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Abstract

We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller
processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most
frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion
is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest
the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes.
These include Lévy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many
properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable
framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to
overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.
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Introduction

The paper is written especially for practitioners and applied

scientists. It is based on two recent papers in stochastic analysis

[1,2]. We will start with a survey of applications of Feller processes.

Thereafter we recall some existence and approximation results. In

the last part of the introduction we give the necessary definitions.

The main part of the paper contains a simple existence result for

Feller processes and a description of the general simulation

scheme. These results will be followed by several examples.

The source code for the simulations can be found as supporting

information (Appendix S1).

Motivation
Brownian motion and more general Lévy processes are used as

models in many areas: For example in medicine to model the

spreading of diseases [3], in genetics in connection with the

maximal segmental score [4], in biology for the movement

patterns of various animals (cf. [5] and the references therein), for

various phenomena in physics [6] and in financial mathematics

[7]. In these models the spatial homogeneity is often assumed for

simplicity, but empirical data or theoretical considerations suggest

that the underlying process is actually state space dependent. Thus

Feller processes would serve as more realistic models. We give

some explicit examples:

N In hydrology stable processes are used as models for the

movement of particles in contaminated ground water. It has

been shown that state space dependent models provide a better

fit to empirical data [8,9]. Also on an intuitive level it seems

natural that different kinds of soils have different properties.

Thus the movement of a particle should depend on its current

position, i.e. the soil it is currently in.

N In geology also stable processes are used in models for the

temperature change. Based on ice-core data the temperatures in

the last-glacial and Holocene periods are recorded. Statistical

analysis showed that the temperature change in the last-glacial

periods is stable with index 1.75 and in the Holocene periods it is

Gaussian, i.e. stable with index 2 (see Fig. 4 in [10]).

N For a technical example from physics note that the fluctuations

of the ion saturation current measured by Langmuir probes in

the edge plasma of the Uragan-3M stellarator-torsatron are

alpha-stable and the alpha depends on the distance from the

plasma boundary [11].

N Anomalous diffusive behavior has been observed in various

physical systems and a standard model for this behavior are

continuous time random walks (CTRWs) [12,13]. To study

these systems the limiting particle distribution is a major tool,

which is in fact a Feller process [14].

N In mathematical finance the idea of extending Lévy processes

to Lévy-like Feller processes was first introduced in [15]. The

proposed procedure is simple: A given Lévy model usually uses

a parameter dependent class of Lévy processes. Now one

makes the parameters of the Lévy process (in its characteristic

exponent) price-dependent, i.e. the increment of the process

shall depend on the current price. This procedure is applicable

to every class of Lévy processes, but the existence has to be

shown for each class separately [15–17].

Thus there is plenty of evidence that Feller processes can be

used as suitable models for real-world phenomena.

Existence and Approximation
Up to now general Feller processes were not very popular in

applications. This might be due to the fact that the existence and

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15102



construction of Feller processes is a major problem. There are

many approaches: Using the Hille-Yosida theorem and Kolmo-

gorov’s construction [18,19], solving the associated evolution

equation (Kolmogorov’s backwards equation) [20–23], proving the

well-posedness of the martingale problem [16,19,24], solving a

stochastic differential equation [25–27]. The conditions for these

constructions are usually quite technical. Nevertheless, let us stress

that the proof of the very existence is crucial for the use of Feller

processes. Some explicit examples to illustrate this will be given at

the end of the next section.

Our construction will not yield processes as general as the

previous ones, but it will still provide a rich class of examples. In fact

the presented method is just a simple consequence of a recent result

on the solutions to certain stochastic differential equations [2].

Furthermore each of the above mentioned methods also

provides an approximation to the constructed Feller process.

Most of them are not usable for simulations or work only under

technical conditions. Also further general approximation schemes

exist, for example the Markov chain approximation in [28]. But

also the latter is not useful for simulations, since the explicit

distribution of the increments of the chain is unknown.

In contrast to these we derived in [1] a very general

approximation scheme for Feller processes which is also usable

for simulations. We will present here this method for practitioners.

Lévy processes and Feller processes
Within different fields the terms Lévy process and Feller process are

sometimes used for different objects. Thus we will clarify our

notion by giving precise definitions and mentioning some of the

common uses of these terms.

A stochastic process is a family of random variables indexed by

a time parameter t [ ½0,?) on a probability space (V,F ,P). For

simplicity we concentrate on one-dimensional processes. The

expectation with respect to the measure P will be denoted by E.

Although this will not appear explicitly in the sequel, a process

will always be equipped with its so-called natural filtration, which

is a formal way of taking into account all the information related to

the history of the process. Technically the filtration, which is an

increasing family of sigma fields indexed by time, is important

since a change from the natural filtration to another filtration

might alter the properties of the process dramatically.

A Lévy process starting in L0 : ~0 is a stochastic process

(Lt)t [ ½0,?) with

- independent increments: The random variables Lt1
,Lt2

{Lt1
,

Lt3
{Lt2

, . . . are independent for every increasing sequence

(tn)n [ N,

- stationary increments: Lt{Ls has the same distribution as

Lt{s for all svt,

- càdlàg paths: Almost every sample path is a right continuous

function with left limits.

For equivalent definitions and a comprehensive mathematical

treatment of Lévy processes and their properties see [29].

Note that the term Lévy flight often refers to a process which is a

continuous time random walk (CTRW) with spatial increments

from a one-sided or two-sided stable distribution (the former is also

called Lévy distribution). In our notion the processes associated

with these increments are Lévy processes which are called stable

subordinator and stable process, respectively.

A Lévy process (Lt)t [ ½0,?) on its probability space is completely

characterized by its Lévy exponent j.y(j) calculated via the

characteristic function

E(eijLt )~e{ty(j):

The most popular Lévy process is Brownian motion

(y(j)~
1

2
jjj2), which has the special property that almost every

sample path is continuous. In general, Lévy processes have

discontinuous sample paths, some examples with their corre-

sponding exponents are the Poisson process (y(j)~eij{1), the

symmetric a-stable process (y(j)~jjja with a [ (0,2�), the Gamma

process (y(j)~ln(1zij)) and the normal inverse Gaussian

process (y(j)~{imjzd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{(bzij)2

q
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{b2

q� �
with

0ƒjbjva, dw0, m [R).

Classes of Lévy exponents depend, especially in modeling, on

some parameters. Thus one can easily construct a family of Lévy

processes by replacing these parameters by state space dependent

functions. Another approach to construct families of Lévy

processes is to introduce a state space dependent mixing of some

given Lévy processes. We will elaborate this in the next section.

Given a family of Lévy processes L
xð Þ

t

� �
t [ ½0,?)

� �
x [R

, i.e. given

a family of characteristic exponents (yx)x [R, we can construct for

fixed x0 [R, T [ ½0,?), n [N a Markov chain as follows:

1. The chain starts at time 0 in x0.

2. The first step is at time
1

n
and it is distributed as L

x0ð Þ
1
n

. The

chain reaches some point x1.

3. The second step is at time
2

n
and it is distributed as L

x1ð Þ
1
n

. The

chain reaches some point x2.

4. The third step is at time
3

n
and it is distributed as L

x2ð Þ
1
n

. The

chain reaches some point x3.

5. etc. until time T .

This Markov chain is spatially inhomogeneous since the

distribution of the next step always depends on the current

position. If the chain converges (in distribution for n?? and

every fixed T [ ½0,?)) then the limit is - under very mild

conditions (see [30] and also Theorem 2.5 by [31]) - a Feller

process. Formally, a Feller process is a stochastic process

(Xt)t [ ½0,?) such that the operators

Ttf (x) : ~E(f (Xt)jX0~x), t [ ½0,?), x [R

satisfy

T0~id, Ts0Tt~Tszt (s,t§0) (semigroup property)

and

lim
t?0

sup
x [R

jTtf (x){f (x)j~0 (strong continuity)

for all f which are continuous and vanish at infinity.

A Feller processes is sometimes also called: Lévy-type process,

jump-diffusion, process generated by a pseudo-differential opera-

tor, process with a Lévy generator or process with a Lévy-type

operator as generator. Note that in mathematical finance often the

Cox-Ingersoll-Ross process [32] is called the Feller process, but in our

notion this is a Feller diffusion in the sense of [33]. For a

comprehensive mathematical treatment of Feller processes and

their properties see [18].

Feller Processes: The Next Generation in Modeling
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The generator A of a Feller process is defined via

lim
t?0

sup
x [R

Af (x){
Ttf xð Þ{f xð Þ

t

����
����~0

for all f such that the limit exists. Moreover, if the limit exists for

arbitrarily often differentiable functions with compact support

then the operator A has on these functions the representation

Af (x)~{

ð
R

eixj yx(j)

ð
R

(2p){1e{iyjf (y)dy dj,

where for each fixed x [R the function j.yx(j) is a Lévy

exponent. Thus a family of Lévy processes with Lévy exponents

(yx)x [R corresponds to the Feller process (Xt)t [ ½0,?) with

generator A as above.

If the corresponding family of Lévy processes is a subset of a

named class of Lévy processes, one calls the Feller process also by

the name of the class and adds -like or -type to it. Thus for example

a Feller process corresponding to a class of symmetric stable

processes is called symmetric stable-like process.

In general, as mentioned in the previous section, the

construction of a Feller process corresponding to a given family

of Lévy processes is very complicated. It even might be impossible

as the following examples show: Let L
xð Þ

t

� �
t§0

be the family of

Lévy processes with characteristic exponents yx(j)~{ia(x)j, i.e.

the Lévy processes have deterministic paths L
xð Þ

t ~a xð Þt. Now if

a(x)~x a corresponding Feller process exists, starting in x it has

the path Xt~xet. But for a(x)~x2 and a(x)~sgn(x)
ffiffiffi
x
p

a

corresponding Feller process does not exist, a(x)~x2 yields paths

which do not tend to negative infinity as x?{? and

a(x)~sgn xð Þ
ffiffiffi
x
p

yields paths which are not continuous with

respect to the starting position.

However, we will present in the next section a very simple

method to construct Feller processes.

Results and Discussion

Construction of Feller processes by mixing Lévy
processes

Suppose we know (for example based on an empirical study)

that the process we want to model behaves like a Lévy pro-

cess L
1ð Þ

t

� �
t§0

in a region K1 and like a different Lévy process

L
2ð Þ

t

� �
t§0

in a region K2. Then we know that a Feller process

which models this behavior exists by the following result:
Theorem. If the sets K1, K2 are uniformly separated, i.e.

there exists an ew0 such that

inf
x [K1, y [K2

Ex{yEwe

hen there exists a Feller process (Xt)t§0 which behaves like L 1ð Þ on

K1 and like L 2ð Þ on K2.
Proof. Let y ið Þ be the characteristic exponent of L

ið Þ
t

� �
t§0

for

i~1,2. Under the above condition there exist non-negative

bounded and Lipschitz continuous functions a 1ð Þ and a 2ð Þ such that

a 1ð Þ(x)~1 for all x [K1 and a 1ð Þ(x)~0 for all x [K2,

a 2ð Þ(x)~0 for all x [K1 and a 2ð Þ(x)~1 for all x [K2:

Now set for j1,j2,x [R

y
j1

j2

� �
: ~y 1ð Þ(j1)zy 2ð Þ(j2), W(x) : ~

a 1ð Þ xð Þ
a 2ð Þ xð Þ

 !T

[R1|2

and note that for x,j [R

y(WT(x)j)~y(1) a 1ð Þ xð Þj
� �

zy 2ð Þ a 2ð Þ xð Þj
� �

holds. Thus corresponding to the family of Lévy processes defined

by the Lévy exponents

yx(j) : ~y 1ð Þ a 1ð Þ xð Þj
� �

zy 2ð Þ a 2ð Þ xð Þj
� �

~y Wt xð Þjð Þ

there exists a Feller process as a consequence of Corollary 5.2 from

[2] and yx(j)~y(i)(j) for x [Ki holds (i~1,2), i.e. (Xt)t§0

behaves like L ið Þ on Ki for i~1,2.

Note that the theorem extends to any finite number of Lévy

processes L
ið Þ

t

� �
t§0

(i~1,::,n) with corresponding regions Ki.

More generally for any finite number of independent Lévy

processes L
ið Þ

t

� �
t§0

(i~1,::,n) with corresponding characteristic

exponents y ið Þ and non-negative bounded and Lipschitz contin-

uous functions x.a ið Þ xð Þ the family (yx)x [R with

yx(j) : ~y 1ð Þ a 1ð Þ xð Þj
� �

zy 2ð Þ a 2ð Þ xð Þj
� �

z. . .zy nð Þ a nð Þ xð Þj
� �

defines a family of Lévy processes ~LL
xð Þ

t

� �
t§0

� �
x [R

and there

exists a corresponding Feller process (Xt)t§0.

To avoid pathological cases one should assume

a 1ð Þ xð Þza 2ð Þ(x)z . . . za nð Þ(x)w0 for all x. Further note that

the following equality in distribution holds for all x and t

~LL(x)
t ~

d
a(1)(x)L

(1)
t za(2)(x)L

(2)
t z . . . za(n)(x)L

(n)
t :

Thus if one knows how to simulate increments of the L
ið Þ

t one

can also simulate increments of ~LL(x)
t . We will see in the next section

that simulation of increments of the corresponding family of Lévy

processes is the key to the simulation of the Feller process.

Simulation of Feller processes
Given a Feller process (Xt)t [ ½0,?) with corresponding family of

Lévy processes L
xð Þ

t

� �
t [ ½0,?)

� �
x [R

we can use the following

scheme to approximate the sample path of Xt:

1. Select a starting point x0, the time interval ½0,T � and the time-

step size h.

2. The first point of the sample path is x~x0 at time t~0.

3. Draw a random number z from the distribution of L
(x)
h (x is the

current position of the sample path).

4. The next point of the sample path is x > x + z at time t > t + h.

5. Repeat 3. and 4. until t [ T{h,Tð �.

Feller Processes: The Next Generation in Modeling
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The simulated path is an approximation of the sample path of

the Feller process, in the sense that for h?0 it converges toward

the sample path of the Feller process on ½0,T �. To be precise, for

the convergence the Feller process has to be unique for its

generator restricted to the test functions and the family of Lévy

processes L
(x)
t has to satisfy some mild condition on the x-

dependence: The Lévy exponent yx(j) has to be bounded by

some constant times 1zjjj2 uniformly in x, see [1] for further

details. This condition is satisfied for many common examples of

Feller processes, in particular for the processes constructed in the

previous section.

The reader familiar with the Euler scheme for Brownian or

Lévy-driven stochastic differential equations (SDEs) will note that

the approximation looks like an Euler scheme for an SDE. In fact

it is an Euler scheme, but the corresponding SDE does not have

such a nice form as for example the Lévy-driven SDEs discussed in

[34]. This is due to the fact that in their case for a particular

increment all jumps of the driving term are transformed in the

same manner, but in the general Feller case the transformation of

each jump can depend explicitly on the jump size. More details on

the relation of this scheme to an Euler scheme can be found in a

forthcoming paper [35].

Examples
We will now present some examples of Feller processes together

with simulations of their sample paths. The first example will show

the generality of the mixture approach, the remaining examples

are special cases for which the existence has been shown by

different techniques.

All simulations are done with the software package R [36] and

the source code of the figures can be found as supporting

information (Appendix S1).

Brownian-Poisson-Cauchy-mixture Feller process
To show the range of possibilities which are covered by the

mixture approach we construct a process which behaves like

Brownian motion on ({?,{6),

a Poisson process on ({4,4),

a Cauchy process on (6,?):

For this we just define a family of Lévy processes by the family

of characteristic exponents (yx)x [R with

Figure 1. Brownian-Poisson-Cauchy-mixture Feller process. Around the origin it behaves like a Poisson process, for smaller values like
Brownian motion and a for larger values like a Cauchy process.
doi:10.1371/journal.pone.0015102.g001
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yx(j) : ~a1(x)
1

2
jjj2za2(x)(1{e{ij)za3(x)jjj

where

a1 xð Þ~

1 , if xv{6

1{
xz6

2
, if x [ {6,{4ð Þ

0 , otherwise

8>>><
>>>:

,

a2 xð Þ~

1 , if x [ {4,4½ �
xz6

2
, if x [ {6,{4ð Þ

1{
x{4

2
, if x [ 4,6ð Þ

0 , otherwise

8>>>>>>>><
>>>>>>>>:

and

a3 xð Þ~

1 , if xw6

x{4

2
, if x [ 4,6ð Þ

0 , otherwise

8>><
>>: :

These functions are Lipschitz continuous and thus a corre-

sponding Feller process exists. Figure 1 shows some samples of this

process on ½0,20� with time-step size
1

100
. One can observe that the

process behaves like a Poisson process around the origin, like a

Cauchy process above 6 and like Brownian motion below 26.

Symmetric stable-like process
A Lévy process Lt is a symmetric-a-stable process if there exists

an a [ (0,2� such that its characteristic function is given by

EeijLt~e{tjjja :

If we now define a function x.a(x) where a(x) takes only

values in (0,2� then there exists a family of of Lévy processes

Figure 2. Stable-like processes with a(x) : ~1z
19

10

x

4
{

x

4

� �
^ x

4
{

x

4

� �� �
. Each position is color coded by the corresponding value of the

exponent. In the yellow regions it behaves almost like Brownian motion, in the red regions it behaves almost like a Cauchy process.
doi:10.1371/journal.pone.0015102.g002
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L
xð Þ

t

� �
t [ ½0,?)

such that for fixed x the the process L
(x)
t has the

characteristic function

EeiL
xð Þ

t j~e{tjjja xð Þ
:

A corresponding Feller process exists and is unique if the

function x.a(x) is Lipschitz continuous and bounded away from

0 and 2 [16].

Figure 2 shows some samples of a stable-like Feller process on

½0,20� with time-step size
1

10
and

a(x) : ~1z
19

10

x

4
{

x

4

� �
^ x

4
{

x

4

� �� �
,

i.e. x.a(x) is a function which is Lipschitz continuous (but not

smooth) oscillating between 1 and (nearly) 2. To understand the

figure note that we color coded the state space: red indicates a&1,

yellow indicates a&2 and the values between these extremes are

colored with the corresponding shade of orange. Now one can

observe that the process behaves in the red areas like a Cauchy

process and the more yellow the state becomes, the more the

process behaves like Brownian motion.

Normal inverse Gaussian-like process
The characteristic function of a normal inverse Gaussian

process Lt is given by

EeijLt~ exp tim{td

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{(bzij)2

q
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{b2

q� �� �

where aw0,{avbva,0vd and m. If we replace a,b,d,m by

arbitrarily often differentiable bounded functions a(x),b(x),d(x),m(x)
with bounded derivatives and assume that ther exist constants c,Cw0
such that d(x)wc,a(x){jb(x)jwc,cƒm(x)ƒC, then it was stated

in [15] that a corresponding Feller process exists. Therein was also

proposed an example of a mean reverting normal inverse Gaussian-like

process, a special case of this model with mean 0 is obtained by setting

a(x) : ~d(x) : ~1, m(x) : ~0 and b(x) : ~{
1

p
arctan(x):

Note that the mean reversion is not introduced by using simply

a drift which drags the process back to the origin. It is the choice of

b which yields an asymmetric distribution that moves the process

back to the origin. The mean reversion can be observed in Figure 3

which shows samples of the normal inverse Gaussian-like process

on ½0,1000� with time-step size
1

10
.

Figure 3. Normal inverse Gaussian-like processes with b xð Þ : ~{
1

p
arctan xð Þ. The process features mean reversion to 0.

doi:10.1371/journal.pone.0015102.g003

Feller Processes: The Next Generation in Modeling
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Meixner-like process
The characteristic function of a Meixner process Lt is given by

EeijLt~
cos

b

2

cosh
aj{ib

2

0
B@

1
CA

2rt

exp imtjð Þ

where a,rw0,{pvbvp,m [R. Details can be found in [37].

A family of Meixner processes which corresponds to a Feller

process can be constructed by substituting the parameters

a,b,r,m by arbitrary often differentiable bounded functions

a(x),b(x),r(x),m(x) with bounded derivatives. The functions

have to be bounded away from the critical values, i.e.

0va0ƒa(x),0vr0ƒr(x) and {pvb{vb(x)vbzvp for some

fixed r0,a0,b{,bz. For further details see [17].

Figure 4 shows some samples of the Meixner-like process on

½0,100� with time-step size
1

10
and

b(x) : ~m(x) : ~0, r(x) : ~1

and a xð Þ : ~
1z10e

{ 1
25{x2 , ifjxjv5

1 , otherwise

8<
: :

The chosen functions satisfy the existence conditions from

above. Furthermore the function x.a(x) yields that the process

moves with bigger steps around the origin, to be precise: the Meixner

distribution has semiheavy tails [38] and the parameter a

determines the rate of the exponential decay factor for the

density. The effect on the sample path can be observed in Figure 4.

Conclusion
Using the presented mixture approach one can easily construct

Feller models based on given Lévy models. In these cases the

existence of the process is granted.

Furthermore the presented approximation is a very intuitive

way to generate the sample path of a Feller processes. Obviously

the method requires that one can simulate the increments of the

corresponding Lévy processes. But for Lévy processes used in

applications, especially together with Monte Carlo techniques, this

poses no new restriction.

Thus all necessary tools are available to use Feller processes as

models for a wide range of applications.

Materials and Methods

The simulations where done in R [36] and the source

code of the figures can be found as supporting information

(Appendix S1).

Figure 4. Meixner-like process with a xð Þ : ~1z10e
{ 1

25{x2 1 {5,5ð Þ xð Þ. The process moves with bigger steps around the origin than for larger (and
smaller) values. In fact by the choice of x.a(x) the rate of the exponential decay of the transition density is reduced around the origin.
doi:10.1371/journal.pone.0015102.g004

Feller Processes: The Next Generation in Modeling

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e15102



Supporting Information

Appendix S1 Source code of the figures.

(TXT)

Author Contributions

Contributed reagents/materials/analysis tools: BB. Wrote the paper: BB.

References
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