
In silico Platform for Prediction of N-, O- and C-Glycosites
in Eukaryotic Protein Sequences
Jagat Singh Chauhan1, Alka Rao2, Gajendra P. S. Raghava1*

1 Bioinformatic Centre, Institute of Microbial Technology, Chandigarh, India, 2 Protein Science and Engineering, Institute of Microbial Technology, Chandigarh, India

Abstract

Glycosylation is one of the most abundant and an important post-translational modification of proteins. Glycosylated
proteins (glycoproteins) are involved in various cellular biological functions like protein folding, cell-cell interactions, cell
recognition and host-pathogen interactions. A large number of eukaryotic glycoproteins also have therapeutic and
potential technology applications. Therefore, characterization and analysis of glycosites (glycosylated residues) in these
proteins is of great interest to biologists. In order to cater these needs a number of in silico tools have been developed over
the years, however, a need to get even better prediction tools remains. Therefore, in this study we have developed a new
webserver GlycoEP for more accurate prediction of N-linked, O-linked and C-linked glycosites in eukaryotic glycoproteins
using two larger datasets, namely, standard and advanced datasets. In case of standard datasets no two glycosylated
proteins are more similar than 40%; advanced datasets are highly non-redundant where no two glycosites’ patterns (as
defined in methods) have more than 60% similarity. Further, based on our results with several algorihtms developed using
different machine-learning techniques, we found Support Vector Machine (SVM) as optimum tool to develop glycosite
prediction models. Accordingly, using our more stringent and non-redundant advanced datasets, the SVM based models
developed in this study achieved a prediction accuracy of 84.26%, 86.87% and 91.43% with corresponding MCC of 0.54, 0.20
and 0.78, for N-, O- and C-linked glycosites, respectively. The best performing models trained on advanced datasets were
then implemented as a user-friendly web server GlycoEP (http://www.imtech.res.in/raghava/glycoep/). Additionally, this
server provides prediction models developed on standard datasets and allows users to scan sequons in input protein
sequences.
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Introduction

Along with DNA and RNA, proteins form the quintessential

molecules of life in a cell. Proteins are the workhorse performing a

variety of jobs inside a cell. There are a number of strategies by

which a protein and its function can be further influenced or fine-

tuned inside a cell. Post-translational modification of proteins is

one of such strategies. Among all such known modifications,

glycosylation is the most abundant post-translational modification

of proteins whereby a carbohydrate moiety termed as glycan

moiety is attached covalently to the peptide backbone of a protein

in different ways to give rise to a glycoprotein glycoconjugate.The

impact of glycosylation on proteins may range from very subtle to

the ones that are crucial for the development, growth, function, or

survival of an organism. Glycoproteins have been implicated in

various biological roles namely, involvement in protein shape/

structure maintenance, protein refolding regulations, plasma

membrane rigidity, enzymatic activities, locomotion, immunoge-

nicity, antigenicity, pathogenecity and most importantly cell

surface properties that are crucial for host- pathogen interactions

and pathogen resistance to host complement killing [1], [2], [3],

[4], [5]. In nature, dedicated enzymes named as glycosyltransfer-

ases (GT) carry out protein glycosylation events in a cell. Based on

the linkage between the amino acid and the sugar, the process of

glycosylation is categorized into five types in eukaryotes: N-linked,

O-linked, C-linked, P-linked and G-linked within which most

common are N- and O-linked glycosylation. GPI (Glycosylpho-

sphatidylinisotol) anchors attachment (G-linked or) and phospho-

glycans linking through the Phosphate of a Phosphoserine (P-

linked) are generally rare.

N-linked glycosylation is characterized by the addition of a

glycan moiety (GlcNAc normally) to a Nitrogen atom, usually the

N4 of Asparagine (Asn) residues by an oligosaccharyltransferase

(OST) that specifically recognizes a consensus sequence (sequon)

Asn-X-Ser/Thr, where X is any amino acid except Proline (Pro)

[6], [7]. The process occurs in endoplasmic reticulum and helps in

protein folding and its trafficking, in eukaryotes.

O-linked glycosylation occurs in the Golgi apparatus following

N-linked glycosylation. Free hydroxyl group containing amino

acid residues that includes Serine (Ser), Threonine (Thr) and to

some extent, hydroxylproline and hydroxylysine are the possible

sites for O-glycan attachment. In comparison to N-linked

glycosylation, the O-linked glycosylation is not yet known to

occur on any consensus sequence in eukaryotes, though presence

of Proline and beta sheet conformation around O-glycosites is

suggested to be favored here [8], [9].

The C-linked glycosylation is comparatively rare event and in

this the glycan is found attached at carbon of the first Tryptophan
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(Trp) residue in the consensus sequence W-X-X-W or W-X-X-C

or W-X-X-F (where X is any amino acid) [10]. As N- and C-linked

glycosylations take place in the Endoplasmic Reticulum and/or

the Golgi apparatus, only extracellular or secreted proteins get

glycosylated in eukaryotes Whereas, both intracellular and

extracellular proteins can get glycosylated by O- linked glycosyl-

ation.

Protein glycosylation in prokaryotes is rather recent knowledge.

In this context, though there are many similarities in prokaryotes

and eukaryotes, protein glycosylation could be substantially

different and/or much more versatile in prokaryotes in terms of

mechanisms and enzymes used, glycans attached, donor acceptor

preferences as well in the presence of novel glycosites (Cysteine-

linked) and sequons [11], [12], [13]. In our recently published

studies, we too had analysed, the experimentally verified glycosites

of prokaryotic glycosites vis-a vis corresponding eukaryotic

glycosites for the sequence/structural contexts around glycosylated

residues to conclude that the two differ significantly (discussed in

the sections Introduction, Results and Figure, S1, S2 and S3 of

reference [12]. The same was highlighted by Dell and co-workers

in the past [13]. Further, it suggests that prediction softwares

should be developed exclusively and independently for prokaryotic

and eukaryotic glycosites. Nonetheless, with more than 70% of

human therapeutic proteins as glycoproteins [14] and expensive,

time consuming process of experimental annotation of glycopro-

teins and glycosites in proteins, better in-silico tools remain

desirable [15].

At present several methods for prediction of glycosites are

available for eukaryotic glycosites but most of these methods have

been developed using more or less identical and highly redundant

datasets. These datasets may also contain (ex. O-glycbase)

prokaryotic glycosites albeit not many. Most of the existing

glycosylation prediction servers cater either one or maximum two

glycosylation-type predictions, at one platform/web-server. For

example prediction of sites with GPI modification has been

addressed in reference [16], prediction of only mucin type of

glycosylation has been made available through NetOglyc [17],

[18] and Oglyc [19]. Similarly, NetNglyc for N-linked prediction

server are widely used in glycosite prediction in mammals and

human proteome [20]. A detailed account of these existing

methods can also be obtained from already published review [21].

Currently only one open access webserver titled EnsembleGly [22]

provides for prediction of N-, O- and C-linked glycosylation at one

place. Another webserver GPP [23] addresses only N and O-

linked glycosites’ prediction. Further the datasets used to develop

these methods were also very small due to limited sequences

availablility at that time. Therefore, in this study we aimed to

develop new and better prediction models for prediction of N-, O-

and C-linked glycosites in eukaryotic protein sequences. In this

study new and a larger dataset of (experimentally verified) 2004

eukaryotic glycoproteins has been created from SWISS-PROT_-

June 2011 release. This dataset was then further improved in to

standard and advanced datasets by redundancy reduction at the

level of protein sequence and subsequently at the level of glycosite

patterns. Using these non-redundant datasets, several algorithms/

models were developed, tested and finally the best performing

models are implemented for open access at web server GlycoEP.

Materials and Methods

Datasets
All datasets used in this study, contain eukaryotic glycoprotein

(and glycosites) only. The primary glycoprotein dataset used in this

study was extracted from SWISS-PROT June 2011 release by

using key name ‘‘GLYCOSYLATION’’ and excluding all

‘‘PROBABLE’’, ‘‘BY SIMILIARITY’’ and ‘‘PREDICTED’’

entries. This primary redundant datasets (1797 N-linked, 193 O-

linked and 14 C-linked proteins) were than subjected to

redundancy reduction of different stringency to derive following

datasets for further study:

Standard and independent datasets. Using CD-Hit pro-

gram with cut-off 40% we got non-redundant standard datasets of

1186 N-, 121 O-, 12 C-linked proteins, where no two proteins are

more similar than 40% at the level of (full-length) protein sequence

(Figure 1). From these protein sequences overlapping patterns of

residue length 21 were generated where glycosylated residue is the

central residue of the pattern (Figure 2). Accordingly, we got total

2604 N-linked glycosites (with corresponding 36420 non-glycosy-

lated/negative N-linked sites), 451 O-linked glycosites (with

corresponding 9952 non-glycosylated/negative sites) and 48 C-

linked glycosites (with corresponding 109 non-glycosylated/nega-

tive sites). These patterns were further divided in two parts at a

ratio of 4:1, in order to create standard and independent (blind/

unseen) datasets. Thus our standard datsets contain 2083 N-linked

glycosites (with corresponding 29136 non-glycosylated/negative

N-linked sites), 361 O-linked glycosites (with corresponding

7960 non-glycosylated/negative sites) and 39 C-linked glycosites

(with corresponding 87 non-glycosylated/negative sites). Similarly,

our independent datasets contain 521 N-linked glycosites (with

corresponding 7284 non-glycosylated/negative N-linked sites),

90 O-linked glycosites (with corresponding 1992 non-glycosylat-

ed/negative sites) and 9 C-linked glycosites (with corresponding

22 non-glycosylated/negative sites).

Advanced datasets. Our standard datasets were generated

from non-redundant proteins in order to minimize similarity

between testing (independent) and training (standard) datasets. As

the similarity was removed at the protein level, redundancy still

was present in 21 residues long overlapping patterns that were

generated from these proteins as explained above as well as in

‘‘Patterns and profile construction’’ section. As to get a robust

prediction, a highly non-redundant dataset is always a pre-

requisite, we further carried out a redundancy reduction at the

pattern level to obtain a highly non-redundant advanced dataset

where no two patterns are more similar than 60% [24]. The

advance datasets thus contains 2454 N-linked, 235 O-linked,

27 C-linked glycosylated/positive patterns with corresponding

non-glycosylated/negative patterns: 24051 for N-linked, 3541 for

O-linked and 78 for C-linked respectively (Table 1). These highly

non-redundant advanced datasets are used for developing

advanced moled for predicted glycosylation (Figure 1).

Machine Learning Tools
In the present study, we have attempted to trainWeka classifiers

namely, SMO, libsvm, Random Forest, LMT, Bayesian network,

naive Bayes and RBF Network as well as SVM. Weka is a widely

accepted machine-learning toolkit in bioinformatics implemented

in Java [25]. The data for Weka is represented in ARFF (attribute-

relation function format) format that consists of a list of all

instances, with the attribute values for each instance being

separated by commas. The results from the Weka consists of a

confusion matrix for both the training and testing set showing the

number of instances of each class that have been assigned to each

class. Similarly, SVM is based on the structural risk minimization

principle from statistical learning theory. In SVM classifier the

parameters and kernel functions like linear, polynomial, radial

basis function, sigmoid can be adjusted easily [26]. In this study,

we have used linear, polynomial and RBF kernel and learning

option 2g (1.0.0.1,0.01,0.001,0.0001,0.00001), 2C parameter

Prediction of N-, O- and C- Glycosites
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(ranges from 1to10) and 2j parameter range from 1to 4 and

observed that RBF kernel performed better than the others. So

finally we have optimized all SVM learning models using RBF

kernel [27].

Patterns and Profile Construction
Overlapping patterns of residue length 21 were generated for

each glycosite (as shown in Figure 2). The patterns thus generated

were termed as positives in cases where central residue is

glycosylated and negatives if the same is unglycosylated [12],

[28], [29]. To generate a pattern corresponding to the terminal

residues in a protein sequence, (L-1)/2 dummy residue "X" is

appended at both the termini of the protein (where L is the length

of pattern).

Binary Profile of Patterns (BPP)
Fixed length amino acid patterns were converted into binary

values [12], [28]. Each residue of patterns was represented by a

vector of dimension 21 (e.g. Ala by

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; Cys by

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), which contains 20 amino

acids and one dummy amino acid "X".

Composition Profile of Patterns (CPP)
Composition profile of patterns is the fraction of each amino

acid in a fixed length sequence pattern. In case of amino acid

composition, variable length protein sequences were represented

by fixed length patterns of 20 residues.

PSSM Profile of Patterns (PPP)
We have also attempted to use PSI-BLAST generated PSSM

profile as an input feature for the training of SVM model. The

PSSM for each sequence was generated by PSI-BLAST search

against of SWISS-PROT. After three iterations with cut-off E-

value of 0.001, it generated a PSSM having the highest score as a

part of the prediction process. The PSSM matrix contains 206M

elements, where M is the length of the target sequence. The PSSM

contains probability of occurrence of each type of amino acid at

each residue position of fixed length sequence patterns.

Secondary Structure Information
Three state secondary structure (Coil, Helix and strand)

information that were obtained using PSIPRED [30] were used

as input in this study. The PSIPRED provided three secondary

structure states for each residue of protein with probability.

Figure 1. Flowchart showing process for creating various datasets used for developing GlycoEP models.
doi:10.1371/journal.pone.0067008.g001

Prediction of N-, O- and C- Glycosites
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Surface Accessibility Information
The accessible surface area (ASA) is the surface area of a protein

that is accessible to another protein or ligand. The predicted

average accessible surface area values of each amino acid were

calculated from sarpred [31].

Based on the understanding that the glycosylation (especially O-

glycosylation) may occur preferentially at surface accessible or

exposed regions/residues in a protein and that it may also be

governed/influenced by certain preferred secondary structural

features like beta sheets or turns/loops, we have attempted to

include two additional prediction features namely, SS (predicted

secondary structure information) and ASA (predicted accessible

surface area) in the overall prediction schema. These features have

been used as input features in different combinations with BPP

and CPP profiles of the sequences and best ones are implemented

as an optional method for the users.

Training and Evaluation
In this study, we have used 5-fold cross-validation procedure to

train and develop the prediction methods, where five subsets have

been constructed randomly from the datasets as described in

previous studies [12], [28], [29]. The models have been trained on

four sets and the performance is measured on the remaining fifth

set. This process is repeated five times in such a way that each set is

used once for testing. The final performance is obtained by

averaging the performances of all five sets. Standard deviations for

iterative five fold training cycles are calculated and reported with

corresponding avergae performance of each method for better

judgement on performance stability of the method.

Figure 2. The process of creating of overlapping patterns in a glycoproteins and assigning glycosylated and non-glycosylated
patterns.
doi:10.1371/journal.pone.0067008.g002

Table 1. Non-redundant glycosylated and non-glycosylated (positive+negative) patterns at different level of similarity cut-off.

Redundancy cut-off Number of total patterns (glycosylated plus non-glycosylated)

N-linked (Positive+Negative) O-linked (Positive+Negative) C-linked (Positive +Negative)

Standard dataset 39024 = (2604+36420) 10403 = (451+9952) 157 = (48+109)

100% 39019 = (2604+36415) 10371 = (451+9920) 157 = (48+109)

90% 35293 = (2588+32705 7314 = (339+6975) 150 = (48+102)

80% 32245 = (2549+29696) 5669 = (289+5380) 116 = (32+84)

70% 29376 = (2506+26870) 4566 = (258+4308) 106 = (27+79)

60% 26505 = (2454+24051) 3776 = (235+3541) 105 = (27+78)

50% 23076 = (2361+20715) 3234 = (214+3020) 99 = (23+7)

40% 10102 = (1599+8503) 2390 = (174+2216) 90 = (16+74)

doi:10.1371/journal.pone.0067008.t001

Prediction of N-, O- and C- Glycosites

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e67008



The performances of the different methods have been evaluated

using parameters namely, sensitivity, specificity, accuracy and

MCC (threshold- dependent parameters). Threshold selection is

important criteria for checking the consistency of prediction result.

In our study, the threshold varied in the range of –1 to +1,

normally ‘‘00 was selected as as default threshold that gave balance

between sensitivity and specificity. Receiver Operating Charac-

teristic (ROC, using R-package at http://www.r-project.org/)

plots (threshold- independent parameter) were drawn between TP

rate and FP rate and Area under Curve (AUC values) is calculated,

accordingly.

Results and Discussion

Probability of Amino Acids Around Glycosites
In order to decipher the significant patterns the probability/

frequency of specific amino acid residues in and around a glycosite

can be derived from weblogos using glycosylated patterns of fixed

sequence length. Requirement of a consensus sequence comprising

of a tripeptide motif N-X-S/T (where X is any amino acid except

Pro) is well established for N-linked glycosylation. Similarly, for C-

linked glycosylation a known consensus sequence is W-X-X-W or

W-X-X-C or W-X-X-F (where X is any amino acid). However, in

case of O-linked glycosites no such defined sequence has thus far

been identified in eukaryotic glycoproteins.

The amino acid frequency weblogos for sequences encompass-

ing ten residues on either sides of eukaryotic glycosites in our

dataset of 2604 N-linked glycosites (derived from 1186 glycopro-

teins) suggests that above mentioned consensus sequences are

almost always true in case of N-linked and C-linked glycosites.

However, exceptions some of which are reported previously are

listed in Table S1 where an N-P-S/T, N-X-C and such other rare

sequence motifs are found glycosylated at Asn residue. Similarly,

weblogos developed from 456 O-linked glycosites (derived from

121 eukaryotic glycoproteins) are also in accordance with known

preponderance of Ser and Ala (Alanine) residues around O-

glycosites of eukaryotic (mucin type) glycoproteins. Preference for

Pro at positions 23, +3 and +1 around glycosylated Ser/Thr (if at

position 0) was also observed in our datasets. Additionally, we

observed higher frequency of Pro at 26 positions and Gly

(Glycine) at +1 position in proteins that are glycosylated at Thr

residues (Figure S1, S2, S3). Besides this first we have analysed few

glycoproteins to check motif based detection of glycosylated sites in

N-linked sequon and we observed that sequon (motif) is easily

detected by our method (Table 2).

Spread of Glycosites Across Protein Lengths
Analysis of 2604 N-linked glycosites in eukaryotic glycoproteins

suggest that N-linked glycosites are spread out across the protein

sequence length and the probability of N-linked glycosylation was

observed poorest in first 5% (N terminal) of sequence length and

last 30% of sequence length toward C terminus of protein. Similar

analysis of spread of glycosites across O-linked glycoproteins

suggested that the most likely position of O-linked glycosylation in

eukaryotic glycoproteins is at around N terminal 6–10% of the

sequence length followed by another high probability region at

around middle 46–50% of the sequence length (Figure S4).

Comparision of Performance of Weka and SVM Classifiers
Using balanced Unique Glycoprotein datasets we have trained

several Weka classifiers (as explained above) as well as SVM

classifier for the prediction of N-, O- and C- glycosites in

eukaryotic protein sequences. The performances of these classifiers

using five fold cross validation, were then compared with each

other. The detailed results are presented in Table S2, S3, S4, S5,

S6, S7, S8, S9, S10. From this comparision, we found overall

performance of SVM classifier the best among all tried classifiers,

in our hands. Therefore, the further optimization were pursued

only with SVM classifier.

Prediction of Glycosites Using SVM on Standard Datasets
Almost all well-known and existing glycosite prediction methods

have been developed using only sequence based non-redundant

datasets (standard datasets). Therefore, we first developed our

models using standard datasets for predicting N- O- and C-linked

glycosites and then have compared them with some of these

already known prediction programmes (discussed below). Using

our models for N- and C-linked glycosites a prediction accuracy of

87.95% and 91.08% was achieved with corresponding MCC of

0.54, and 0.79, respectively and with BPP as input feature.

However, O-glycosites’ prediction was best done using CPP based

models, where the models achieved an accuracy of 84.08% and an

MCC of 0.32. Further inclusion of ASA as an additional input

feature with CPP improved O-glycosites’ prediction to an

accuracy of 93.12% though the same could not be achieved for

N- and C-glycosites (Table S11, S12 S13). Presence of a defined

and conserved sequon feature for N-glycosites (but none for O-

glycosites) could be one explanation for this result. The ROC plots

of the best optimized prediction model using standard datasets are

presented in Figure 3. Further, as in most functional residues

prediction method there is always a dissimilarity in the ratio of

positive and negative instances of the training data, where negative

instances are usually much higher than the positive instances.

Therefore, in this study we have primarily trained all our methods

using such standard datasets (explained under section Datasets). It

is well known fact that machine learning techniques learn best on

balanced datasets, thus we also trained and tested our models

using the balanced datasets containing equal number of glycosy-

Table 2. The performance of sequon (motifs) detection in N-linked glycosylation using five independent glycoproteins on GlycoEP
server.

Glycoprotein IDs
Total Asparagine residues
in whole sequnec

Total detection of N-linked sequon
in sequence (NXS/T) Actual N-linked sequon

P28825 41 10 9

P81447 8 1 1

P06756 50 13 4

P31809 47 16 8

P01833 39 7 7

doi:10.1371/journal.pone.0067008.t002

Prediction of N-, O- and C- Glycosites
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lated (positive) and unglycosylated (negative) sites. The perfor-

mances of these models trained on balanced datasets is shown in

following Table S14, S15, S16. In our study, performances of

models trained on standard datasets is at par with the performance

obtained with related balanced datasets.

Development and Implementation of Advanced Models
Specificity in glycosylation event is largely governed by the

specific sequon/sequence motifs/sequence contexts/sequence

patterns. Therefore, we have developed advanced models using

a dataset where high redundancy reduction has been executed in

the glycosite patterns (sequence windows) to obtain a non-

redundant advanced datasets (though smaller than standard

dataset) for better class divide between negative and positive

patterns. The advantages of this approach has been discussed

previously in [24] and the approach has been employed

successfully in improving prediction of PTM’s associated with

lysine residue in proteins [32]. We developed SVM models on

advanced datasets and achieved maximum accuracy value

84.24%, 86.87% and 91.43% for N-, O- and C-linked glycosyl-

ation, respectively (with corresponding maximum MCC values of

0.54, 0.20 and 0.78). We have also developed SVM model using

balanced patterns of advanced datasets for N-, O- and C-linked

glycosylation and achieved maximum accuracy of 92.26%,

62.77% and 79.82% with MCC of 0.85, 0.27 and 0.66,

respectively. We term these models as Advanced GlycoEP models

for these provide biologically more meaningful and also robust

predictions in comparision with standard models and other similar

methods discussed above. It was observed that the performances of

these advanced models is comparable to standard models (models

developed at standard datasets) for N-glycosites’ prediction. This

could possibly be explained in conservation of N-glycosite sequon

and its strong influence on class divide. However, the predictions

of O- and C-glycosites apppeared slightly poor with Advanced

GlycoEP models than the performances seen with models trained

on standard datasets (Table 3). This can easily be understood in

over-optimization of (standard) GlycoEP models for its high

similarity and redundancy in overlapping pattern datasets

especially for O- and C-glycosites’s standard datasets where as

high as 50% of the patterns used in training sets are more similar

than 60% (Table 1). Further, decreased size of advanced training

datasets post redundancy-reduction at the level of glycosite

patterns (almost 50% decrease in the total number of glycosites

in standard datasets for O- and C- glycosites, respectively) also

contributed in lowering the measured performance of advanced

models. However, advanced GlycoEP models are infact more

stringently trained on highly non-redundant datasets and there-

fore, are more robust than standard models in prediction of

glycosites. Particularly for the prediction of O- and C- glycosites,

advanced models are the most (and probably the only) useful

models as advanced datasets employed in training are highly non-

redundant therefore, superior to corresponding standard datsets.

Further, as advanced GlycoEP models don’t suffer from over-

optimization, therefore reports more meaningful. These models

have been trained, tested and evaluated using five fold cross

validation technique.

Performance of Standard Models on Independent
Datasets

As discussed in [32], the separation of independent (blind/

testing) datasets from training data is an important consideration

for better PTM predictions. Therefore, as an additional evaluation

measure, we sub-divided entire sequence based non-redundant

dataset randomly in to standard datasets (trainset) and corre-

sponding independent datasets (blind-test-set: where none of the

proteins in independent dataset was used for training dataset).

Details and number of glycosites included in each of these

independent datasets are listed in Table 4. Finally we have

checked performances of standard models on independent

datasets. From the results we found and concluded that the

performance of our models is equally well on independent datasets

(Table 4).

Comparison of Standard Models with Existing Methods
As discussed in Introduction section, a good number of

computational methods are available for prediction of potential

glycosites in eukaryotes. In these, methods like NetOGlyc,

EnsembleGly and GPP, have been developed using same

glycoprotein datasets as described in previous study, especially

for mucin linked O-glycosites prediction [33]. These datasets are

not only small but redundant. Our prediction methods have been

developed to predict glycosites in similar fashion as in existing

approaches, but we have employed larger and a non-redundant

datasets that has led to better performances of our models. Among

existing methods NetOglyc and NetNglyc are most widely used in

prediction of O-linked and N-linked glycosylation, respectively.

Figure 3. Performances of various models on standard datasets in term of ROC, for N-, O- and C-linked glycosites (Panel A, B and C,
respectively) in eukaryotic proteins.
doi:10.1371/journal.pone.0067008.g003

Prediction of N-, O- and C- Glycosites
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We have compared prediction results of our best performing SVM

models using sequence based non-redundant datasets (standard

model) with NetOglyc, NetNglyc, EnsembleGly and Glycosylation

Prediction Program (GPP) according to existing comparison

approaches. For this comparision purposes we have used the

same dataset of 216 glycoproteins as test set that was employed in

development of the above-mentioned methods. Standard SVM

Models (GlycoEP) developed by us performed better than these

programmes and achieved 95.67%, 91.89% and 85.71% accuracy

for N-, O- and C-linked glycosite predictions, respectively. Our

SVM models could predict Ser and Thr (O-linked glycosylation)

with 93.50% and 91.06% accuracy, respectively (Table 5),

suggesting an overall better prediction performances of standard

GlcoyEP models as well as their applicability to eukaryotic

glycosite analysis. In this study, we have compared existing

methods with our standard datasets because all existing methods

used sequence based non-redundant datasets (standard datasets).

Our advanced datasets results are also comparable with these

results.

However, as we have discussed already the standard dataset

though would qualify as non-redundant dataset at the level of full-

length protein sequences, it does carry significant similarity at the

overlapping pattern level (Table 1). This may contribute towards

certain amount of overprediction in any training method. It would

also mean that for a more robust prediction it is desirable to

develop methods on a dataset where patterns in training set are

highly non-redundant. Therefore, we have developed another set

of non-redundant datasets termed advanced datasets as defined

already and have developed advanced models using the same.

N-glycosite Prediction Performance of SVM Using N-
linked Sequon as a Feature

In general, all existing glycosites’ prediction algorithms are

based on the assumption that either the sequence or structural or

both contexts around N-glycosylated Asn (present in the sequon

N-X-S/T, where X could be any residue but not proline) are

different from the non-glycosylated Asn residues in a given

glycoprotein sequence. Therefore, most algorithms including

GlycoEP have been trained on the datasets where the positive

datasets contain N-X-S/T as positive pattern and negative

datasets contain any non glycosylated Asn (including the one

which is residing within N-X-S/T sequon but not known to be

glycosylated). We, in this study have attempted to exploit the

contextual difference around glycosylated sequon (as defined

above) versus non-glycosylated sequon datasets composed of

sequon containing patterns only. However, our algorithms trained

on these datasets could not indicate any further improvement in

the prediction results. The purpose of improving class divide might

have been defeated here if significant number of yet unidentified

(experimentally) but positive glycosites patterns are present in

negative datasets. To conclude, the approach where sequons are

used only in positive dataset is found better than using it in both

positive and negative datasets. The result are presented in Table

S17.

Discussion and Conclusions

For the increased association of glycosylation and phenomenon

of pathogenesis/cancer/and other immunity disorders in human

[1], [2], [3], [4], [5], the research is growing fast in the field of

glycoproteomics. The tools available so far for the prediction of

glycosites/residues in a given protein sequence are all based on a

small and redundant datasets, highest being a dataset of 216

glycoproteins for the prediction of O-linked glycosites. In this

study, we have used the largest and the recent dataset of eukaryotic

glycoproteins for the analysis and development of a comprehensive

prediction server for eukaryotic glycosites. We have trained SVM

classifier and seven WEKA classifiers using balanced datasets and

have found SVM performing significantly better (Table S2, S3, S4,

S5, S6, S7, S8, S9, S10). The models developed using SVM as a

learning tool, could provide significantly enhanced performance

for prediction of N-, O- and C- glycosites in eukaryotes.

Additionally, we have employed secondary structure and surface

accessiblility of residues as an add-on input features in all

Table 3. The performance of models developed on advanced datasets for predicting N-linked, O-linked and C-linked glycosites.

Datasets Type Sensitivity Specificity Accuracy MCC AUC

Advanced datasets N-linked 98.1660.54 82.8260.58 84.2460.49 0.5460.001 0.9360.001

O-linked 35.7566.28 90.2660.79 86.8760.86 0.2060.05 0.7160.02

C-linked 70.6768.94 93.5962.98 91.4363.999 0.7860.1 0.9260.08

Advanced datasets
(Balanced patterns)

N-linked 98.2560.53 86.2761.02 92.2660.42 0.8560.01 0.92960.001

O-linked 63.469.57 62.13617.31 62.7765.48 0.2760.13 0.6960.08

C-linked 82.67616.73 80636.13 79.82614.77 0.6660.22 0.9160.09

As well as performance on balanced patterns of advanced datasets (results with standard deviation of five fold).
doi:10.1371/journal.pone.0067008.t003

Table 4. The performance of models on an independent datasets, these models were developed on standard datasets.

Types No. of patterns Sensitivity Specificity Accuracy MCC AUC

N-linked 521 96.93 88.87 92.90 0.86 0.935

O-linked 90 72.22 74.44 73.33 0.47 0.783

C-linked 9 100.00 88.89 94.44 0.89 1.000

doi:10.1371/journal.pone.0067008.t004
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prediction schemes. Such structural features/context considerations

are yet not employed by GPP, EnsembleGly and NetNglyc. The

inclusion of ASA indeed, could improve the O-glycosite prediction in

general and in all our O-glycosite prediction methods. The overall

performance was found better in comparision to the performance of

EnsembleGly and NetOglyc. These SVM models provided satisfac-

tory prediction with standard as well advanced datasets. The

optimized standard GlycoEP (SVM) models were then compared

with four of the best known methods/servers namely, NetNglyc,

EnsembleGly, GPP for N-glycosite prediction, NetOglyc, Ensem-

bleGly, GPP for O-glycosite prediction and EnsembleGly for C-

glycosite predictions, respectively. The N- and C-glycosite prediction

models developed in this study performed better than the all others,

wheras O-glycosite prediction was better than the performance of

NetOGlyc and EnsembleGly only. However, as expected the

redundancy reduction achieved at full-length protein sequence

doesn’t result in equivalent redundancy reduction at pattern level

(that are used for training the machine tools) implying that the

models developed from such data would suffer over-optimization

hence over reporting of the performances. Therefore, to address

over-optimization and further improve the existing glycosites’

prediction approach we have generated advanced datasets as

defined above and have developed advanced glycosite prediction

models for N-, O- and C-linked glycosites, respectively. From our

results we finally conclude that advanced models are the most

strigently trained and more robust than standard models. Further,

due to high redundancy in standard datasets of O- and C- glycosites

(at pattern level) we understand that advanced model are the only

useful models for prediction of O- and C- glycosites and one of the

best available for O- and C- glycosites’ prediction. Finally, we have

implemented these models at GlycoEP webserver described next.

Apart from this, in our N-glycosite dataset of 2604 glycosites we have

found exceptions (that we have listed in Table S1) for the universal

consensus sequon for N–linked glycosylation (N-X-S/T where X

could be any amino acid but not Pro). In order to facilitate easy

visualisation of sequons including these rare sequons, we have

developed an additional tool named Sequon Scanner. Sequon

scanner can scan one or more input sequence for the presence of

sequons listed in Table S1 and highlight them in Bold and red

colour. In conclusion, in this study we have developed SVM models

using patterns based non-redundant datasets for prediction of N-, O-

and C-linked glycosylation Further, this study facilitates all three

types of prediction at one platform with an option to use standard

and/or advanced GlycoEP methods. Additional tool Sequon

scanner is provided on the same server.

Description of Web-Server

The prediction methods described in this paper are implemented

in the form of a web-server GlycoEP. The common gateway interface

script of GlycoEP is written using CGI/PERL script. This server

allows users to predict glycosites in a protein from its amino acid

sequence. GlycoEP server allows submission of multiple sequences for

prediction. The web server "GlycoEP" is available at http://www.

imtech.res.in/raghava/glycoep in an open access mode.

Supporting Information

Figure S1 Analysis of Amino acid frequency around
consensus sequence for N-glycosites in eukaryotic
glycoproteins from 210 to +10 sequence length.
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Figure S2 Analysis of Amino acid frequency around
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consensus sequence for O-glycosites (Thr) in eukaryotic
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Table 5. Comparative performances of existing method with our model developed on standard datasets.

Glycosites Methods Sensitivity Specificity Accuracy MCC

N-linked GlycoEP 97.64 93.70 95.67 0.91

GPP1 96.6 91.8 92.8 0.85

EnsembleGly2 98.0 77.0 95.0 0.84

NetNglyc3 43.9 95.7 76.7 0.49

O-linked
(Overall)

GlycoEP 89.37 88.82 91.89 0.83

GPP1 94.9 90.7 91.4 0.83

EnsembleGly2 59.0 68.0 89.0 0.64

NetOglyc4 76.0 92.8 88.6 0.66

O-linked (Ser) GlycoEP 87.86 92.48 93.50 0.82

GPP1 96.1 88.9 90.8 0.81

NetOglyc4 66.7 95.3 91.8 0.62

O-linked (Thr) GlycoEP 86.14 95.97 91.06 0.83

GPP1 93.6 92.4 92.0 0.84

NetOglyc4 81.5 89.5 84.9 0.67

C-linked GlycoEP 89.80 81.63 85.71 0.72

EnsembleGly2 79.0 77.0 83.0 0.63

Note: GlycoEP -http://www.imtech.res.in/raghava/glycoep/, 1- http://www.comp.chem.nottingham.ac.uk/glyco/, 2- http://www.turing.cs.iastate.edu/EnsembleGly/, 3-
http://www.cbs.dtu.dk/services/NetNGlyc/, 4- http://www.cbs.dtu.dk/services/NetOGlyc.
doi:10.1371/journal.pone.0067008.t005
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