datasets shows that it is possible to link structure to pathology via

the two layers of analysis allowing a reconstruction of a series of

pathways. The approach offers a new dimension to the existing

strategies of databases that associate structure directly to known

toxicity features through training (e.g. DEREK and TOPKAT

[22] and the OECD Toolbox (www.oecd.org). The common

signalling disturbance identified is thus hypothesised to lead to

secondary effects linked to toxicity. It is the genome-wide

surveillance strategy that has allowed the identification of the

linkage which would not have been possible from more targeted

analysis of individual mechanisms. Since the time point for the

molecular changes observed is five days after exposure, it is also

possible that the changes represent secondary intermediate modes

of change rather than specific early mechanistic interactions.

Interestingly, the modelled features associated with toxicity are not

necessarily limited to nephrotoxicity. The biological implications

of this work are further strengthened by the observation that

chemical feature selection based on functional pathway activity

leads to more predictive toxicity models (sensitivity 78.1%,

specificity 87.1%). Therefore linking gene expression to chemical

features identifies a sub-selection of features which are more linked

to toxicity. We therefore propose that by integrating gene

expression profiles with chemical feature information it may be

possible to isolate a sub-group of features that are highly important

in characterizing specific phenotypic effects allowing for a much

better characterization of yet untested chemicals. The develop-

ment of these methodologies is particularly important as large

Figure 4. Visual summary of descriptor connections. The network represents the number of interactions between PCFs descriptor groups
computed from pooled models. The thickness of the line is proportional to the number of pathways in which PCFs of a given descriptor group are
selected in an interaction component of a predictive models. The highest value edge is found between ET-State and Geometrical descriptors in which
11 out of 19 pathways were found to contain models based on features from these 2 descriptor groups.
doi:10.1371/journal.pone.0012385.g004
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datasets representing a broader spectrum of chemicals are

expected to become available. An excellent example of these

publicly available datasets is the ToxCastTM [23] program which

is currently running at the U. S. Environmental Protection Agency

[24]. Several potential improvements may be necessary to make

the approach fully generalizable. For example, the computation of

pathway indices we have implemented is based on the use of PCs

ensuring that a large percentage of variance (80% in this case) is

retained. Although this is likely to work for most of the datasets, it

is possible that PCA, which is based on a linear combination of

variables, may not be able to capture more complex relationships

with PCFs. Therefore it may be useful to consider other methods

such as independent component analysis or a non-linear version of

PCA. This issue is particularly important considering that in

Figure 5. Example models linking PCFs with molecular pathway activity. The figure shows the relationships between the observed (x axis)
and predicted (y axis) indices of pathway activity for a number of exemplar KEGG pathways. Nephrotoxic samples are represented by red dots
whereas non-nephrotoxic samples are represented by black dots. Gap Junction and ErbB Signaling Pathway contain features belonging to ET-State
indices, Geometrical descriptors and RDF descriptors. The R2 values are 0.55 and 0.57 respectively. Wnt Signaling Pathway and Adipocyte Signaling
Pathway contain features belonging to GSFRAG, Information indices, Edge adjacency indices and 3D-MoRSE descriptors. The R2 values are 0.52 and
0.51 respectively. Note that models containing a feature from E-State indices and RDF descriptors better separate nephrotoxic and non-nephrotoxic
samples.
doi:10.1371/journal.pone.0012385.g005

Drug Features Link to Pathways
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Figure 6. KEGG Pathway topology map. The Figure shows a dendrogram representing the degree of similarity between different KEGG
pathways. Pathways marked in red are pathways that were found to be associated to chemical features (19), and pathways marked in blue have been
found to be predictive of toxicity (21). Pathways whose activity is predicted by PCFs group in a tight cluster. Note that the majority of toxicity
annotated pathways cluster towards the lower half of the dendrogram, close to pathways linked to PCFs.
doi:10.1371/journal.pone.0012385.g006

Drug Features Link to Pathways
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complex exposure experiments the component of variation

associated to the interesting biological effect may be associated

to non-specific effects of toxicity. It is therefore important that the

procedure used for the construction of pathway indices has the

potential to decompose these effects. However, even at the present

stage of development, the broad application of the analysis strategy

we have pioneered will improve our ability to identify mechanistic

markers of toxicity and will help to better understanding the

relationship between drug PCFs and cellular physiology.

Methods

The Dataset
The expression profiling dataset used in this analysis was

originally developed by Iconix Biosciences [13]. It is at present the

largest microarray-based analysis of chemical induced transcrip-

tional response on a mammalian system being available in a public

domain. In this study, rat kidneys have been profiled five days after

exposure in a 28-day repeat-dose study in male Sprague-Dawley

rats. The study involved 88 chemicals, 22 of which are known to

induce renal tubular degeneration at the concentrations used in

this study. Details of the experimental protocol are available in the

original publication. Here we report a summary for clarity of the

manuscript. Rats were treated daily and sacrificed on days 5 (n = 5

rats) and 28 (n = 10 rats) for kidney histopathology evaluation.

Gene expression profiles were obtained on day 5 from 3 randomly

chosen rats per treatment group, before the expected appearance

of the lesions. Doses were chosen so as to not cause histological or

clinical evidence of renal tubular degeneration after 5 days of

dosing, but to cause late-onset histological evidence of tubular

degeneration as expected from the literature. The negative class of

this dataset was defined based on literature knowledge of

Figure 7. PCFs linked to molecular response are better predictors of toxicity. Panel A shows the comparison between the classification
accuracy of models predictive of toxicity and developed selecting from PCFs which are predictive of molecular response and those developed using
uncorrelated PCFs. Note that PCFs linked to molecular response have a higher predictivity (pv10{3). Panels B and C show the PCA representation of
the samples using the 3 most represented features in the model populations. The information for the best separation in both instances is present in
PC2 and PC3. The equations for panel B show that a high increase in symmetry and high polarizability and low electronegativity is predictive of
toxicity. In the case of the unselected features panel C toxic chemicals do cluster together but are specific to containing a nitrogen with a triple single
bond and a low autocorrelation.
doi:10.1371/journal.pone.0012385.g007
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Figure 8. Association between PCFs and toxicity associated pathways. The figure represents the detailed relationship between pathways
associated to chemical hits and pathways associated to toxicity. Pathways with membrane component were mostly associated to chemical hits
whereas pathways with downstream signalling components were mostly associated to toxicity. This figure represents three possible links between

Drug Features Link to Pathways

PLoS ONE | www.plosone.org 11 August 2010 | Volume 5 | Issue 8 | e12385



treatment effects in humans and rodents. This class included 49

non-nephrotoxic compound treatments that were administered

daily for 5 or 7 days (n = 3 rats). The dose was an empirically

determined maximum tolerated dose in order to ensure sufficient

exposure, but not to cause overt clinical toxicity. This was defined

as the dose that causes approximately a 50% decrease in body

weight gain relative to controls during the course of the 5-day

range finding study, and without severe clinical signs of toxicity.

Summarizing the transcriptional state of kidney using
indices of pathway transcriptional activity

In order to reduce the complexity of linking chemical

descriptors to the kidney transcriptional state we have computed

indices of overall pathway transcriptional activity [25,26]. These

indices were computed by mapping the 7478 genes represented in

the pre-processed dataset [13] onto KEGG pathways. In choosing

the number of PCs we have used the simple criteria of selecting

subsequent components to explain at least 80% of the variance. In

this dataset this lead to the selection of the first two components.

Using this criteria we summarized the activity of pathways

including more than 5 genes (148) by computing the first two

principal components (PCs) which were always able to summarize

up to 89% of the variance. The advantage of using PCs is that the

inter-gene correlation structure is automatically incorporated into

the process of dimension reduction, so this information is not lost.

Computation of the PCs has been performed using the principal

component function prcomp within the software programming

environment R [27].

Comparing indices of pathway activity in response to
chemical exposure

In this analysis we have compared indices of pathway activity

between treated samples and matched controls (Figure 1, Step 2)

and between toxic and non-toxic chemicals (Figure 2, Step 2). In

both cases significantly differentially modulated pathways have

been identified by a combination of dimension reduction via

Principal Coordinates with Hotelling’s multivariate extension of

the t-test. Versions of this approach were independently developed

by Kong et al. [28] and Song et al. [29], and made available in the

R Bioconductor package pcot2 [29]. As mentioned in the previous

paragraph, one of the advantages of using PCs is the fact that the

inter-gene correlation structure is incorporated into the process of

dimension reduction. The Hotelling’s T2 procedure, applied to

both pathway components allows this correlation to be included in

the test statistic for each pathway modules [30]. In the first case the

output of the T2 Hotelling’s test has been used as an index of drug

effectiveness to perturb the homeostatic state (Figure 1, Step 2).

Indices have then been used as inputs in a hierarchical clustering

procedure to compare drugs perturbation profiles. In order to

identify which PC most contributes to the separation a univariate

t-test has been applied to the first and second PC separately and

the resulting dendrograms compared (Figure 3). In the second case

the T2 Hotelling’s test has been used to identify pathways that are

differentially modulated between toxic and non-toxic chemicals

(Figure 2, Step 2). The p-values obtained from this test were

corrected for multiple testing using the Benjamini and Hochberg

method [31]. Pathways with an FDRv1% were considered

differentially active between the two experimental groups.

Deriving chemical physical features (PCFs)
PCFs were computed using the Web-based toolset e-dragon

[32]. E-dragon computes 2352 chemical descriptors by integrating

several publicly available methodologies. Only features that could

be computed for all chemicals in the dataset were used leading to a

total of 1515 chemical physical descriptors (Dataset S1).

Linking chemical features to pathway activity
components

In order to link chemical descriptors to a given pathway

component we used a regression model based on the combination

of three chemical descriptors, including interaction components

(Equation 1). More precisely, we define:

PCi,k~ah1zbh2zch3zdh1h2zeh1h3zf h2h3zgzE ð1Þ

Where PCi,k is the principal component i of pathway k. h1, h2 and

h3 are three different given chemical descriptors, a, b, c, d, e, f, g

are model parameters and E is the noise model component. In

order to select an optimal subset of chemical descriptors we have

used a genetic algorithm (GA) based methodology as implemented

in the R package GALGO [33]. We used this random search

procedure to find an optimal sub-set of variables to maximize the

model R2 value. In this application, data where split in training (2/

3 of the samples) and test (1/3 of the samples) sets. The training set

was used as an input to the GA procedure to search for predictive

models. The fitness function was implemented as a linear model

denoted in (1). The fitness value for model selection was set to

R2
w0:5. To estimate the R2 accurately a 5-fold cross validation

procedure was used. The GA procedure was then allowed to run

for 1000 simulations. Pathways for which we could identify

predictive models were considered for further analysis. This

resulted in the identification of 19 pathways linked to PCFs

(Table 2, Table S3 for further details). Figure 5 shows examples of

models found by the GA in which the predicted values using an

optimized model are plotted against the observed PC values for a

given pathway.

Creating and visualizing a KEGG pathway map
In order to visually represent the relationship between the

different KEGG pathways we computed a pathway similarity

matrix based on the Jaccards Index of overlap. This is defined as

the ratio between the numbers of genes shared by any two

pathways (intersection) divided by the number of unique genes in

the two combined pathways (union). The resulting matrix was

used as an input to a hierarchical clustering procedure (average

linkage). The effectiveness of the clustering procedure in

representing the information described by the similarity matrix

has been verified using the cophenetic function correlation fit to

the input overlap matrix (r = 0.9).

Predicting renal tubular degeneration from chemical
descriptors

Different subsets of chemical features were used to develop

multivariate predictors of chemical toxicity using a classis QSAR

methodology. The first subset (92 features) was defined including

descriptors represented in the models predictive of pathway

activity whereas the second subset included all variables not

pathways associated to chemical hits (Wnt Signaling Pathway, Long-Term Depression and ErbB Signaling Pathway) and toxicity (Focal Adhesion, ALS and
Pancreatic Cancer) through shared genes between the pathways. Although each link presents a mechanism of action these were only implied by the
pathway associated to toxicity. Genes found to be up or down regulated have been marked with a red or a blue arrow respectively.
doi:10.1371/journal.pone.0012385.g008
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selected in the predictive models and that were uncorrelated, an

absolute pearson coefficient of less than 0.5, to PCFs from the first

group (210 features). Models were developed using a maximal

likelihood discriminant function coupled to a genetic algorithm for

variable selection using default settings [33]. A forward selection

approach was used to identify the single smallest model, with the

least number of descriptors and with the highest classification

accuracy [33]. Classification accuracy was estimated using a k-

folds cross-validation procedure. Interpretation of the models has

been performed with the help of PCA.

Supporting Information

Figure S1 PC1 and PC2 relationship to toxicity. A) PCA

scatterplot of the chemical space using all genes clustered into

KEGG Pathways. Chemicals marked black or red are nephrotoxic

and non-nephrotoxic respectively. B) Boxplot showing the

separation on the second component between nephrotoxic and

non-nephrotoxic chemicals. A t-test between the two sets has a p-

value ,0.001. C) Dose separation on the PCA plot. Low-dose

chemicals are marked in red, and high-dose chemicals in black.

We observe a diagonal relationship between PC1 and PC2

separating the dose. More specifically, as shown in (a) the toxic

chemicals separate on the 2nd PC. This implies that part of the

non-toxic dose component is summarized in PC1.

Found at: doi:10.1371/journal.pone.0012385.s001 (0.38 MB TIF)

Figure S2 Distribution of interaction components. The figure

shows the distribution of interaction components for the 19

pathways found to be associated to chemical features. It can be

seen that most of the interaction components add more than 50%

towards the resulting model.

Found at: doi:10.1371/journal.pone.0012385.s002 (0.03 MB TIF)

Figure S3 Heatmap of the genes belonging to Amyotrophic

lateral sclerosis (ALS).

Found at: doi:10.1371/journal.pone.0012385.s003 (2.19 MB TIF)

Figure S4 PC2 loadings of the genes belonging to the

Amyotrophic lateral sclerosis (ALS).

Found at: doi:10.1371/journal.pone.0012385.s004 (0.01 MB TIF)

Figure S5 Heatmap of the genes belonging to regulation of actin

cytoskeleton.

Found at: doi:10.1371/journal.pone.0012385.s005 (3.06 MB TIF)

Figure S6 PC2 loadings of the genes belonging to regulation of

actin cytoskeleton.

Found at: doi:10.1371/journal.pone.0012385.s006 (0.02 MB TIF)

Figure S7 Heatmap of the genes belonging to ErbB signaling

pathway.

Found at: doi:10.1371/journal.pone.0012385.s007 (3.51 MB TIF)

Figure S8 PC2 loadings of the genes belonging to ErbB

signaling pathway.

Found at: doi:10.1371/journal.pone.0012385.s008 (0.01 MB TIF)

Figure S9 Heatmap of the genes belonging to focal adhesion.

Found at: doi:10.1371/journal.pone.0012385.s009 (4.23 MB TIF)

Figure S10 PC2 loadings of the genes belonging to focal

adhesion.

Table 2. This table lists the 19 pathways whose activity could be predicted by combinations of PCFs.

KEGG ID Pathway R2 average R2 Feature Type

rno04810 Regulation of actin
cytoskeleton

0.53 0.53 GETAWAY descriptors GETAWAY descriptors ET-state Indices

rno05222 Small cell lung cancer 0.52 0.57 RDF descriptors GSFRAG Descriptor GETAWAY descriptors

rno04310 Wnt signaling pathway 0.53 0.57 GSFRAG Descriptor Information indices GSFRAG Descriptor

rno04540 Gap junction 0.53 0.57 Geometrical descriptors ET-state Indices 3D-MoRSE descriptors

rno04720 Long-term potentiation 0.53 0.57 GETAWAY descriptors Information indices GSFRAG Descriptor

rno04730 Long-term depression 0.53 0.54 RDF descriptors ET-state Indices Geometrical descriptors

rno04912 GnRH signaling pathway 0.52 0.55 GETAWAY descriptors WHIM descriptors WHIM descriptors

rno04916 Melanogenesis 0.52 0.53 3D-MoRSE descriptors Geometrical descriptors ET-state Indices

rno00860 Porphyrin and chlorophyll
metabolism

0.52 0.53 ET-state Indices GSFRAG Descriptor WHIM descriptors

rno00010 Glycolysis/Gluconeogenesis 0.52 0.53 GSFRAG Descriptor GSFRAG Descriptor WHIM descriptors

rno01430 Cell Communication 0.52 0.57 Geometrical descriptors ET-state Indices GETAWAY descriptors

rno04920 Adipocytokine signaling
pathway

0.51 0.53 GSFRAG Descriptor GSFRAG Descriptor 2D autocorrelations

rno04012 ErbB signaling pathway 0.53 0.57 RDF descriptors ET-state Indices Geometrical descriptors

rno05215 Prostate cancer 0.52 0.53 RDF descriptors GSFRAG Descriptor GETAWAY descriptors

rno04664 Fc epsilon RI signaling pathway0.53 0.55 3D-MoRSE descriptors GSFRAG Descriptor 2D autocorrelations

rno05214 Glioma 0.52 0.55 3D-MoRSE descriptors Molecular properties Topological charge
indices

rno05218 Melanoma 0.51 0.59 ET-state Indices 3D-MoRSE descriptors Geometrical descriptors

rno04930 Type II diabetes mellitus 0.53 0.57 WHIM descriptors GSFRAG Descriptor GSFRAG Descriptor

rno00480 Glutathione metabolism 0.51 0.54 Edge adjacency indices Information indices 3D-MoRSE descriptors

For each pathway the average R2 value given the model population, the model with the highest R2 value and the descriptor group features responsible for the
correlation are shown. A detailed table with the features that have been selected for these models can be found in Table S3.
doi:10.1371/journal.pone.0012385.t002
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Found at: doi:10.1371/journal.pone.0012385.s010 (0.02 MB TIF)

Figure S11 Heatmap of the genes belonging to long-term

depression.

Found at: doi:10.1371/journal.pone.0012385.s011 (2.38 MB TIF)

Figure S12 PC2 loadings of the genes belonging to long-term

depression.

Found at: doi:10.1371/journal.pone.0012385.s012 (0.01 MB TIF)

Figure S13 Heatmap of the genes belonging to pancreatic

cancer.

Found at: doi:10.1371/journal.pone.0012385.s013 (3.77 MB TIF)

Figure S14 PC2 loadings of the genes belonging to pancreatic

cancer.

Found at: doi:10.1371/journal.pone.0012385.s014 (0.01 MB TIF)

Figure S15 Heatmap of the genes belonging to Wnt signaling

pathway.

Found at: doi:10.1371/journal.pone.0012385.s015 (3.63 MB TIF)

Figure S16 PC2 loadings of the genes belonging to Wnt

signaling pathway.

Found at: doi:10.1371/journal.pone.0012385.s016 (0.02 MB TIF)

Table S1 Representation of KEGG pathways. This table shows

the KEGG pathways represented in this dataset and their relative

sizes.

Found at: doi:10.1371/journal.pone.0012385.s017 (0.05 MB

XLS)

Table S2 KEGG pathway occurency table. This table shows the

percentage of KEGG pathways found in each high level pathway

category in the KEGG Pathway Database.

Found at: doi:10.1371/journal.pone.0012385.s018 (0.02 MB

XLS)

Table S3 Detailed model description. Here, we show a detailed

description of a model for each pathway with the highest R2 value.

Found at: doi:10.1371/journal.pone.0012385.s019 (0.04 MB

XLS)

Dataset S1 Supplementary dataset.

Found at: doi:10.1371/journal.pone.0012385.s020 (2.01 MB

CSV)
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