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Abstract

Background: Characterization of abdominal and intra-abdominal fat requires imaging, and thus is not feasible in large
epidemiologic studies.

Objective: We investigated whether biomarkers may complement anthropometry (body mass index [BMI], waist
circumference [WC], and waist-hip ratio [WHR]) in predicting the size of the body fat compartments by analyzing blood
biomarkers, including adipocytokines, insulin resistance markers, sex steroid hormones, lipids, liver enzymes and gastro-
neuropeptides.

Methods: Fasting levels of 58 blood markers were analyzed in 60 healthy, Caucasian or Japanese American postmenopausal
women who underwent anthropometric measurements, dual energy X-ray absorptiometry (DXA), and abdominal magnetic
resonance imaging. Total, abdominal, visceral and hepatic adiposity were predicted based on anthropometry and the
biomarkers using Random Forest models.

Results: Total body fat was well predicted by anthropometry alone (R2 = 0.85), by the 5 best predictors from the biomarker
model alone (leptin, leptin-adiponectin ratio [LAR], free estradiol, plasminogen activator inhibitor-1 [PAI1], alanine
transaminase [ALT]; R2 = 0.69), or by combining these 5 biomarkers with anthropometry (R2 = 0.91). Abdominal adiposity
(DXA trunk-to-periphery fat ratio) was better predicted by combining the two types of predictors (R2 = 0.58) than by
anthropometry alone (R2 = 0.53) or the 5 best biomarkers alone (25(OH)-vitamin D3, insulin-like growth factor binding
protein-1 [IGFBP1], uric acid, soluble leptin receptor [sLEPR], Coenzyme Q10; R2 = 0.35). Similarly, visceral fat was slightly
better predicted by combining the predictors (R2 = 0.68) than by anthropometry alone (R2 = 0.65) or the 5 best biomarker
predictors alone (leptin, C-reactive protein [CRP], LAR, lycopene, vitamin D3; R2 = 0.58). Percent liver fat was predicted better
by the 5 best biomarker predictors (insulin, sex hormone binding globulin [SHBG], LAR, alpha-tocopherol, PAI1; R2 = 0.42) or
by combining the predictors (R2 = 0.44) than by anthropometry alone (R2 = 0.29).

Conclusion: The predictive ability of anthropometry for body fat distribution may be enhanced by measuring a small
number of biomarkers. Studies to replicate these data in men and other ethnic groups are warranted.
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Introduction

Excess body fat leads to changes in a number of biological

pathways. In particular, fat accumulation in the abdominal, intra-

abdominal (or visceral) and hepatic depots has been associated

with elevated risk of metabolic diseases [1–4]. Although fat

distribution can be assessed by using dual energy X-ray

absorptiometry (DXA) for total and regional fat composition,
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and using computed tomography (CT) or magnetic resonance

imaging (MRI) scans for visceral and hepatic fat distribution, it is

rarely feasible to utilize these costly imaging methods in large-scale

population studies. Anthropometric measures, such as body mass

index (BMI) and waist size (waist circumference [WC] or waist-hip

ratio [WHR]), have been used as surrogates for total and

abdominal adiposity: however, their correlations with fat mass

vary by sex, ethnicity, life stages and other as yet-unknown factors

[5,6], indicating the limitations of these proxies, particularly for

heterogeneous populations when studying disease risks. Moreover,

these anthropometric measurements are poorly correlated with fat

compartments that carry the highest metabolic risk, such as

visceral and hepatic fat [6,7]. In this regard, judiciously selected

biomarkers assessed in peripheral blood may provide an attractive

alternative to, or complement, anthropometry as predictors of

body fat composition and distribution.

Few systematic attempts have been made to predict adiposity

using a comprehensive array of biomarkers [8]. One major

challenge is the limitation of conventional statistical methods to

handle a large number of correlated predictors without over-fitting

the data and leading to unreliable predictive ability [9]. The recent

increase in computing capacity has allowed the development of

statistical methods based on re-sampling to predict complex traits

from large numbers of independent markers in a limited sample

size, such as Random Forest modeling. In this report, we present a

Random Forest analysis of commonly used anthropometric

measures and circulating biochemical markers for the prediction

of total and compartment-specific body fat content among healthy,

Caucasian or Japanese American postmenopausal women. Our

general objective was to determine the best predictive biomarkers

for each body fat measure to complement the anthropometric

indicators. We studied biochemical markers of inflammation,

insulin resistance, sex steroid hormones, lipids, liver function, and

gastro-neuropeptides, which have been associated with body fat

distribution in past reports. Our findings demonstrate that

measuring a small subset of these known biomarkers enhanced

the prediction ability of simple anthropometric indicators for total

and abdominal adiposity, but especially for visceral and hepatic

adiposity in these two female populations.

Subjects and Methods

Study Subjects
As described previously [10,11], study subjects were recruited

from a random sample (n = 218) of participants in the Multiethnic

Cohort Study [12] who were female residents of Oahu, Hawaii,

were 60–65 years of age as of September 2009, and had BMIs in

the range of 18.5–40 kg/m2. All reported that both of their

parents were either of Caucasian or Japanese ethnicity. Exclusion

criteria included current smoking, use of selected medications

(chemotherapy, insulin, or weight-loss drugs), a substantial weight

change ($ 20 pounds in the past six months) or soft or metal

implants/objects in the body (n = 46). An additional 98 women

were unavailable or unwilling to participate. Among the 74

remaining eligible women, we selected 60 women (30 Caucasians

and 30 Japanese Americans) distributed equally across BMI

categories (cutoff points at BMI 22, 25, 27.5, and 30 kg/m2) to

obtain a balanced representation by ethnicity and BMI levels.

Participants underwent anthropometric measurements, a DXA

scan and a fasting venous blood collection at the University of

Hawaii Clinical Research Center (UH-CRC). Forty-eight of the

60 women (28 Caucasian and 20 Japanese American) also agreed

to participate in an MRI scan at the University of Hawaii and

Queen’s Medical Center (UH-QMC) MR Research Center. The

Institutional Review Boards of UH and QMC approved the study

protocol, and all participants signed an informed consent.

Body Fat Composition and Distribution
Anthropometric measurements included standing and sitting

heights, weight, and waist and hip circumferences. Waist

circumference (WC) was measured at two locations, at the navel

and immediately above iliac crest, and hip circumference (HC)

was measured at the widest area between waist and thighs,

including buttocks [13]. WC at navel and its ratio over HC (waist-

hip ratio; WHR) were used in the current analysis. A whole-body

DXA scan (GE Lunar Prodigy, Madison, WI) was performed to

measure total and regional body fat mass in the trunk, arms and

legs. Trunk fat-periphery fat ratio (TPFR), calculated by dividing

the trunk fat mass by the sum of fat mass in the arms and legs, was

used as an indicator of abdominal adiposity. A subset of women

completed an abdominal MRI scan on a 3 Tesla TIM Trio

scanner (Siemens Medical Systems, Erlangen, Germany) in a

supine position with a series of water-suppressed lipid scans at L4–

L5 inter-vertebral position and axial triple gradient-echo scans of

the liver [10]. Using the NIH program, Image J (http://rsbweb.

nih.gov/ij), each subject’s cross-sectional lipid MR image was

analyzed to determine the total fat and visceral fat areas at L4–L5

and to estimate the subcutaneous fat area by subtraction. Using a

Siemens Leonardo workstation, the relative fat content of the liver

was calculated based on the signal intensities of the three gradient

echo images from a circular region (15–25 cm2) in the lateral

portion of the right lobe [14].

Circulatory Biochemical Markers
Serum and plasma components were separated from fasting

blood samples and stored in aliquots at 280uC until analysis at the

University of Hawaii Cancer Center’s (UHCC) Analytical

Laboratory Shared Resource. The 58 analytes measured and

their analytic methods, along with information on commercial kits

when applicable, are listed in Table S1 (Supporting Infor-
mation). Some of the markers were derived from directly

measured analytes, as indicated in the Table. All assays were

conducted on the same day in one or two batches, with most

markers showing 2–20% variation among blind duplicate QC

samples (10% of study samples; Table S1). Accuracy was assured

by participation in quality assurance programs by the National

Institute for Standards and Technology (Gaithersburg, MD) and/

or by the testing of commercial control samples.

Statistical Analysis
We applied a Classification and Regression Tree (CART)-based

method called Random Forest in order to predict each of the

adiposity measurements of interest (total adiposity [total fat mass],

abdominal adiposity [TPFR, visceral adiposity [visceral fat area at

L4–L5] and hepatic adiposity [percent liver fat] from a large

number of predictors (anthropometry, key descriptive covariates,

and biomarkers) in a limited sample of women. Random Forest

takes an ensemble approach to create and summarize multiple

regression trees, which improves the prediction accuracy com-

pared to conventional CART methods [15–17]. Using a subset of

all available predictors and a random bootstrap subsample of all

women, each regression tree performs linear regression, a

technique which determines the linear function that best describes

the relationship between a dependent variable and predictor

variables based on minimizing the sum of squares of model

residuals. Each regression tree is measured for predictability by

using the remaining sample as an ‘‘out-of-bag’’ (OOB) testing

sample (Figure S1); each predictor is assigned an importance

Biomarker Predictors of Fat Distribution
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measure based on this cross-validation [15,16]. The Random

Forest method provides a summary of the importance of

predictors across the multiple regression trees and, thus, is suitable

for multicollinear predictors, as it grows each tree with only a

subset of all predictors and ranks correlated predictors with similar

importance in later cross-validation [16]. It has been widely utilized

in the prediction of complex biological pathways [18] and cancer

risk [19].

All predictor and outcome variables, other than ethnicity, were

continuous – percent liver fat was natural-log transformed to meet

model assumptions. Among the 58 biomarkers, highly correlated

markers (r.0.8) were consolidated in order to keep only one

marker in each correlated cluster with the highest correlation with

adiposity outcomes. As the result, 48 biomarkers were included in

the final data analysis. For example, leptin-adiponectin ratio was

chosen over adiponectin (rho = 20.87), insulin over Homeostatic

Model Assessment of beta-cell function (HOMA-beta; rho = 0.80)

or HOMA of insulin resistance (HOMA-IR; rho = 0.99), and total

cholesterol over low-density lipoprotein cholesterol (LDL;

rho = 0.91), due to their respective high correlations (all

p’s,.0001). Random Forest prediction models for each adiposity

outcome included: (1) anthropometric variables (BMI, WC,

WHR), age and ethnicity; (2) 48 biomarkers, age, ethnicity and

key covariates; (3) only the top 5 most important predictors from

the biomarker model (2); and (4) top 5 predictors (from model 2),

anthropometric variables (BMI, WC, WHR), age and ethnicity.

The key covariates that were tested in model (3) included information

on smoking status (never vs. former, pack-years of cigarette

smoking), education, use of medications (estrogen, statins, aspirin)

and dietary supplements, and number of children. Age, ethnicity

and the key covariates were selected because they may confound

the association between biomarkers and body fat distribution but,

as with all other variables in the model, were not retained if they

did not show important predictive ability. Because of the limited

sample size, a stratified sampling approach was used for each tree

so that there were no imbalances between the splits in the

distributions of all adiposity variables by age, BMI and WHR (t-

test p.0.50). For each analysis, 500 regression trees were fit to the

training data of 2/3 of the sample, with each tree using a subset of

all available predictors. Two measures of predictability were

created in each iteration. An importance score for each predictor was

created from each cross-validation step using the 1/3 OOB testing

sample, defined as the percent increase in the mean square error

upon random permutation of the given predictor. The R2 gives the

proportion of variability in the dependent variable that is

accounted by the given model in the test data. Subsequently, the

top 20 most ‘‘important’’ predictors were plotted and the top 5

most important predictors selected for each adiposity outcome

based on the measure of predictability. All statistical analyses were

performed using the R statistical computing environment, v2.12.1

(R Core Development Team, 2010) and SAS v9.3 (SAS Institute,

Cary, NC). Random Forest modeling was implemented using the

randomForest package for R (Liaw & Wiener 2002).

Results

Table 1 describes the participant characteristics. Since the

recruitment balanced the sample by ethnicity and BMI categories

and applied an upper BMI limit of 40 kg/m2, participants’ BMI

ranged from normal-weight to Class II obesity (18.8–39.6 kg/m2)

Table 1. Characteristics of participating women.

N with
available data* Mean (standard deviation) or N (%) Range

Age, yrs 60 63.4 (1.37) 60.9–65.8

Ethnicity, n (%) 60

Caucasian American 30 (50%) –

Japanese American 30 (50%) –

Smoking history*, n (%) 60

Never 37 (62%) –

Former 23 (38%) –

Hormone treatment, % current use 60 6 (10%) –

Lipid-lowering medications, % current use 60 22 (37%) –

Dietary supplement, % current use 60 51 (85%) –

Body Mass Index (BMI), kg/m2 60 26.7 (4.9) 18.8–39.6

Obese (BMI $30 kg/m2), n (%) 60 14 (23%)

Waist circumference (WC), cm 60 94.9 (14.4) 70.3–134.9

Waist-hip ratio (WHR) 60 0.93 (0.08) 0.78–1.10

Abdominal obesity (WC.88 cm or WHR.0.85) 60 53 (88%) –

Total fat mass, kg 60 27.2 (9.2) 11.1–53.5

Trunk-to-periphery fat ratio 60 1.26 (0.34) 0.67–2.35

Visceral fat area, mm2 48 138.2 (93.9) 16.3–50.1

Subcutaneous fat area, mm2 48 19.5 (98.9) 69.3–553.1

Liver fat, % 48 6.2 (5.6) 1.5–20.9

Fatty liver (.5.5% liver fat) 48 17 (35%) –

*Current smokers were excluded from the study. 12 women did not participate in the MRI studies.
doi:10.1371/journal.pone.0043502.t001

Biomarker Predictors of Fat Distribution
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and was distributed similarly between Caucasian and Japanese

American women [10]. Also, the mean total fat mass among these

women (27 kg), partially due to the truncated BMI range at

recruitment, was lower than that reported in a national survey for

mostly white women of similar ages (< 32 kg/m2) [20].

Nevertheless, a majority of these healthy, non-diabetic women

(88%) had abdominal obesity (WC.88 cm or WHR.0.85), and a

substantial fraction (35%) also had fatty liver (liver fat.5.5%;

[21]).

Figure 1 illustrates the Random Forest plots for predicting

total, abdominal, visceral and liver fat, based on biomarkers as well

as age, ethnicity, and key covariates, and without the anthropo-

metric indicators (model 3). Predictors selected from the training

data sets are listed in the order of ‘‘importance’’ for up to 20

predictors. Based on the test data sets, these biomarkers explained

70%, 51%, 47% and 44% of the variance in total, abdominal,

visceral and liver fat, respectively (Table 2). The top 5 predictors

for each adiposity outcome in the testing data set were identical,

and in a mostly identical order, as the top 5 predictors in the

training data set.

Table 2 presents the results from various prediction models. For

total fat, the Random Forest model based on anthropometry, age

and ethnicity explained most of the variation (R2 = 0.85). Random

Forest of 46 biomarkers and covariates (age, ethnicity, smoking,

medication, supplement and parity), without anthropometry,

provided a good but lower prediction (R2 = 0.70) than the

prediction from the anthropometry model. The top 5 most

important predictors alone (leptin, leptin-adiponectin ratio [LAR],

free estradiol, plasminogen activator inhibitor-1 [PAI1], and

alanine transaminase [ALT]) predicted 69% of the variation.

However, Random Forest prediction of total body fat mass based

on these 5 top predictors and anthropometry combined showed

the best prediction (R2 = 0.91).

Unlike total fat mass, the prediction of abdominal fat (TPFR)

was similar by anthropometry alone (R2 = 0.53) or by biomarkers

alone (R2 = 0.51), although the R2 was attenuated when consid-

ering only the top 5 predictors (25(OH)-vitamin D3, insulin-like

growth factor binding protein-1 [IGFBP1], uric acid, soluble leptin

receptor [sLEPR], Coenzyme Q10 [CoQ10]; R2 = 0.35). Adding

the top 5 biomarkers to BMI and the waist measures improved

somewhat the prediction of abdominal fat (R2 = 0.58).

The prediction of visceral fat obtained from the biomarkers

(R2 = 0.47) was improved when considering only the top 5

biomarkers (leptin, C-reactive protein [CRP], LAR, lycopene,

vitamin D3; R2 = 0.58). Adding the anthropometric variables to

the biomarkers further improved the prediction (R2 = 0.68) and

performed better than the anthropometry-only model (R2 = 0.65).

Liver fat was predicted 1.5-fold better by the biomarkers

(R2 = 0.44) than by anthropometric variables alone (R2 = 0.29),

with the top 5 predictors from the biomarker model being insulin,

sex hormone binding globulin [SHBG], LAR, alpha-tocopherol,

and PAI1 (R2 = 0.42). Adding BMI and waist size variables to the

biomarker model only improved the prediction slightly (R2 = 0.44).

Discussion

These prediction analyses of measured total and regional fat

mass confirmed that BMI, based on weight and height, and waist

size measurements together predict total body fat very well

(R2 = 85%). However, we found that measures of abdominal and

intra-abdominal (visceral and liver) fat were predicted less

optimally by these anthropometric variables and that the addition

of adiposity-associated biomarkers improved their predictions.

About half of the variation in abdominal adiposity was predicted

by anthropometry, with the prediction of this variability further

improved by adding the top 5 predictors from the Random Forest

biomarker model (R2 = 0.53 to 0.58). The prediction of visceral fat

also improved slightly (R2 = 0.65 to 0.68) by adding the top 5

biomarker predictors. The largest contribution from the biomark-

er model was observed for the prediction of liver fat, for which R2

increased from 29% with the anthropometry model to 44% with

the model that also included the top 5 biomarkers. Blood

adipokines (leptin, leptin-adiponectin ratio, sLEPR, PAI1) con-

tributed to the prediction of both total and regional fat. Other top

predictors included markers of insulin resistance and the IGF

pathway (insulin, IGFBP1, uric acid), sex hormones (free estradiol,

SHBG), lipid-soluble micronutrients (vitamin D3, lycopene,

CoQ10, alpha-tocopherol) and markers of inflammation (CRP).

It is well established that adipose tissues are active endocrine

organs, with each regional depot having intrinsic secretory profiles

[22–24]. Thus, blood concentrations of depot-specific adipocyte-

derived biomarkers and their metabolites may reflect relative body

fat distribution and also contribute to associated metabolic risks.

Metabolic syndrome has been associated more with abdominal fat

than total or gluteofemoral fat [25,26], and more with visceral fat

compared to abdominal subcutaneous fat [27–29]. Accordingly, in

past studies, certain circulatory markers have shown a strong

association with visceral fat specifically (Table S1), including low

blood levels of adiponectin [30–32] and SHBG [33], and high

levels of PAI1 [34], visfatin [35], systemic inflammatory markers

[36], insulin [37] and free estradiol [38]. Also, liver fat has been

associated with blood levels of liver enzymes [39,40], insulin and

sLEPR [41], adiponectin [42], PAI1 [43], fetuin A [44], retinol

binding protein-4 (RBP4) [45,46], and free fatty acids [47]. Our

study included most of these biomarkers associated with regional

adiposity.

There have been few published studies that have attempted to

optimally predict body composition with a comprehensive list of

biomarkers. In a study of 56 middle-aged and 20 older adults who

were healthy but overweight, 124 proteins in fasting blood

analyzed with a Luminex multiplex assay were tested for their

prediction of BMI using Random Forest modeling [8]. Similar to

our study, the candidate markers were selected a priori, based on

their association with chronic diseases, inflammation, endothelial

function and metabolic signaling. BMI was best predicted,

positively, by leptin, complement 3 (C3), CRP, amyloid P and

vascular endothelial growth factor, and, negatively, by IL-3, IL-13

and apolipoprotein A1. In another study of 20 postmenopausal

women, DXA-based percent lean body mass was predicted by

fasting blood levels of 90 cytokines analyzed with a Luminex

multiplex assay [48]. Random Forest modeling identified 7 top

predictors of percent lean mass (serum leptin, adiponectin, insulin,

C3, amyloid P, growth hormone, eotaxin) and discriminated high

vs. low lean mass groups with less error (mean error = 8.1%,

SD = 5.0%) compared to an alternative Recursive Partitioning

model (mean error = 11.9%, SD = 8.5%).

Our findings support the contention that adding key biomarkers

to usual anthropometric variables may enhance the prediction of

body fat distribution patterns when reference imaging-based

methods are not practical, such as typically in large epidemiologic

studies. Past studies that compared anthropometric measures to

imaging of fat topography observed a good correlation between

anthropometry and total fat mass [49] but detected lower

correlations for intra-abdominal fat distribution [6,7]. Our study

results are consistent with this literature.

Certain biomarkers performed far better than others in

predicting specific adiposity, such as leptin for total fat, lycopene,

leptin-adiponectin ratio and leptin for visceral fat, and insulin and

Biomarker Predictors of Fat Distribution
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SHBG for liver fat (Figure 1). We did not observe one or two

predominantly strong predictors for abdominal fat like we did for

the other adiposity measures. Leptin, a well-established indicator

of total adiposity, also predicted visceral fat, together with leptin-

adiponectin ratio, which may independently reflect leptin resis-

tance due to excess intra-abdominal adiposity [50]. Insulin

resistance markers (insulin, HOMA-IR, HOMA-beta) were

consistently among the most important predictors of visceral fat

and liver fat, although we included only insulin in the final model

due to their high correlations. These results are consistent with the

notion that visceral fat carries a greater metabolic risk than

subcutaneous fat by inducing fatty acid drainage into the liver

Figure 1. Random Forest models for predicting adiposity. Total, abdominal (trunk-to-periphery fat ratio or TPFR), visceral and hepatic
adiposity measurements were predicted to various extent by a number of blood biomarkers, as well as by demographic (age, ethnicity, education)
and key lifestyle variables (smoking, medication use, supplement use, parity), without anthropometric variables. Predictors were ranked by the
importance score, which was based on percent increase in mean square error upon random permutation of the given predictor. The figure shows the
top 20 predictors for each adiposity measure. (Abbreviations: BMI [body mass index], %incMSE (percent increase in mean square error), RF [Random
Forest]; see Table S1 for the full names of the biomarkers).
doi:10.1371/journal.pone.0043502.g001

Biomarker Predictors of Fat Distribution
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through the portal venous system, which then may impair insulin/

glucose homeostasis [51–53]. Endogenous synthesis of estrogen

from androstenedione in adipocytes is known to be particularly

active in the subcutaneous adipose tissue, whereas visceral fat and

subsequent increase in liver fat may interfere with the production

of SHBG [54]. This is also consistent with our findings, where

blood levels of bioactive free estradiol were shown to predict total

adiposity (mostly subcutaneous fat) and SHBG predicted hepatic

adiposity.

CRP ranked high for predicting visceral adiposity. However, in

contrast to previous studies [26,55], other common markers of

systemic inflammation were either mostly undetectable (TNFa) or

showed only modest to low predictive ability for total adiposity

(IL6). This may be because our study participants were mostly

healthy adults who were non-diabetic and without overt low-grade

inflammation. Lipid-soluble micronutrients, especially D vitamers,

also showed prediction capacity for abdominal, visceral and

hepatic adiposity, as noted before [56,57].

A key strength of the present study is the implementation of

Random Forest modeling. The use of stepwise linear regression to

screen biomarkers resulted in over-fitting of the training data

(leading to many predictors in the final model and a R2.95%),

with a low predictive R2 in the testing data, in our analysis (data

not shown), as well as in past studies [58]. The tree-based Random

Forest modeling also allowed the incorporation of potentially

important interactions among predictors. This is the first time that

this analytic approach was used to predict detailed, imaging-based

regional body fat measurements. The study limitations include a

relatively small sample size and the possibility that potential

confounders were not accounted for. Also, there may be other (as

yet unidentified) biomarkers that could substantially improve the

predictions. Replications in larger datasets are warranted,

especially to compare the prediction performance of biomarkers

in men and across ethnic groups with varying body fat distribution.

In this sample of Caucasian and Japanese American women,

ethnicity was an important determinant of fat distribution [10].

Interestingly, it did not remain an important predictor after

accounting for anthropometry and the biomarker predictors.

In summary, we provide preliminary evidence that supports the

utility of measuring key blood biomarkers to improve the

performance of usual anthropometric variables in predicting

abdominal, visceral and liver fat. Discovery of additional

biomarker predictors and generalization of this research to other

populations may allow for the development of accurate prediction

models for specific body fat compartments. Such prediction

equations may be very useful in predicting risk of obesity-

associated diseases at the individual and population levels.

Supporting Information

Figure S1 Diagram of Random Forest modeling. Random

Forest takes an ensemble approach to create and summarize

multiple regression trees. For this study, each regression tree

performed linear regression of an adiposity variable of interest on a

random subset of all available predictors in a random bootstrap

subsample of all women. Each regression tree is then measured for

predictability of the given linear regression model by applying it to

the remaining sample as an out-of-bag testing sample. Each

predictor is assigned a predictability measure (‘‘importance’’)

based on this cross-validation, which is summarized across

multiple regression trees.

(DOC)

Table S1 Measured and derived biomarkers considered for

Random Forest (RF) prediction of body fat distribution and

supporting evidence.

(DOC)
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(1) BMI, WC, WHR,
age, ethnicity

(2) Biomarkers, age,
ethnicity, key
covariates* (3) Top 5 important predictors*

(4) Top 5 predictors, BMI, WC,
WHR,
age, ethnicity

R2 Predictors

Total fat mass (kg) 0.85 0.70 0.69 leptin, LAR, free estradiol, PAI1, ALT 0.91

Trunk-periphery fat ratio
(TPFR)

0.53 0.51 0.35 25(OH)-vitamin D3, IGFBP1, uric acid,
sLEPR, CoQ10

0.58

Visceral fat area (mm2) 0.65 0.47 0.58 leptin, CRP, LAR, lycopene, vitamin D3 0.68

% Liver fat (log-transformed) 0.29 0.44 0.42 insulin, SHBG, LAR, alpha-tocopherol,
PAI1

0.44

*Model (2) included all biomarkers, age, ethnicity, and key covariates, including smoking status (never vs. former, pack-years of cigarette smoking), education, use of
medications (estrogen, statins, aspirin) and dietary supplements, and number of children. Model (3) shows the top 5 predictors from Model (2).
Abbreviations: IGFBP1 (insulin-like growth factor binding protein 1); LAR (leptin to high-molecular-weight adiponectin ratio); PAI1 (plasminogen activator inhibitor-1);
SHBG (sex hormone binding globulin); sLEPR (soluble leptin receptor).
doi:10.1371/journal.pone.0043502.t002
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