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Tina Landsvig Berentzen1*, Lars Ängquist1, Anna Kotronen2,3, Ronald Borra4,5, Hannele Yki-Järvinen2,

Patricia Iozzo4,6, Riitta Parkkola4,5, Pirjo Nuutila4,7, Robert Ross8, David B Allison9, Steven B Heymsfield10,

Kim Overvad11,12, Thorkild I. A. Sørensen1, Marianne Uhre Jakobsen11

1 Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark, 2 Division of Diabetes, Department of Medicine, University of Helsinki,

Helsinki, Finland, 3 Minerva Medical Research Institute, Helsinki, Finland, 4 Turku PET Centre, University of Turku, Turku, Finland, 5 Departments of Radiology, University of

Turku and Turku University Hospital, Turku, Finland, 6 Institute of Clinical Physiology, National Research Council, Pisa, Italy, 7 Departments of Medicine, University of Turku

and Turku University Hospital, Turku, Finland, 8 Division of Endocrinology and Metabolism, School of Kinesiology and Health Studies, Department of Medicine, Queen’s

University, Kingston, Ontario, Canada, 9 Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United

States, 10 Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States, 11 Department of Epidemiology, School of Public Health, Aarhus University,

Aarhus, Denmark, 12 Department of Cardiology, Center for Cardiovascular Research, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark

Abstract

Background: The association between waist circumference (WC) and mortality is particularly strong and direct when
adjusted for body mass index (BMI). One conceivable explanation for this association is that WC adjusted for BMI is a better
predictor of the presumably most harmful intra-abdominal fat mass (IAFM) than WC alone. We studied the prediction of
abdominal subcutaneous fat mass (ASFM) and IAFM by WC alone and by addition of BMI as an explanatory factor.

Methodology/Principal Findings: WC, BMI and magnetic resonance imaging data from 742 men and women who
participated in clinical studies in Canada and Finland were pooled. Total adjusted squared multiple correlation coefficients
(R2) of ASFM and IAFM were calculated from multiple linear regression models with WC and BMI as explanatory variables.
Mean BMI and WC of the participants in the pooled sample were 30 kg/m2 and 102 cm, respectively. WC explained 29% of
the variance in ASFM and 51% of the variance in IAFM. Addition of BMI to WC added 28% to the variance explained in ASFM,
but only 1% to the variance explained in IAFM. Results in subgroups stratified by study center, sex, age, obesity level and
type 2 diabetes status were not systematically different.

Conclusion/Significance: The prediction of IAFM by WC is not improved by addition of BMI.
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Introduction

Several studies suggest that the association between anthropo-

metric measures of obesity, such as body mass index (BMI) and

waist circumference (WC), and mortality is U-shaped [1–3].

However, recent large-scale studies have consistently shown that

the association between WC and mortality is particularly strong

and direct when adjusted for BMI [1,4–8]. The explanation

behind this direct association is not established, but one

conceivable explanation is that WC adjusted for BMI is a better

predictor than WC alone of intra-abdominal fat mass (IAFM),

which is presumed to be the most harmful fat depot [9,10].

We pooled anthropometric and magnetic resonance imaging

(MRI) data from European and American samples, and studied

the prediction of abdominal subcutaneous fat mass (ASFM) and

IAFM by WC alone and by addition of BMI as an explanatory

factor.

Materials and Methods

Subjects
Subjects (Table S1) were white men and women with no

chronic illness, except for type 2 diabetes and a small subset of

subjects with stress related angina pectoris symptoms [11].

Subjects were recruited mainly via the general media to participate

in clinical studies in Canada [12–15] and two sites of Finland;

Helsinki [16] and Turku [11,17–20] in the late 1990’s and up to

2010. Written informed consent was obtained from each

participant in accordance with the local ethical guidelines and

with the Helsinki Declaration II.
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Exposure and outcomes
Explanatory variables were BMI (kg/m2) and WC (cm). In all

centres, height was measured with a height ruler, and body weight

was measured with participants wearing light clothes and no shoes.

In Canada, WC was measured at the superior edge of the iliac

crest or at the level of the lowest rib. In Helsinki, WC was

measured midway between spina iliaca superior and the lower rib

margin. In Turku, WC was measured at the level of the umbilicus.

In all centres, BMI was calculated as weight in kilograms divided

by the square of height in meters.

Outcome variables were ASFM and IAFM obtained using

MRI. In Canada, abdominal fat mass was determined using 4–5

images acquired from the region extending from 5 cm below to

15 cm above the L4 and L5 intervertebral space using the method

described previously [21]. IAFM was defined as intra-perito-

neal+retroperitoneal fat mass. In Helsinki, abdominal fat mass was

determined by a series of 16 T1-weighted transaxial images

acquired from the region extending from 8 cm above to 8 cm

below the L4 and L5 intervertebral space using the method

described previously [22]. IAFM was defined as intra-peritoneal

fat mass. In Turku, abdominal fat mass was determined from a

single 10-mm thick axial image at the level of the intervertebral

disc L2–L3 using the method described previously [23]. IAFM was

defined as intra-peritoneal fat mass, and retroperitoneal fat mass

was also assessed. In all centers, an adipose tissue density of

0.9196 g/ml was used to convert the measured volumes into kilos.

Covariates were study centre, sex, age and type 2 diabetes. Type

2 diabetes status was assed from oral glucose tolerance tests or

fasting glucose obtained according to standard protocols in the

local centers [11–20]

Heterogeneity and pooling of the data
Differences between the study centres, as partly illustrated in

Table S1, were addressed by three strategies. First, differences in

the measurements of abdominal fat masses were taken into

account by converting ASFM and IAFM into centre-specific z-

scores. Second, differences in the definitions of IAFM were taken

into account by performing the statistical analyses in three

different pooled data sets A) pooled data from Canada/Turku

using z-scores of IAFM defined as intra-peritoneal+retroperitoneal

fat mass, B) pooled data from Helsinki/Turku using z-scores of

IAFM defined as intra-peritoneal fat mass, C) pooled data from

Canada/Helsinki/Turku using z-scores of IAFM defined as intra-

peritoneal+retroperitoneal fat mass in Canada and intra-perito-

neal fat mass in Helsinki and Turku. Data from each study centre

was also analysed separately using z-scores of the centre specific

definitions of IAFM. Third, other differences, e.g. in the

measurement site of WC, were taken into account by including

centre as a covariate in analyses including all centres.

Statistical analyses
Analyses were conducted in Stata version 11.2 (Stata Corpo-

ration, College Station, Texas; www.stata.com).

The variance explained in ASFM by BMI was calculated as the

total adjusted squared multiple correlation coefficient (R2) [24] of

ASFM obtained from a multiple linear regression model with BMI

as explanatory variable. WC was included as an explanatory

variable in a second step. Likelihood ratio tests were used to

compare the model with BMI with the model with BMI+WC.

Similar analyses were conducted for BMI and IAFM, and for WC

with BMI added in the second step. Analyses were also conducted

with study centre, sex, age and type 2 diabetes included as

explanatory factors in a third step. Furthermore, the residuals from

each of these models of BMI, WC and their combination were

plotted across the distributions of WC and BMI.

To investigate whether the associations between the anthropo-

metric measures and abdominal fat depots were equal across study

center, sex, age (cut-off at 50 years), obesity level (cut-off at BMI

$30 kg/m2) and type 2 diabetes status (yes/no), regression

analyses were stratified according to each of these factors.

Differences between groups were tested by including cross-product

terms in the analyses.

Linearity of BMI and WC in the regression analyses was

evaluated by restricted cubic splines, and the fit of the models to

the data was found acceptable by evaluating the standardized

residuals of each model in residual and probit-plots.

Results

Table 1 provides the basic description of the participants in each

of the pooled samples.

Table 2 shows the variance explained in abdominal fat depots

by BMI, WC and their combination in each of the pooled samples.

The absolute value of R2 varied in the samples due to differences

in sample characteristics and distribution of the explanatory

variables. BMI explained 47%, 65% and 56% of the variance in

ASFM, and 11%, 37% and 25% of the variance in IAFM in

Canada/Turku, Helsinki/Turku and Canada/Helsinki/Turku,

respectively (Table 2, crude models). Addition of WC to BMI

added 2%, 1% and 1% to the variance explained in ASFM and

40%, 17% and 27% to the variance explained in IAFM in

Canada/Turku, Helsinki/Turku and Canada/Helsinki/Turku,

respectively (Table 2, crude models). WC explained 11%, 43%

and 29% of the variance in ASFM and 49%, 54%, 51% of the

variance in IAFM in Canada/Turku, Helsinki/Turku and

Canada/Helsinki/Turku, respectively (Table 2, crude models).

Addition of BMI to WC added 38%, 23% and 28% to the

variance explained in ASFM and 2%, 0% and 1% to the variance

explained in IAFM in Canada/Turku, Helsinki/Turku and

Canada/Helsinki/Turku, respectively (Table 2, crude models).

Inclusion of study center, sex, age, and type 2 diabetes increased

the proportion of variance explained in ASFM and IAFM in all

samples (Table 2, adjusted models). As in the crude models,

addition of WC to BMI added to the variance explained in IAFM,

but only marginally to the variance explained in ASFM. Addition

of BMI to WC added to the variance explained in ASFM, but not

to the variance explained in IAFM (Table 2, adjusted models). The

residuals from the model of BMI, WC and their combination in

relation to ASFM and IAFM were similar across the distribution of

WC and BMI. So these results were in accordance with the results

based on R2 (Figure S1 and S2)

The results stratified by study center and according to sub-

groups of sex, age, obesity level and type 2 diabetes status were not

systematically different from the results in the pooled samples

(Table S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13,S14,

crude and adjusted models).

Discussion

The present study showed, in contrast to the expectation, that

the prediction of IAFM by WC was not improved by addition of

BMI as an explanatory factor. WC explained a modest proportion

of the variation in IAFM, but the proportion was larger than the

proportion explained by BMI. Accordingly, the prediction of

IAFM by BMI was improved by addition of WC as an explanatory

factor. These results were consistent across the different pooled

samples and study centers, and in subgroups of sex, age, obesity

level and type 2 diabetes status.

Waist, BMI and Intra-Abdominal Fat Mass
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Strengths of our study include the use of advanced and precise

non-invasive measures of ASFM and IAFM in a large data sample.

Abdominal fat masses and WC were measured differently in the

study centres, but despite these differences, results were consistent

across the study centres. We do therefore not believe that these

measurement differences have influenced our results despite some

[25], but not other [26] studies suggesting that such measurement

differences could have an influence. Due to the large data sample,

we could address whether the results differed among sub-groups

defined according to sex, age, obesity level and type 2 diabetes

status, and results were consistent across these factors. However,

limited information on covariates was available, all participants

had the same ethnic background, and the majority was overweight

and obese. We used R2 to assess whether WC adjusted for BMI

was a better predictor of IAFM than WC alone. R2 is dependent

on the distribution of the explanatory variables, and, accordingly,

the absolute value of R2 varied in the different samples. However,

the prediction of IAFM by WC was not improved by addition of

BMI as an explanatory factor in any of the samples, which suggests

that predictive value of WC and WC adjusted for BMI was not

influenced by differences in the distribution of the explanatory

variables.

Several large-scale studies have shown that the association

between WC and mortality is particularly strong and direct when

adjusted for BMI [1,4–8]. One conceivable explanation for this

association has been that WC adjusted for BMI is a better

predictor of IAFM than WC alone. The variation in WC is

believed to originate from variation in ASFM and IAFM, whereas

Table 1. Characteristics of the study participants in each of the samples pooled.

Canada/Turku (n = 383) Helsinki/Turku (n = 502) Canada/Helsinki/Turku (n = 742)

Median (10–90%-tile) Median (10–90%-tile) Median (10–90%-tile)

Age 57 (38; 72) 48 (25.8; 64) 49 (27;68)

Body mass Index (kg/m2) 30.6 (26.6; 35.8) 29.7 (23.5; 36.6) 30.2 (24.2; 35.9)

Waist Circumference (cm) 103.8 (91; 115.5) 101 (83.5; 118) 102.3 (86; 117.5)

Abdominal Subcutaneous Fat Mass (kg) 4.6 (2.9; 7.2) 3.9 (1.8; 6.9) 4.2 (2.1; 7.0)

Intra-Abdominal Fat Mass (kg) 3.0 (1.6; 4.8)* 1.5 (0.5; 3.2)# 1.9 (0.6; 4.1)¤

Women in the sample 46.7% (179) 49.8% (250) 50.3% (373)

Subjects with type 2 diabetes 27.1% (104) 36.7% (184) 25.9% (192)

*Intra-Abdominal Fat Mass = intra-peritoneal fat mass+retroperitoneal fat mass.
#Intra-Abdominal Fat Mass = intra-peritoneal fat mass.
¤Intra-Abdominal Fat Mass = intra-peritoneal fat mass+retroperitoneal fat mass in Canada and intra-peritoneal fat mass in Helsinki and Turku.
doi:10.1371/journal.pone.0032213.t001

Table 2. Variance explained in abdominal subcutaneous fat mass and intra-abdominal fat mass by body mass index, waist
circumference and their combination in each of the pooled samples.

Canada+Turku # Helsinki/Turku ¤ Canada/Helsinki/TurkuI

ASFM ASFM ASFM

Crude Adjusted* Crude Adjusted* Crude Adjusted*

R2 R2 R2 R2 R2 R2

BMI 0.47 0.60 0.65 0.76 0.56 0.70

WC 0.11 0.56 0.43 0.73 0.29 0.66

BMI+WC 0.49 0.62 0.66 0.78 0.57 0.72

IAFM IAFM IAFM

Crude Adjusted* Crude Adjusted* Crude Adjusted*

R2 R2 R2 R2 R2 R2

BMI 0.11 0.52 0.37 0.64 0.25 0.58

WC 0.49 0.59 0.54 0.66 0.51 0.63

BMI+WC 0.51 0.59 0.54{ 0.67 0.52 0.63

Abbreviations: ASFM, abdominal subcutaneous fat mass. BMI, body mass index- IAFM, intra-abdominal fat mass. R2, adjusted squared multiple correlation coefficients.
WC, waist circumference.
*Regression models adjusted for study center, sex, age, type 2 diabetes status.
#Intra-abdominal fat mass = intra-peritoneal fat mass+retroperitoneal fat mass.
¤Intra-abdominal fat mass = intra-peritoneal fat mass.
IIntra-abdominal fat mass = intra-peritoneal fat mass+retroperitoneal fat mass in Canada and intra-peritoneal mass in Helsinki and Turku.
p,0.05 for WC and BMI in all models, except for BMI in { where p.0.05.
doi:10.1371/journal.pone.0032213.t002
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the variation in BMI is believed to originate primarily from

variation in subcutaneous fat mass, both at the abdomen and

elsewhere. By adjusting WC for BMI, the hypothesis has been that

the variation in ASFM is removed from the variation in WC,

whereby the variation left in WC adjusted for BMI may directly

reflect the variation in IAFM. Our data do not confirm this

hypothesis, as addition of BMI to WC did not add to the variance

explained in IAFM. Similar to our results, a previous study on

white men and women found that addition of BMI to WC added

to the variance explained in ASFM, but not to the variance

explained in IAFM [27]. The increased mortality risk associated

with a high WC in a model adjusted for BMI may, however, not

only reflect the effects of high amounts of (intra) abdominal fat

mass, but also the effects of low amounts of beneficial body

compartments, such as gluteofemoral fat mass or lean body mass

[28–30]. More studies of WC and WC adjusted for BMI in

relation to imaging measurements of fat distribution and body

composition are needed to understand the mechanism behind the

strong, direct and replicated association between WC adjusted for

BMI and mortality [1,4–8].

In conclusion, our results do not support the hypothesis that

WC adjusted for BMI is a better predictor of IAFM than WC

alone. Therefore, the assumption that WC adjusted for BMI is a

better predictor of IAFM than WC alone should be reconsidered.
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