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Abstract

Background: Computational prediction of protein interactions typically use protein domains as classifier features because
they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be
applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid
composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or
pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of
domain information.

Results: AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction
datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and
not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of
interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized
or participated in the same processes. Our high confidence interaction network included both well-studied and
uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized
proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the
uncharacterized proteins.

Conclusion: AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in
conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs
at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of
interaction, but which is not necessarily restricted to domains.
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Introduction

Protein interaction networks are networks of physical interac-

tions among proteins and constitute an important component of

the bio-molecular network in cells. Capturing the complete set of

protein interactions is crucial for understanding the programs for

cellular response to different environmental stresses. Although

high-throughput technology has advanced our knowledge of

proteomes of many organisms [1–6], the estimated false negative

rates of these datasets suggests a non-trivial fraction of interactions

remains undetected [7].

Computational prediction of protein interactions are becoming

increasingly popular because they provide an inexpensive way of

predicting the most likely set of interactions at the entire proteome

scale [8,9] and can be used to complement experimental

approaches. Existing approaches typically use binary classification

frameworks that differ in the features used to represent protein

pairs. Researchers commonly use static features, such as protein

domains [10–13], amino acid signatures [14], phylogenetic profiles

[15,16] or, condition-specific dynamic features, such as gene

expression [17], or literature-based features such as cellular

localization [18].

Protein domains are the most commonly used static features for

classification of protein interactions. Although protein domains

yield high accuracy classifiers by incorporating evolutionarily-

conserved information, these classifiers can only predict interac-

tions between proteins with known domain information. In this

paper, we ask the question if we can predict interactions among

proteins without relying on domain information, and if so, how

complex do our features need to be to perform as well as classifiers

using domains as features. In particular, we focus on evaluating

classifiers that use simple amino acid composition (AAC) features,

which are based purely on normalized counts of single or pairs of

amino acids for predicting protein interactions. Approaches that
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do not rely on domains typically use more complex sequence

features comprising n-grams (n~3,4) [10,14], or combine

sequence with other sources of information such as gene

expression or phylogenetic profiles [19]. While these studies do

incorporate amino acid composition for predicting interactions, it

is unclear how much predictive power can be obtained from AAC

alone.

We performed a systematic analysis of the contribution of AAC

to the prediction of protein interactions focussing on different

types of datasets (Co-complex, Two-hybrid, Protein Complemen-

tation Assay) and classifiers (Maxent, Support vector machines,

Naive Bayes). This allowed us to assess the predictive power of

AAC over a range of datasets and classifier types.

Interactions predicted in yeast S. cerevisiae using AAC were of

comparable accuracy to those predicted by protein domains, and

other non-domain, but more complex, sequence features. This

level of performance suggests that AAC alone can capture a

significant amount of information required for interaction

prediction. Similar performance was obtained for datasets from

higher organisms: fly (D. melanogaster) and worm (C. elegans). A post-

processing analysis of the most important features for interaction

prediction identified both domains and AAC features to be

important. Some of these AAC features were also statistically over-

represented in domains involved in protein interactions.

Finally, we combined predictions from classifiers trained on the

three yeast datasets to generate a high confidence yeast

interactome. Our predicted interactions had significantly higher

tendency to co-express, co-localize, and participate in the same

process as compared to the predicted non-interactions, providing

expression and gene ontology-based support of our interactions.

Our predicted interactions also included several uncharacterized

proteins, including a highly connected hub, YJR151W-A, to which

we assigned putative functions based on their interaction partners

Overall, AAC has these benefits: (a) AAC is a simple, yet

powerful feature which performs surprisingly well given its

simplicity, (b) AAC can be used to predict protein interactions

irrespective of domain information availability, allowing interac-

tion predictions among uncharacterized proteins for which

domain information is scarce, (c) good performance of AAC is

independent of the classification framework, and, (d) extraction of

AAC features is computationally much more tractable than other

non-domain features, making them easily applicable to higher

organisms with lengthy protein sequences.

Results

We first compared AAC against the evolutionarily-rich protein

domain features for predicting interactions in the three yeast

interaction datasets. We then compared AAC against the tuples

and signature product features, which like AAC do not require

protein domain information on yeast, worm and fly datasets. We

then performed a post-hoc feature analysis to identify the AAC

features that were most beneficial for predicting interactions.

Finally, we used classifiers combining AAC and domains to predict

the complete yeast interactome and validated novel interactions

using Gene ontology.

Comparison with existing features
The goal of comparative analysis was: (a) to determine how well

a simple feature like AAC performed against well-known features

such as domains, (b) to assess if AAC features can improve

performance when used in combination with domains, (c) to

compare AAC to other non-domain sequence features such as the

tuple feature [10] and the signature product feature [14].

AAC performs at par with domains
We trained and tested classifiers on the three yeast datasets

(TWOHYB, AFFMS, PCA), selecting only protein pairs for which

domain information was available for both proteins. We selected

only protein pairs with domains to have a fair and direct comparison

against a classifier that relies only on domains for interaction

prediction (Fig. 1). We compared a classifier using domains against a

classifier using either AAC monomers or AAC dimers as features.

With the exception of the Naive Bayes using AAC dimer (AFFMS,

PCA), surprisingly there was no statistically significant difference in

performance of classifiers using AAC features or domains. Overall,

both AAC features performed at par with domains in the majority of

the cases across different datasets and classifiers, which was

surprising and indicated that AAC alone captures a substantial

amount of information required for identifying interacting proteins.

Combining AAC with domains results in no significant
improvement in performance

To assess the value of combining AAC with evolutionarily-rich

domain features, we combined domains with AAC monomer and

AAC dimer features and compared the performance of classifiers

using the combined set of features against classifiers using either of

these features alone. We estimated performance on the protein

pairs for which we had domains to allow comparison against a

classifier which used only domains as features (Fig. 2). In all three

datasets, combining AAC with domain features did not signifi-

cantly change performance, which is not surprising because the

protein pairs have domains and therefore should be highly

predictable using the domain-based classifier. This results suggests

that we can safely combine simple sequence-based features with

evolutionarily-conserved features such as domains without suffer-

ing any performance loss due to excessive features.

AAC performs at par with non-domain features
We compared the performance of AAC with other non-domain

features, which can also predict interactions between proteins

lacking domain information. The two features that we evaluated

were the tuple feature from Gomez et al. [10], and the signature

products (Sigprod) from Martin et al. [14].

We compared AAC against the tuple and Sigprod features on

three yeast datasets (TWOHYB, AFFMS, PCA). The three

datasets were each split into two parts: protein pairs with domains

and protein pairs without domains. We report the performance on

protein pairs with domains (With domains), on protein pairs

without domains (No Domains) and on the complete dataset (All

Protein pairs). The AUC-scores on protein pairs without domains

evaluated how well non-domain features including AAC are able

to predict interactions (or non-interactions) among proteins for

which no domain information is available. The AUC-scores on the

complete datasets evaluated the overall performance of different

features on protein pairs irrespective of domain information

availability. These results are for the SVM classifier, because it

provides performance numbers for all features (Sigprod is specific

to a SVM classifier). Results for the Maximum entropy classifier

are similar (Supporting text S1, Fig. S4).

On protein pairs without domains (Fig. 3), AAC dimers were

significantly better (pv8E-5) than tuples for AFFMS. AAC

monomer was also better than tuples for AFFMS (pv1:7E-4).

Tuples were never significantly better than the AAC features.

AAC features also performed at par with Sigprod with the

exception of AAC dimers for AFFMS. This indicates that for these

protein pairs, AAC dimers capture the majority of the information

captured in Sigprod.

AAC and Protein Interaction
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On protein pairs with domains (Fig. 3), Sigprod outperformed

AAC features less often (PCA for dimers, PCA, TWOHYB for

monomers) than tuples. Both AAC features were much closer to

Sigprod than Tuple, especially on the largest dataset (AFFMS).

Finally, on the complete datasets, AAC dimers were at par with

Sigprod in all three datasets, whereas AAC monomers were at par

with Sigprod in two datasets. Overall, AAC features were better

than tuples and AAC dimers were at par with the Sigprod features

in the majority of the cases.

Performance comparison on fly and worm datasets
In addition to comparing AAC features on the three yeast

datasets described above, we also compared AAC features on two-

hybrid datasets from worm and fly (Fig. 4). We considered AAC

Figure 2. Performance comparison of AAC features in combination with domains. Results are for SVM classifier.
doi:10.1371/journal.pone.0007813.g002

Figure 1. Performance comparison of AAC features (AAC monomer, AAC dimer) against domains. Results are for three classifiers
(MAXENT, SVM, NAIVE BAYES) over three yeast datasets (TWOHYB, AFFMS, PCA). The error bars are obtained from five-fold cross validation.
doi:10.1371/journal.pone.0007813.g001
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features against the Sigprod features and found that AAC features

performed at par with Sigprod. Overall, these results suggest that

features based on AAC can perform as well as existing sequence-

based features, which do not require domains. This level of

performance of AAC features is true for different organisms and

different datasets.

Identification of important features
The fact that AAC monomer and dimer features can have at

par performance with more complex features such as tuples,

domains or signature product is very surprising considering the

simplicity of these features. To investigate what makes AAC a

good feature for protein interaction prediction, we considered a

classifier using both domains and AAC features and obtained the

AAC features that occurred among the k features most important

for interaction prediction. We then asked if there were any AAC

monomers and dimers that were statistically over-represented in

known protein interaction domains [20].

We considered the true positives among the top n,

n[ 500,1000,1500,2000f g predicted protein pairs and obtained

the k, k[ 100,200,300f g most important features for each set of

true positives. These predictions were obtained from classifiers

using both AAC and domains features. AAC features comprised

10–40% of the top k features (Fig. 5). The highest proportion of

AAC features were from n~500, decreasing with larger n,

suggesting that AAC contributes to the highest confidence

predictions.

We found that several of the AAC monomer and dimers were

statistically over-represented in regions representing protein-

protein interaction domains (Fig. 6). Features differing in

discretization levels were considered the same. For example A_1

and A_2 were both considered as Alanine, where 1 and 2

represent discretization level. We assessed statistical significance of

observing this proportion of AAC monomers and dimers to be

over-represented in the protein interaction domains, by comparing

the proportion to the total number of possible AAC monomers

and dimers that are enriched in the interaction domains. Of the

420 possible monomers and dimers, there are 175 that are

statistically over-represented in protein interaction domains. We

found that the proportion of over-represented features was

statistically significant for some (n~500, k~300, hyper-geometric

p-valuev0:05) but not all cases. The AAC monomers and dimers

Figure 3. Performance of AAC features against other non-domain features. Non-domain features (Tuple, Sigprod) were compared on
protein pairs with domains (With domains), pairs without domains (No domains) and on the entire dataset (All protein pairs).
doi:10.1371/journal.pone.0007813.g003

Figure 4. Comparison of AAC features against signature
product features (Sigprod) on protein interaction datasets
from worm and fly.
doi:10.1371/journal.pone.0007813.g004

AAC and Protein Interaction

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7813



that are over-represented are likely capturing crucial information

in domains and therefore helping interaction prediction. However,

the proportion of AAC monomers and dimers over-represented in

domain regions is not always significant, suggesting that overall

AAC composition may be capturing additional interaction-

sensitive information outside of protein domains.

To visually illustrate that the dimers were capturing meaningful

information of interactions we considered two proteins, EFT2

from the high-confidence interacting pairs, and RNR1, from the

high-confidence non-interacting pairs (Fig. 7). We selected these

proteins from the AFFMS dataset, such that the proteins had

roughly the same length and had an associated structure in the

protein data-bank covering w98% of the protein. We then

displayed a select set of dimers that had high scores. We found that

several of the dimers differed in concentration (KA, EQ) between

the two proteins indicating that the dimers were capturing

information discriminating between interacting and non-interact-

ing proteins. Although this is one specific case of all the proteins in

interactions or non-interactions, we found this visual differentia-

tion between the different protein types to be encouraging and

opens up directions of future research relating 3D structure of

proteins and dimers concentrations.

We examined the overlap between the statistically over-

represented AAC monomers and dimers from the three datasets

using n~500, k~300. We selected n~500 because the percent-

age of AAC features among the top k features was maximal for

n~500. We selected k~300 to include a large number of features

for comparison. There was not much overlap suggesting that these

datasets were capturing different sets of protein interactions (Fig. 8,

Table 1). The small overlap set included both hydrophilic

(Tyrosine (Y), Tryptophan (W)) and hydrophobic amino acids

(Alanine (A), Isoleucine (I)). We found slightly more overlap in

TWOHYB and PCA than either with AFFMS, which is not

surprising because both PCA and TWOHYB are pairwise

interaction sets whereas AFFMS is a co-complex interaction set.

Features common to AFFMS and TWOHYB included charged

amino acids (Aspartic acid (D), Glutamic acid (E)) and mostly non-

polar amino acids (Valine (V), Phenylalanine (F), Alanine (A)). The

features common to PCA and AFFMS included charged

(Arginine), but mostly non-polar amino acids (Glycine (G), Leucine

(L), Tryptophan (W)). Finally, PCA and TWOHYB had features

with mostly non-polar amino acids with the exception of one non-

polar (Tyrosine, (T)). The identification of primarily non-polar

amino acids is somewhat surprising, since it is the polar amino

acids that are on the surface of proteins and thought to participate

in protein interactions. Thus, the features identified here must be

related to some other characteristic of the interacting proteins.

Features that were exclusive to AFFMS included all the charged

amino acids (D, E, K, R, H), and one polar (Q) and remaining

non-polar amino acids (A, G, M, V, I). In contrast PCA and

TWOHYB had very few charged amino acids, only Aspartic acid

(D) in TWOHYB, and Aspartic acid (D) and Argnine (R) in PCA.

The presence of all charged amino acids in the AFFMS suggests

charge may be important for forming large protein complexes.

Features exclusive to TWOHYB, had only one polar (Glutamine,

Q) amino acid and the remaining were all non-polar (F, G, I, V,

M). Finally, features exclusive to PCA included polar (Q, T, Y),

charged (D,R) and non-polar amino acids (A, F, C, M, V, W).

Overall PCA had the maximum range of amino acids, even

though it was the smallest data set.

Figure 5. Percentage of the AAC features among the top k features. The top k features, k equals 100, 200 or 300, were obtained from
correctly predicted protein pairs per dataset (AFFMS, TWOHYB, PCA). The number of correctly predicted proteins pairs were obtained from the most
confident 500,1000,1500 and 2000 predicted interactions.
doi:10.1371/journal.pone.0007813.g005
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Our post-hoc analysis of important features led us to conclude that

several AAC monomers and dimers were significantly enriched in

domains involved in protein interactions, but the specific features that

were deemed important depended on the dataset: features involving

charged amino acids in AFFMS, and non-polar amino acids in

TWOHYB and a mixture of polar and non-polar amino acids in PCA.

Figure 7. Three dimensional structures of ETF2 and RNR1 proteins obtained from the protein data bank. Only dimers important for
prediction are shown with the rest of the protein structure as backbone. Different colors correspond to different dimers. EE: red, AE: green, AD:blue,
DA: yellow, DE: magenta, DV: cyan, EK: white, EQ: violet, KA: orange.
doi:10.1371/journal.pone.0007813.g007

Figure 6. Percentage of the top AAC monomers and dimers that were significantly enriched in domain regions involved in protein
interactions.� indicates significant overlap (p-valuev0.05) with the complete set of AAC monomers and dimers found to be over-represented in
domains involved in protein interactions.
doi:10.1371/journal.pone.0007813.g006
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Whole yeast proteome analysis: Identification of novel
interactions

To predict interactions in the entire yeast genome, we trained

three classifiers on the AFFMS, PCA and TWOHYB datasets.

The predicted interactome was created from the intersection of the

interaction sets predicted by each classifier. We considered

intersections at different confidence levels, ranging in 80%–95%,

and identified the number of known interactions at each

confidence level (Table 2). We found a large proportion of our

interaction set to comprise novel interactions.

Because many of our interactions were novel, we carried out

preliminary validation using expression data and gene ontology

categories [21]. Our expectations were that interacting proteins

would tend to be co-expressed and be in similar processes or

locations. For co-expression analysis we computed the correlation

coefficient between the two proteins of a predicted interaction (or

non-interaction) using expression data from Gasch et al. [22],

which profiled the transcriptomic response of yeast cells under

different stress conditions (Fig. 9). We found that the average

correlation for the interactions (0:17+0:30), while low, is higher

than the non-interacting proteins (0:03+0:291, Kolmogorov

Smirnov p-valuev9E-39). This low correlation has been seen

before and suggests that protein stability, maintained via post-

translational modifications, may play a significant role in complex

formation and function [5,23], or may be due to proteins

interacting under conditions not captured in the expression

dataset. However, compared to non-interacting proteins, the

interacting proteins exhibit a significant bias in the distribution

towards positive correlation.

We further analyzed these interactions for co-localization,

co-function, and co-process using GO Slim terms and found that

proteins predicted to interact tended to co-localize, or participate

in the same processes more than the proteins predicted to not

interact (Fig. 10). In particular, interacting proteins were

statistically enriched for co-localization (p-valuev2:8E-8) and

co-process (p-valuev1E-200) where as predicted non-interactions

were statistically depleted from co-localization (p-valuev1E-200)

and co-process (p-valuev1:5E-69). For function, even though

predicted interactions had a higher fraction of interactions

participating in the same function, both interacting and non-

interacting proteins were enriched for co-function. This suggests

that GO slim functional categories may not be as predictive of

interacting versus non-interacting proteins as process and location.

This is consistent with low sensitivity of protein interaction

identification using all GO molecular functions versus sensitivity

using a filtered set of functions [24]. To investigate this further we

considered the enrichment on a per functional category basis and

found that both interacting and non-interacting proteins were

enriched in hydrolase activity, and non-interacting proteins were

enriched in transferase activity. Further, on excluding these two

categories, the non-interacting proteins were no longer enriched in

co-function while the interacting proteins remained enriched in

co-function (pv1.7E-8). This suggests that proteins that are

hydrolases may be further grouped into other categories, some of

which interact and some of which do not interact. Proteins that are

transferases do not interact with each other. This gives us an

interesting direction of future research to investigate the propensity

of different proteins to interact based on their functional roles. The

high enrichment of co-localization and co-process is consistent

with our prediction of interactions and, validates our predicted

interactions using gene ontology, and future experimental

validation of the high confidence predictions are likely to yield

true positive interactions.

Analysis of novel interactions: Identification of new
function

We identified 1412 high confidence (95%) interactions,

including 197 existing interactions. We examined more closely

the most highly connected nodes (hub nodes) of this high

confidence network, where a hub was a node with §20
interaction partners. The largest hub was the protein LAS17, an

actin assembly protein and the yeast homolog for the Wiskott-

Aldrich disease in humans [25]. This protein has 12 known

interactions in the existing interaction databases and we found 176

more interactions, most of which were among proteins involved in

actin cytoskeleton organization, consistent with the known

function of LAS17.

Gene ontology enrichment of the hubs identified cell budding,

cytokinesis and mRNA stability and catabolism as additional

enriched processes. Other protein hubs were also involved in a

variety of processes including nuclear transport (KAP95, SRP1),

transcription (NOT3, NAB3) and telomere maintenance (GAL11,

STO1). Because hubs captured the majority of the interactions, we

concluded that interactions in the high confidence network were

involved in cell-budding, actin assembly, nuclear pore transport

and mRNA stability.

One of our goals, using sequence-based interaction classifiers,

was to capture and analyze interactions among proteins that

Figure 8. Overlap of AAC monomers and dimers from different
datasets.
doi:10.1371/journal.pone.0007813.g008

Table 1. AAC monomers and dimers over-represented in
protein interaction domains.

Dataset combination AAC Features

AFFMS, TWOHYB, PCA A I W Y

AFFMS, TWOHYB V AD DA EV FE QA

AFFMS, PCA L GR WG

TWOHYB, PCA FL G GL LA LG WA WT

AFFMS AE AM AR DV EG GG GH IQ KA KV RA
RV VE VK VQ

TWOHYB FG FI FV GM ID IF IV MA MG QI VG

PCA AA AF AI AV CF CM F FA FF FY GD GF
GW IG LF LL LM LY

QV RD TG TV VC VF VR WC WM WS YR

AAC features enriched in domains in different combinations of the three
datasets. Each row represents the features that were exclusive to the dataset
combination in the first column. A: Alanine, C: Cysteine, D: Aspartic acid, E:
Glutamic acid, F: Phenylalanine, G: Glycine, H: Histidine, I: Isoleucine, K: Lysine,
M: Methionine, Q: Glutamine, R: Arginine, T: Threonine, V: Valine, W:
Tryptophan, S: Serine, Y: Tyrosine. Bold indicates polar, and underline indicates
charged. Non-bold indicates non-polar.
doi:10.1371/journal.pone.0007813.t001
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cannot be analyzed using domain-based methods. This is

especially useful for uncharacterized proteins for which roles may

be inferred based on interacting proteins. Therefore we focused on

predicted protein pairs where one of the proteins did not have any

known domains. There were a total of 169 such interactions

including 75 interactions involving 13 uncharacterized proteins.

One of the uncharacterized proteins (YJR151W-A) was also a hub

with 37 interaction partners (Fig. 11). Using the ‘‘guilt by

association’’ approach we predict that this protein has a role in

transcription, because of its predicted interactions with several

universal transcription initiation factors (TIF and TAF), and also

in mRNA processing and metabolism, because of its interactions

with splicing factors, P-body, and translation-initiation proteins

[26]. Interestingly, YJR151W-A may not have been studied

carefully because it was not thought to be a gene. We assigned

putative roles to other uncharacterized proteins based on their

interactions with other characterized proteins (Table 3). The

ability to assign new putative function to uncharacterized proteins,

for which domains are also not available, highlights the usefulness

of predicting protein interactions using non-domain features such

as AAC. Overall our interaction set had both known and

uncharacterized proteins, allowing us to validate existing knowl-

edge and predict new function for uncharacterized proteins.

Discussion

We have described a novel sequence-based feature, amino

acid composition (AAC), that can be used to predict protein

interactions in different organisms. Compared to other

sequence-based features, AAC is much simpler because it models

very little sequential dependencies (domains and tuples) and no

explicit pairwise information (Sigprod). Surprisingly, despite its

simplicity, AAC performs at par with domains on protein pairs for

which domain information is available. The good performance of

AAC, in spite of its strong independence assumptions, maybe due

to its similarity to the bag of words model, which often performs at

least as well as models that do not make independence

assumptions [27].

Compared to tuple features, AAC gave better performance,

which was surprising because tuples incorporate ordering

information of sequential amino acids. A possible explanation is

that grouping of amino acids into six categories, may be too

coarse, and by doing so, the tuple features are excluding

information specific to individual amino acids, crucial for

characterizing protein interactions. Comparison to Sigprod

indicated that AAC performed at par on protein pairs without

domains, and also on the complete set of protein pairs including

those without domains.

On protein pairs with domains, Sigprod features are the best,

outperforming all other features (including domains) on at least

one dataset. The fact that Sigprod outperforms AAC features is

not surprising because it captures more sequential dependency by

looking at trimers rather than dimers or monomers. A natural

extension of the AAC features would be to look at trimers.

However, Sigprod outperforms even domains, which is very

surprising because domains represent much longer portions of the

Table 2. Number of predicted and true interactions at different confidence levels.

Confidence level Predicted Known Predicted + self loops Known + self loops

0.95 1144 86 1412 197

0.90 4352 194 4862 373

0.85 9769 313 10495 532

0.80 17084 449 18030 708

Number of predicted (using ACC and domains) and known interactions, where known interactions are those present in either AFFMS, TWOHYB or PCA.
doi:10.1371/journal.pone.0007813.t002

Figure 9. Distribution of co-expression of predicted interactions and non-interactions at different confidence levels. Co-expression is
measured by Pearson’s correlation coefficient.
doi:10.1371/journal.pone.0007813.g009

AAC and Protein Interaction

PLoS ONE | www.plosone.org 8 November 2009 | Volume 4 | Issue 11 | e7813



amino acid sequence. It is possible that protein interactions do not

involve the complete domain, but specific contact points within the

domains. Dimers and trimers (Sigprod) are able to capture these

crucial contact point information thus providing good perfor-

mance. Sigprod also uses a specialized string kernel, which gives it

additional benefits and therefore improved performance. In

contrast, we use AAC features with the general purpose Gaussian

kernel. Developing a specialized string kernel for AAC features is a

direction of future research.

The value of AAC is evident for protein pairs in which one or

both proteins have no domain information. Using a classifier with

amino acid composition we were able to predict interactions of

several uncharacterized proteins and were able to predict novel

function for some of these proteins based on the known annotation

of their interacting partners.

The post-hoc analysis of why a simple feature like AAC works so

well by itself showed that several of the AAC features were

significantly over-represented in domains involved in protein-

protein interactions. This indicated that AAC features are likely

capturing crucial contact points of the protein domains, and

therefore helping in prediction. Although amino acids have been

previously shown to have differential concentration in different

interaction surfaces [28,29], our work extends this analysis to

assessing importance of amino acids in a dataset-specific manner.

We found that the importance of amino acids depended on the

particular dataset, which maybe due to the propensity of different

assays to capture different classes of interactions (e.g. transient

versus stable).

We found that AAC features constitute a non-trivial fraction

(26–40%) of the 100 most important features in a classifier using

both AAC and domains as features. If protein domains were

capturing all the properties of interacting proteins, we would not

expect AAC features to be important when used with domains.

This is further supported by the observation that only a subset of

the AAC features important for interaction prediction were

enriched in known interacting domains. This suggests the

possibility of certain properties of interacting surfaces that are

not fully captured in algorithms that search only for protein

domains. AAC features can provide a cue for detecting novel types

of protein domains encoding meta-level information important,

possibly for docking of a protein partner or presentation of the

interaction domain. Such meta-interaction surfaces identified with

high confidence can be experimentally verified, leading to the

identification of new types of protein domains, that may not be

necessarily linear.

Our prediction results using simple amino acid composition

have been quite encouraging, and has opened a plethora of

questions regarding the information that can be captured at the

level of single and pairs of amino acids. Extending this work to

recognize higher-order signals in the proteome, including

identification of meta-domains, can provide insight into the causal

and mechanistic details of protein interactions.

Methods

Feature extraction
Prior to prediction of protein interactions, we represent every

protein pair in our datasets using binary feature sets corresponding

to attributes of protein pairs. These features correspond to AAC

features and domain features.

AAC as classifier features
We use two types of features for representing AAC: monomer

and dimer features. Monomer features capture composition of

individual amino acids, whereas dimer features capture compo-

sition of pairs of consecutive amino acids. To generate the

monomer features, we first obtain a 20-dimensional vector, qi,

representing the proportion of the 20 amino acids in a protein, Pi.

Figure 10. Co-annotation of predicted interactions and non-interactions at different confidence levels of interaction. Predicted
interactions and non-interactions at different confidence levels were analyzed for different types of co-annotation: co-process, co-location and
co-function.
doi:10.1371/journal.pone.0007813.g010
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Figure 11. Protein interaction sub network with the uncharacterized ORFs. The uncharacterized ORFs are in magenta and the characterized
are in yellow.
doi:10.1371/journal.pone.0007813.g011

Table 3. Predicted function of uncharacterized ORFs.

ORF Degree Putative function

YJR151W-A 37 protein-RNA complex assembly, mRNA processing, asexual reproduction

YGR174W-A 9 cell budding, asexual reproduction

YAR035C-A 8 cell budding, asexual reproduction

YGL007C-A 8 cell budding, asexual reproduction

YMR124W 5 organelle organization and biogenesis

Degree specifies the number of interaction partners of a protein.
doi:10.1371/journal.pone.0007813.t003

AAC and Protein Interaction

PLoS ONE | www.plosone.org 10 November 2009 | Volume 4 | Issue 11 | e7813



Each dimension, qi jð Þ, is the count of a particular amino acid in

Pi, normalized by the length of Pi. The real-valued composition is

discretized into k~25 bins, producing a set of 500 binary features,

with 25 features per amino acid. The number of bins for

discretization is determined on a hold-out set (Supporting text S1,

Fig. S1, S2).

To generate the dimer features, we obtain a 400-dimensional

vector of all possible pairs of amino acids that can be extracted

from the protein sequence. Similar to the monomer composition

we normalize the dimer composition by l{1, where l is the length

of the protein, followed by discretization into k~10 bins, which

is determined empirically on a hold-out set (Supporting text S1,

Fig. S3).

Domains as classifier features
The domains are represented as binary features, with each

feature identified by the domain name. For yeast proteins, we use

domains that are available for download from the Saccharomyces

genome database. For fly and worm proteins, we used inter-

proscan domains [30].

Description of other non-domain features
We have compared the AAC features against other non-

domain, sequence-based features. These features are the tuple

features [10] and signature products [14]. The tuple features were

created by first grouping amino acids into six categories based on

their bio-chemical properties, and then creating all possible strings

of length 4 using these six categories.

The signature products are used directly within a support

vector machine (SVM) framework where protein pairs are

represented using a specialized signature product kernel. This

approach first extracts signatures of length 3 from the individual

protein sequences. Each signature consists of a middle letter and

two flanking amino acids represented in alphabetical order. Thus

two 3-tuples with the first and third amino acid letter permuted

have the same signature. For example the 3-tuples ATC and

CTA are both represented by the signature T(AC). The

signatures are used to construct a signature kernel specifying the

inner product between two proteins. The signature kernel itself is

used in a tensor product to define the signature product kernel

between pairs of proteins.

Protein interaction prediction via binary classification
Prediction of protein interactions via binary classifiers is a well-

known approach, briefly outlined here. In this approach, each data

point corresponds to a protein pair Pi,Pj

� �
, which is associated

with a binary class random variable, C, taking two values,

INTR,NON-INTRf g. Each protein pair is represented as binary

feature vector gij , which is obtained from the OR of individual

feature vectors, gi and gj , of the two proteins Pi, respectively:

gij(k)~gi(k) _ gj(k), where k is an index over the feature set. This

allows protein pairs Pi,Pj

� �
and Pj ,Pi

� �
to be treated

symmetrically, that is gij~gji, Vi,j.

Protein pairs that represent interacting pairs have C~INTR,

and protein pairs representing non-interacting pairs have

C~NON-INTR. We use three types of classifiers well known

in the machine learning literature: maximum entropy classifier

(also known as logistic regression classifier), support vector

machines, and the Naive Bayes classier.

Maximum entropy classifier
A maximum entropy classifier is a probabilistic classifier for

binary classification [31], estimating two conditional probability

values, P C~INTRjgij

� �
and P C~NON-INTRjgij

� �
for each

protein pair Pi,Pj

� �
, where gij is the binary feature vector

associated with Pi,Pj

� �
. The first conditional probability value

describes the probability of the proteins, Pi and Pj , to interact, and

the second conditional probability describes the probability of

these proteins to not interact. Specifically, the conditional

probability of interacting is:

P C~INTRjgij

� �
~

1

Z
exp {

XjF j
k~1

wk � fk gij kð Þ
� � !

:

Here, F is the set of 0-1-valued feature functions, fk, wk is the

weight of fk, gij kð Þ is the value of the kth feature in gij , and Z is a

normalization term. The feature functions, fk[F correspond to

attributes of protein pairs, and return 1 if the attribute is true,

and 0 if the attribute is false. Pi,Pj

� �
is classified into INTR

if P Y~INTRjgij

� �
wP Y~NON-INTRjgij

� �
. We used the

maximum entropy classifier from the Mallet toolkit [32].

Naive Bayes classifier
A naive Bayes classifier is similar to a maximum entropy

classifer in that it uses the class conditional distribution to assign a

protein pair to the interacting (INTR) or non-interacting (NON-

INTR) class. However, the form of conditional distribution is

given by

P C~INTRjgij

� �
! P

jF j

k~1
P gij kð ÞjC~INTR
� �

P C~INTRð Þ:

The proportionality term, P gij

� �
is the same for

P C~INTRjgij

� �
and P C~NON-INTRjgij

� �
and is not

required for class prediction. We used the Weka toolkit for the

Naive Bayes classifier [33].

Support vector machine
A support vector machine (SVM) classifier does not estimate

class conditional distributions, but rather a maximum margin

hyper-plane between the positive and negative examples of the

class. The hyper-plane is defined by a set of support vectors, and a

data point is classified as INTR or NON-INTR using a set of inner

products with the support vectors. Most real-world data are not

linearly separable in the input feature space requiring non-linear

classifiers that project the input data into a high-dimensional space

where the data is separable. In SVMs, because all computations on

the input data are written as inner products, a kernel function is

typically used to efficiently compute inner products in a high-

dimensional space. We used the SVM classifier with a radial basis

kernel (s~0:01, Supporting text S1, Fig. S1) from the SVMLight

toolkit [34].

Datasets
We analyzed several protein interaction datasets from yeast,

worm and fly (Table 4). We used three datasets for yeast, S.

cerevisiae, each capturing different types of interactions based on the

experimental assay: TWOHYB (Yeast Two-hybrid), AFFMS

(Affinity pull down with mass spectrometry) and PCA (protein

complementation assay). TWOHYB and PCA comprise pairwise

interactions, whereas AFFMS comprises co-complex interactions.

We treated these three datasets separately to avoid confounding
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factors across different experimental assays. These were obtained

from the General Repository for Interaction Datasets (GRID)

database [35]. We had one dataset each for worm, C. elegans [4]

and fly, D. melanogaster [35], referred to as WORM and FLY

respectively. Both worm and fly datasets were generated from

Two-hybrid assays.

We obtained the amino acid sequence for yeast proteins from the

Saccharomyces genome database (SGD, http://www.yeastgenome.

org), worm proteins from Wormbase (version WormPep168,

http://www.wormbase.org) and fly proteins from the Integr8 portal

at the European Bioinformatics Institute (EBI, http://www.ebi.ac.

uk/integr8/FtpSearch.do?orgProteomeId = 17). Interproscan do-

mains for worm proteins were obtained via the Wormmart program

(http://www.wormbase.org/biomart/martview). Fly protein do-

mains were obtained from EBI, and yeast domains were

downloaded from SGD, which in turn stores domain match results

of yeast proteins using Interproscan [36].

We pre-processed each dataset to ensure that the number of

positive and negative examples in a dataset were equal. We

retained self-interacting pairs in the positive set to allow the

prediction of such interactions in the test set. We empirically

verified that the self-interacting pairs did not influence classifier

performance (Fig. S5). Negative datasets were generated using the

closed world assumption that all protein pairs that were not in the

positive set were in the negative set. We then generated a negative

set of size equal to the positive set by drawing protein pairs from

the complement of the positive set. Although negative sets have

been created based on the co-localization of proteins, uniform

sampling of non-interacting protein pairs has been shown to

produce unbiased estimates of the true distribution of negative

examples [37].

Classifier performance evaluation
We evaluated the classifiers using the receiver-operator

characteristic (ROC) curves that compared the sensitivity of the

classifier as a function of the false positive rate [38]. Sensitivity is

the ratio of the number of correctly predicted interacting pairs

(true positive, TP), to the size of the complete interacting set

(positive, P). False positive rate is the ratio of the number of

incorrectly predicted interacting pairs (false positive, FP), to the

size of the complete non-interacting set (negative, F). The area

under the ROC curve (AUC), AUC-score, estimates the overall

classifier performance. We performed five-fold cross-validation for

the datasets, and report the mean and standard deviation of the

AUC-score computed on the test set of each fold of validation. We

use pv0:01 as a threshold for statistical significance for comparing

classifiers with different features.

Analysis of important AAC features
To assess which features were most beneficial for our

predictions, we computed a feature importance score, sk for each

feature fk as follows

sk~log
P fk~1jC~INTRð ÞP fk~0jC~NON-INTRð Þ
P fk~1jC~NON-INTRð ÞP fk~0jC~INTRð Þ ð1Þ

This score assigns a high positive value to a feature fk, if it is

present (fk~1) among protein pairs labeled as INTR and is absent

among protein pairs labeled as NON-INTR. We identified the

set of important features from the three yeast datasets, AFFMS,

TWOHYB and PCA, independently. For each dataset we

considered the true positives in the top 500, 1000, 1500 or 2000

predicted interactions, and computed the importance for all the

features that occurred in these true positives. We then selected the

top 100, 200 and 300 features using the feature importance score

to identify the most important features.

Enrichment of AAC features in domains known to be
involved in protein interactions

We obtained the Interproscan IDs of domains predicted to be

involved in protein interactions with high confidence from the

Domine database (http://domine.utdallas.edu/cgi-bin/Domine

[20]). We then obtained from SGD the start and stop positions

of these domains in yeast proteins. To assess enrichment of a given

AAC dimer fk in the domain regions, we used the Hypergeometric

distribution with parameters, n,m,x,y:

p~
Xm

i~y

n{m

x{i

� �
m

i

� �
n

x

� � ,

where n is the total number of occurrences of all dimers in the

proteins, m is the total number of occurrences of fk in the proteins,

x is the total number of occurrences of all dimers in the domain

regions, and y is the total number of occurrences of fk in the

domain regions. The p-value tells us how likely it is to see y or

more occurrences of dimer fk in x random draws from a pool of n

dimers, of which m are of type fk. A similar technique was used to

assess enrichment of AAC monomer features. We use pv1E-3 as

a threshold for significance.

Supporting Information

Text S1 Supplementary file describing methods the discretiza-

tion of Amino acids, other methods of enrichment analysis,

additional results of the MAXENT classifier, and performance of

classifiers with and without self-interacting proteins in the positive

set.

Found at: doi:10.1371/journal.pone.0007813.s001 (0.05 MB

PDF)

Figure S1 SVM AUC means as a function of increasing number

of bins (k) for obtaining the AAC monomer features. The standard

deviations varied in the range [0.002–0.07]

Found at: doi:10.1371/journal.pone.0007813.s002 (0.33 MB TIF)

Figure S2 AUC means of the three classifiers (SVM, Maximum

Entropy, NaiveBayes) as a function of increasing number of bins

(k). The standard deviations varied in the range [0.02–0.06] for

Table 4. Description of datasets.

Dataset
Interactions
with domains

Interactions
without domains

AFFMS 22183 2409

TWOHYB 6038 1156

PCA 2288 292

WORM 14233 972

FLY 66259 4052

All datasets other than WORM were obtained from [35]. WORM was obtained
from [4].
doi:10.1371/journal.pone.0007813.t004
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SVM, [0.02–0.07] for Naive Bayes, and [0.02–0.05] for Maximum

entropy classifiers.

Found at: doi:10.1371/journal.pone.0007813.s003 (0.30 MB TIF)

Figure S3 AUC mean of SVM classifier as a function of

increasing number of bins (k) for obtaining the AAC dimer

features.

Found at: doi:10.1371/journal.pone.0007813.s004 (0.24 MB TIF)

Figure S4 Maximum Entropy classifier performance using AAC

or tuple features on protein pairs with and without domains, and

the complete dataset.

Found at: doi:10.1371/journal.pone.0007813.s005 (0.69 MB TIF)

Figure S5 Performance comparison of the SVM classifier with

or without the self-interacting proteins. Classifiers used either AAC

monomer or domains as features.

Found at: doi:10.1371/journal.pone.0007813.s006 (0.43 MB TIF)
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