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Abstract

Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic
levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved
biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide
range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe
the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota. I
identify the undigested exoskeletal remains of a wide range of small invertebrates that lived at or near the water sediment
interface such as hyolithids, brachiopods, different types of arthropods, polychaetes and wiwaxiids. This set of direct fossil
evidence allows the first detailed reconstruction of the diet of a 505-million-year-old animal. Ottoia was a dietary generalist
and had no strict feeding regime. It fed on both living individuals and decaying organic matter present in its habitat. The
feeding behavior of Ottoia was remarkably simple, reduced to the transit of food through an eversible pharynx and a
tubular gut with limited physical breakdown and no storage. The recognition of generalist feeding strategies, exemplified
by Ottoia, reveals key-aspects of modern-style trophic complexity in the immediate aftermath of the Cambrian explosion. It
also shows that the middle Cambrian ecosystem was already too complex to be understood in terms of simple linear
dynamics and unique pathways.
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Introduction

The study of exceptionally preserved Cambrian biotas [e.g.,

Burgess Shale [1,2], Chengjiang [3,4], Sirius Passet [5–7] and

Emu Bay Shale [8–10] has led to accurate reconstructions of the

anatomy, lifestyles [11–13], visual properties [10], and even

behaviors [14,15] of early animals. However, information is

lacking concerning their interactions within the food chain and

their diet. The functioning of the Cambrian ecosystem has mainly

been addressed through a combination of indirect fossil evidence

supported by modern analogues [16]. Typically, the feeding types

(e.g. predation vs. particle-feeding) and strategies (sediment-eating

vs. carnivory) of most Cambrian animals have been inferred from

the morphofunctional analysis of their food-gathering apparatus-

es/limbs [17–20] and digestive systems [21]. The predatory habit

of anomalocaridids, for example, is supported by evidence from

their frontal appendages, mouth apparatus [22–24] and sophisti-

cated eyes [10], but there is no direct evidence of what organisms

they actually preyed upon. Mechanical models using finite element

analysis [25] and recent studies of the oral cone [26] contradict the

view that anamolocaridids were durophagous predators able to

perform strong biting motions and to inflict wounds on hard

exoskeletons [24,27,28]. The contents from coprolites [29] provide

a degree of trophic resolution but cannot be tied to particular

predators although some coprolites composed entirely of crushed

skeletal elements from the Cambrian of California, Utah, Canada

(Burgess Shale) and Australia [30] may have been produced by

arthropods with robust gnathobasic appendages such as Sidneyia

[31]. Rare fossil associations [32] and trace fossils [33] have

suggested possible hunting or scavenging behaviors but these

relationships require quantification. Qualitative and quantitative

analyses of the communities from the Burgess Shale [2,34] and the

Maotianshan Shale [35–37] have provided detailed information

on the diversity of ecological types and the presumed organization

of the early and middle Cambrian ecosystems but do not tell us

about the exact trophic links between species. Recent theoretical

models [38] have predicted strong similarities between the trophic

organization of Cambrian food webs and modern ones but lack

detailed testing by fossil evidences. By contrast, the analysis of gut

contents presented here and exemplified by the priapulid worm

Ottoia prolifica from the middle Cambrian Burgess Shale provides

direct and detailed evidence for trophic relationships and new

insights both into the actual diet and feeding behavior of

Cambrian animals. The case of priapulids reveals the potential

of a source of information that has long been considered as

relatively limited and anecdotal [39,40]. A noticeable exception

though is S. Conway Morris’ comprehensive work [39] on the

priapulid worms from the Burgess Shale in which the gut contents

of Ottoia are first described. This pioneer work is important in that

it led to the concept of Ottoia as an iconic Cambrian predator and
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formed the basis of my study. My results also invite reassessment of

the function and the complexity of Cambrian marine food webs

where animals, for the first time in their history, played a major

role in the transfer of mass and energy. The interpretations here

also challenge the notion of strict feeding regimes and linear food

chain and provide support for a marine trophic web where energy

flow circulated via multiple animal interactions and parallel

pathways [41], as it does in present-day ecosystems.

Materials and Methods

Our fossil material comes from two stratigraphic horizons in the

middle Cambrian Burgess Shale Member: 1) the Walcott Quarry

Member, characterized by fossiliferous, finely laminated, calcar-

eous, siltstones and silty graphitic mudstones, typically with a

weathered horizontally-banded appearance; and 2) the slightly

younger Raymond Quarry Member, characterized by grey,

greenish and brown layered blocky-slaty mudstone [1,2,42–44].

The Ottoia specimens kept in the collections of the National

Museum of Natural History, Smithsonian Institution, Washington

D.C. (USNM), all come from excavations at Walcott’s original site

(the so-called Phyllopod Bed within the Walcott Quarry Member).

Those from the Royal Ontario Museum (ROM) collections,

Toronto, were collected from both the Raymond and Walcott

Quarry Members (RQ, RT and WQ, WT numbers respectively)

in successive seasons of excavations and talus picking (RT, WT)

between 1975 and 2000 by Royal Ontario Museum parties led by

D. Collins. Altogether more than 2,600 specimens of Ottoia prolifica

Figure 1. Count data and composition of the gut contents of Ottoia prolifica, from the middle Cambrian Burgess Shale Formation
(Series 3, Stage 5; see [45]). The pie diagrams illustrate differences in the diet of Ottoia from the Raymond Quarry (RQ+RT) and the Walcott
(WQ+WT) Quarry. Hyolithids dominate in the gut contents from the Raymond Quarry followed in decreasing order by brachiopods, agnostids,
trilobites, bradoriids, ASE (presumed wiwaxiids), SLE (presumed polychaetes) and trilobites. In the Walcott Quarry, three almost equally represented
groups (SLE, hyolithids and ASE) are prevalent, followed by bradoriids, trilobites, agnostids and brachiopods. (1) guts containing skeletal fragments
and/or undetermined material and a variable proportion of sediment; (2) guts containing skeletal elements or fragments that belong to animal
species present in the Burgess Shale biota; (3) guts containing elements that belong to a single species (e.g. only hyolithid skeletal elements). Empty
guts generally appear as a colored or reflective strip running axially from the pharynx to the anus. ASE, almond-shape elements (presumed wiwaxiid
sclerites); RQ, RT, collection specimens from the Raymond Quarry and talus (Royal Ontario Museum); SLE, setae-like elements (presumed polychaete
chaetae); USNM, collection specimens from the National Museum of Natural History, Smithsonian Institution, Washington D.C.; WQ, WT, collection
specimens from the Walcott Quarry and talus (Royal Ontario Museum). Raw data in Table S1.
doi:10.1371/journal.pone.0052200.g001

Gut Contents of Cambrian Worm Ottoia

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e52200



Figure 2. General morphology of Ottoia prolifica from the middle Cambrian Burgess Shale. A, ROM 61780a, high concentration of
complete specimens. B–D, ROM 61759, ROM 61752 and ROM 61757, complete specimens. E, F, ROM 61751 and ROM 61765, details of anterior part. G,
ROM 61760, details of introvert bearing curved scalids. H, I, ROM 61769 and ROM 61764, details of posterior part showing bursa and posterior hooks.
Abbreviations: a, anus; an, trunk annulation; bu, bursa; gu, gut; in, introvert; m, mouth; ph, posterior hook; pt, pharyngeal teeth; px, pharynx; px(e),
everted pharynx; px(i), inverted pharynx; sc, scalid; tr, trunk. Scale bar: 1 cm for A–D and 5 mm for E–I.
doi:10.1371/journal.pone.0052200.g002

Figure 3. General morphology of Recent priapulid worms exemplified by Priapulus caudatus collected from near the Kristineberg
Marine Station, Gullmarfjord, Sweden, depth ca. 30 m. A, B, general view of a live specimen in sea water and simplified section through body
showing major anatomical features. C, section through pharynx (sclerotized pharyngeal teeth in orange; introvert removed. D, F, frontal view of a
slightly everted pharynx showing pentagonal pattern of pharyngeal teeth around mouth opening and details of pharyngeal teeth. E, G, scalid rows
along bulbous introvert and details of scalids (tip perforated). H–J, feces of Priapulus caudatus filled with compacted undigested material and
enclosed by a transparent membrane, bundles of undigested polychaete chaetae and undetermined gut contents (mainly sediment and detritus of
various origin). D–G, I, J, are scanning electron micrographs of dessicated specimens. Abbreviations: a, anus; an, trunk annulation; bu, bursa; ca,
caudal appendage; cc, coelomic cavity; fc, feces contents; fm, feces membrane; go, gonads; gu, gut; in, introvert; m, mouth; pm, pharyngeal muscles;
pt, pharyngeal tooth; px, pharynx; rm, retractor muscle; sc, scalid; sr, scalid row; tr, trunk. Scale bar: 1 cm for A, B; 5 mm for C; 500 mm for D, E, H;
200 mm for F; 100 mm for G; 10 mm for I; 5 mm for J.
doi:10.1371/journal.pone.0052200.g003
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Figure 4. Elemental mapping of the gut of Ottoia prolifica from the middle Cambrian Burgess Shale. The mapping reveals anatomical
partitioning of the gut, with elevated C, Fe and P that probably reflects its organic-rich original composition and early diagenetic mineralizations in
pyrite, apatite or calcite. A–E, ROM 61758b. A, B, general view under normal and polarized light (white arrow to indicate mapped area). C, D, back
scattered image of gut showing patches of carbonaceous film; this film is interpreted as remains of the gut wall, rather than gut contents. E,
elemental mapping. Abbreviations: a, anus; cf, carbonaceous film; gc, gut content; gu, gut; m, mouth. Scale bar: 1 cm for A, B; 5 mm for E; 1 mm for C;
20 mm for D.
doi:10.1371/journal.pone.0052200.g004
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were examined, only a small percentage had preserved gut

contents (Fig. 1, Table S1). The recent priapulid Priapulus caudatus

was collected from the Gullmar fjord near the Sven Lovén Centre

for Marine Sciences at Kristineberg, Sweden and from near The

White Sea Biological Station ‘‘Kartesh’’ (WSBS), Russia. Digital

photography (with polarizing filters to increase contrast of

anatomical features), scanning electron microscopy and Energy-

dispersive X-ray spectroscopy (EDX) analysis were used to study

the morphology and chemical composition of the fossil and Recent

material. The global chronostratigraphic subdivision of the

Cambrian System is currently in the process of ratification by

the International Union of Geological Sciences (IUGS). The

Burgess Shale Formation belongs to Series 3, Stage 5 (see recent

provisional chart [45]). For convenience, I maintain usage of

‘‘middle Cambrian’’ for this formation.

This research does not involve human participants. I obtained

permission to study the Burgess Shale fossil collections from the

Royal Ontario Museum (ROM,Toronto) and the Smithsonian

National Museum of Natural History (USNM, Washington D.C.)

from Jean-Bernard Caron and Douglas Erwin, respectively. The

Table 1. Hyolithid elements in the gut contents of Ottoia prolifica from the Middle Cambrian Burgess Shale: countings and
measurements.

HYOLITHIDS RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with hyolithid conchs 53 100 19 100 28 100 100 100

1 conch in gut 33 62.5 10 53 14 50 57 57

2 conchs in gut 10 19 7 37 8 28.5 25 25

3 conchs in gut 6 11 1 5.5 3 11 10 10

4 conchs in gut 3 5.5 0 0 2 7 5 5

5 conchs in gut 1 2 1 5.5 0 0 2 2

6 conchs in gut 0 0 0 0 1 3.5 1 1

number of hyolithid conchs 88 100 32 100 53 100 173 100

position 1 (anterior) 1 1 2 6.5 4 7.5 7 4

position 2 (mid-anterior) 8 9 3 9.5 6 11.5 17 10

position 3 (mid-posterior) 28 58 8 25 23 43.5 59 34

position 4 (posterior) 51 32 19 59.5 20 37.5 90 52

position 1 (anterior) 1 1 2 6.5 4 7.5 7 4

position 2 (mid-anterior) 8 9 3 9.5 6 11.5 17 10

position 3 (mid-posterior) 28 58 8 25 23 43.5 59 34

orientation of conchs 1 72 82 24 75 37 70 133 77

orientation of conchs 2 16 18 8 25 16 30 40 23

conch length: 0–0.99 mm 1 1 0 0 0 0 1 0.5

conch length: 1–1.99 mm 6 7 5 16 0 0 11 6.5

conch length: 2–2.99 mm 8 9 4 13 4 8 16 9.5

conch length: 3–3.99 mm 17 19.5 6 19.5 12 23 35 20.5

conch length: 4–4.99 mm 15 17 8 26 10 19 33 19.5

conch length: 5–5.99 mm 20 23 6 19.5 12 23 38 22.5

conch length: 6–6.99 mm 8 9 1 3 11 21 20 11.5

conch length: 7–7.99 mm 4 4.5 1 3 1 2 6 3.5

conch length: 8–8.99 mm 5 6 0 0 0 0 5 3

conch length: 9–9.99 mm 2 2 0 0 0 0 2 1

conch length: 10–10.99 mm 0 0 0 0 2 4 2 1

RQ, RT, WQ, WT: collections of the Royal Ontario Museum, Toronto, Raymond Quarry and talus, Walcott Quarry and talus, respectively. USNM, collections of the
Smithsonian National Museum of Natural History, Washington D.C. Raw data in Table S1. orientation of conchs 1 = conch apex pointing upwards within the gut of
Ottoia; orientation of conchs 2 = conch apex pointing downwards.
doi:10.1371/journal.pone.0052200.t001

Figure 5. Sedimentary ingesta within the gut of Ottoia prolifica from the middle Cambrian Burgess Shale Formation. A–D, USNM
196195, three-dimensionally preserved gut contents, general view and thin section; gut material (C) is easily distinguished from the matrix (D) by its
brown colour due to high organic content. Crystals (in white) are not specific to the gut and are observed elsewhere in the matrix though smaller and
less concentrated; they are interpreted as sponge spicules [21]. E, F, ROM 61755a, isolated fragment of gut content seen in transverse section. G, H,
ROM 61754, gut contents showing small skeletal fragments and undetermined elements embedded in sediment. I, J, ROM 61755a, transverse section
through upper part of gut content; the uppermost thin layer possibly represent the gut wall. K, ROM 61755b, thin carbonaceous film overlying gut
contents, possibly representing the gut wall. gc, gut contents; se, sediment; sf, skeletal fragment; ue, undetermined element. A–D, courtesy L. Wilson
(see also [21]). A, G are light photographs; B and D were taken in transmitted light; E, F, H-K are scanning electron micrographs (K, back-scattered
image). Scale bar: 5 mm for A; 2 mm for G; 500 mm for B, H; 100 mm for C, D; 50 mm for K; 10 mm for E, I; 5 mm for F; 2 mm for J.
doi:10.1371/journal.pone.0052200.g005
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majority of specimens were studied in the ROM and the USNM.

A small number of them were obtained on loan and returned.

Results

Gut Content Analysis
As with the majority of non-biomineralizing fossils from the

Burgess Shale, Ottoia prolifica is preserved as compressed alumino-

silicate and carbonaceous films [46,47] (Fig. 2). Ottoia resembles

Recent priapulids [48,49] (Fig. 3) in having a retractile introvert

armed with hooks and an invaginable pharynx lined with small

teeth, two features of key-importance in locomotion and feeding

[50]. The gut of Ottoia appears as a colored or reflective strip of

constant width (1.4 to 2.3 mm in specimens 60–100 mm long

[21]) running axially from the pharynx to the anus. It is either

straight, sinuous or looped. EDX elemental mapping reveals

anatomical partitioning of the gut with elevated C, Fe and P that

probably reflects its organic-rich original composition and early

diagenetic mineralizations in pyrite, apatite or calcite (Fig. 4).

More than 50% of the studied specimens possess empty guts (Fig. 1)

and about 20% display three-dimensionally preserved gut contents

(GC) that preferentially concentrate in the posterior half of their

digestive tract. GC typically occur as compacted ribbon-like

features or fragmented blobs containing skeletal elements (e.g.

hyolithid conchs, brachiopod valves), smaller debris of uncertain

origin, and sediment. Thin section, SEM and EDX analyses do

not show any significant compositional difference between GC and

the aluminosilicate host rock, except from being enriched in

organic matter (Fig. 5). Furthermore, acritarchs and sponge

spicules found in comparable quantities in GC and the host rock

[21] confirm that Ottoia ingested sediment.

(a) Hyolithids. The most frequent animal in Ottoia’s GC

(Fig. 1, Tables 1, 2, 3, 4 and Table S1) is the hyolithid Haplophrentis

carinatus [1,51] characterized by a mineralized exoskeleton with a

pointed conch, an operculum and a pair of curved appendages

called helens; Figs. 6A–H, 7). It occurs in 48% of GC that have

identifiable elements (Fig. 1). The number of conchs varies from 1

to exceptionally 6; 82% of hyolithid-bearing GC have only 1 or 2

conchs; 62% of the conchs are ca. 3–6 mm long and 0.6–3 mm

wide (Table 1). Hyolithids in GC are 3D-preserved and show no

visible trace of physical breakdown or chemical dissolution, the

conch and the operculum being sometimes connected (Fig. 6D).

The very rare presence of helens within GC, either attached or

detached from the conch, suggests that the majority of hyolithids

became partly disarticulated as they entered the digestive tract of

the worm (e.g. by the muscular contractions of pharynx). Helens

may have been weakly attached in life, which may account for the

low percentage (ca. 7%; [52]) of fully articulated hyolithids in the

fossil assemblages. Hyolithid conchs show a remarkably consistent

orientation with 77% of them pointing towards the mouth of

Ottoia. This indicates that hyolithids were preferentially grasped

and drawn into the gut by their anterior side, where they probably

offered a stronger grip point to the pharyngeal teeth of Ottoia.

(b) Brachiopods. Articulate brachiopods (Table 2) are

represented in GC by Micromitra burgessensis [1,53,54] characterized

by a very distinctive lozenge-like reticulated pattern (Figs. 6I–K,

8A–F) and, possibly Diraphora [1,53,54], although much more

rarely. The best-preserved specimens of Micromitra burgessensis (not

in GC) are fringed with long and delicate setae which indicates

that the animal did not live buried in the sediment [1] but more

likely at the water sediment interface.

(c) Arthropods. Arthropod skeletal elements (Table 3) are

frequent, represented mainly by agnostids, small trilobites and

bradoriids (Figs. 6L–P; 8G–J). The agnostids Ptychagnostus praecur-

rens [1,55] and possibly Pagetia bootes [1,55] occur as mainly

disarticulated exoskeletal elements (anterior and posterior shields,

thoracic segments), except for one complete specimen found

within the anterior-most section of the gut just behind the pharynx

Table 2. Brachiopod elements in the gut contents of Ottoia prolifica from the Middle Cambrian Burgess Shale: countings and
measurements.

BRACHIOPODS RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with brachiopods 15 100 2 100 1 100 18 100

with Micromitra burgessensis 10 67 1 50 0 0 11 61

with Diraphora bellicostata 1 7 0 0 1 100 2 11

with undet. brachiopods 4 26 1 50 0 0 5 18

number of brachiopod valves 18 100 2 100 1 100 21 100

position 1 (anterior) 0 0 0 0 0 0 0 0

position 2 (mid-anterior) 1 5.5 0 0 1 100 2 9.5

position 3 (mid-posterior) 6 33.5 0 0 0 0 6 28.5

position 4 (posterior) 11 61 2 100 0 0 13 62

number of measured valves 18 100 2 100 1 100 21 100

valve width: 0–0.99 mm 1 5.5 1 50 0 0 2 9,5

valve width: 1–1.99 mm 6 33.5 1 50 0 0 7 33.5

valve width: 2–2.99 mm 6 33.5 0 0 0 0 6 28.5

valve width: 3–3.99 mm 3 16.5 0 0 0 0 3 14

valve width: 4–4.99 mm 0 0 0 0 1 100 1 5

valve width: 5–5.99 mm 2 11 0 0 0 0 2 9.5

valve width: 6–6.99 mm 0 0 0 0 0 0 0 0

RQ, RT, WQ, WT: collections of the Royal Ontario Museum, Toronto, Raymond Quarry and talus, Walcott Quarry and talus, respectively. USNM, collections of the
Smithsonian National Museum of Natural History, Washington D.C. Raw data in Table S1.
doi:10.1371/journal.pone.0052200.t002
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Table 3. Arthropod elements in the gut contents of Ottoia prolifica from the Middle Cambrian Burgess Shale: countings and
measurements.

3-BRADORIIDS RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with agnostids 6 100 9 100 1 100 17 100

with Pagetia bootes 5 62.5 2 40 1 25 9 47

with Ptychagnostus praecurrens 2 25 2 40 0 0 3 23.5

with undet. agnostids 1 12.5 1 20 3 75 5 29.5

number of agnostid elements 8 100 6 100 6 100 20 100

position 1 (anterior) 2 25 1 16.5 0 0 3 15

position 2 (mid-anterior) 1 12.5 0 0 1 16.5 3 15

position 3 (mid-posterior) 1 12.5 3 50 1 16.5 10 50

position 4 (posterior) 4 50 2 33.5 4 67 4 20

number of measured agnostid elements 8 100 5 100 2 100 15 100

width: 0–0.99 mm 1 12.5 0 0 0 0 1 6.5

width: 1–1.99 mm 4 50 1 20 0 0 5 33.5

width: 2–2.99 mm 3 37.5 1 20 0 0 4 26.5

width: 3–3.99 mm 0 0 1 20 2 100 3 20

width: 4–4.99 mm 0 0 2 40 0 0 2 13.5

width: 5–5.99 mm 0 0 0 0 0 0 0 0

width: 6–6.99 mm 0 0 0 0 0 0 0 0

2- TRILOBITES RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with trilobites 1 100 5 100 2 100 8 100

with Ehmaniella waptensis 0 0 2 40 0 0 2 25

with undet. trilobites 1 100 3 60 2 100 6 75

number of trilobite elements 1 100 6 100 2 100 9 100

position 1 (anterior) 0 0 1 16.5 0 0 0 0

position 2 (mid-anterior) 0 0 0 0 1 50 3 33.5

position 3 (mid-posterior) 1 100 1 16.5 0 0 2 22

position 4 (posterior) 0 0 4 67 1 50 4 44.5

number of measured trilobite elements 1 100 5 100 0 0 6 100

width: 0–0.99 mm 0 0 0 0 0 0 0 0

width: 1–1.99 mm 1 100 1 20 0 0 2 33.3

width: 2–2.99 mm 0 0 0 0 0 0 0 0

width: 3–3.99 mm 0 0 2 40 0 0 2 33.3

width: 4–4.99 mm 0 0 2 40 0 0 2 33.3

width: 5–5.99 mm 0 0 0 0 0 0 0 0

width: 6–6.99 mm 0 0 0 0 0 0 0 0

3- BRADORIIDS RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with bradoriids 6 100 9 100 1 100 17 100

number of bradoriid elements 6 100 11 100 1 100 22 100

position 1 (anterior) 1 17 2 18 0 0 4 18

position 2 (mid-anterior) 2 33 2 18 1 100 4 18

position 3 (mid-posterior) 1 17 4 36.5 0 0 6 27.5

position 4 (posterior) 2 33 3 27.5 0 0 8 36.5

number of measured valves/carapaces 6 100 11 100 1 100 20 100

valve/carapace length: 0–0.99 mm 0 0 1 9 0 0 1 5

valve/carapace length: 1–1.99 mm 5 83.5 7 64 1 100 16 80

valve/carapace length: 2–2.99 mm 1 16.5 3 27 0 0 3 15

valve/carapace length: 3–3.99 mm 0 0 0 0 0 0 0 0

valve/carapace length: 4–4.99 mm 0 0 0 0 0 0 0 0
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(Fig. 6L, M). The trilobite Ehmaniella [1,55] is represented by

isolated cephalons, pygidia and disarticulated thoracic segments

(Figs. 6N–P, 9A–E). The bradoriid Liangshanella burgessensis [56] is a

tiny arthropod capped by a dorsally folded shield. Although

extremely abundant in the Burgess Shale biota [2], L. burgessensis is

a rare element in GC (Fig. 9F, G). Indeterminate bivalved

arthropods different from bradoriids also occur as shield-like

folded features (Fig. 9I, J). In addition to these readily identifiable

undigested remains are setae-like (SLE) and almond-shape (ASE)

skeletal elements.

(d) Setae-like elements (SLE). SLE generally occur as large

concentrations of straight or slightly curved 3D-preserved cylin-

drical elements (Fig. 10). Their size (length and diameter 50–950

and 17–55 mm, respectively; Fig. 11) is not consistent with a

sponge origin (Figs. 11, Fig. S1). Most sponges occurring in the

same horizon or associated with Ottoia on the same bedding plane

[57,58] have monaxial needle-like elements (diameter between 10

and 20 mm) usually tightly clustered to form tracts or tufts. Pirania

has strong radial spicules (length .7 mm and diameter .100 mm).

No cross-shaped or rayed structure typical of hexactinellid (e.g.

Protospongia) or stem-group calcareous (e.g. Eiffelia) sponges was

found in SLE. That SLE are arthropod setae is unlikely because of

the lack of tergites, shields or appendages associated with them.

SLE are interpreted as the chaetae of the polychaete worm

Burgessochaeta setigera [1,59] (Figs. 10G–J, 11) that effectively co-

occurs with Ottoia (Table 5). Supporting evidence comes from the

high number of chaetae in Burgessochaeta (.1000 attached to more

than 20 pairs of biramous parapodia), their size range (diameter

30–90 mm) and frequent groupings in bundles (Fig. 10B–E). The

size of SLE is consistent with Ottoia feeding on juveniles of

Burgessochaeta (Fig. 11). Polychaete chaetae are frequent in the feces

of Recent priapulid worms such as Priapulus (Fig. 3I).

(e) Almond-shape elements (ASE). ASE (Table 4) have a

consistent almond shape, are slightly convex, and bear at least 6

ribs parallel to their margins (Fig. 12). They typically occur in GC

as aligned elements (N = 1 to 12; 34% over 9; Table 1) often

overlapping each other. Their length varies from 1.5 to 6 mm

(63% between 2 and 3.5 mm). More than 88% of ASE point

towards the anus of Ottoia - i.e. - the opposite direction of hyolithid

shells in GC (compare with Figs. 6A–H, 7). The only skeletal

elements comparable in size, shape and ornament with ASE are

the scale-like sclerites of wiwaxiids, especially those of Wiwaxia

Table 3. Cont.

3-BRADORIIDS RQ+RT % WQ+WT % USNM % ALL %

valve/carapace length: 5–5.99 mm 0 0 0 0 0 0 0 0

valve/carapace length: 6–6.99 mm 0 0 0 0 0 0 0 0

RQ, RT, WQ, WT: collections of the Royal Ontario Museum, Toronto, Raymond Quarry and talus, Walcott Quarry and talus, respectively. USNM, collections of the
Smithsonian National Museum of Natural History, Washington D.C. Raw data in Table S1.
doi:10.1371/journal.pone.0052200.t003

Table 4. Almond-shape elements (ASE; see Fig. 12) in the gut contents of Ottoia prolifica from the Middle Cambrian Burgess Shale:
countings and measurements.

ASE RQ+RT % WQ+WT % USNM % ALL %

Ottoia prolifica with ASE 5 100 13 100 4 100 22 100

number of ASE 15 100 66 100 26 100 107 100

position 1 (anterior) 0 0 0 0 0 0 0 0

position 2 (mid-anterior) 0 0 0 0 1 4 1 1

position 3 (mid-posterior) 6 40 16 24 9 34.5 31 29

position 4 (posterior) 9 60 50 76 16 61.5 75 70

number of measured ASE 13 100 45 100 16 100 74 100

length: 1–1.49 mm 0 0 0 0 0 0 0 0

length: 1.5–1.99 mm 0 0 6 13 0 0 6 8

length: 2–2.49 mm 2 15 7 15.5 2 12.5 11 15

length: 2.5–2.99 mm 3 23 9 20 4 25 16 22

length: 3–3.49 mm 5 38 10 22 5 31 20 27

length: 3.5–3.99 mm 1 8 4 9 2 12.5 7 9.5

length: 4–4.99 mm 1 8 2 4.5 2 12.5 5 7

length: 5–5.49 mm 0 0 3 7 0 0 3 4

length: 5.–5.49 mm 0 0 2 4.5 0 0 2 2.5

length: 5.5–5.99 mm 1 8 2 4.5 1 6.5 4 5

length: 6. 6.49 mm 0 0 0 0 0 0 0 0

RQ, RT, WQ, WT: collections of the Royal Ontario Museum, Toronto, Raymond Quarry and talus, Walcott Quarry and talus, respectively. USNM, collections of the
Smithsonian National Museum of Natural History, Washington D.C. Raw data in Table S1.
doi:10.1371/journal.pone.0052200.t004
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corrugata [1,60] (Fig. 12J) that co-occurs with Ottoia (Table 5). The

relatively low number of ASE in GC, the absence of typical spiny

and crescentic elements, and the average size of Wiwaxia

(.20 mm vs. gut diameter of Ottoia ,3 mm) is not consistent

with wiwaxiids being ingested whole by Ottoia. More likely it

suggests that Ottoia fed on decaying wiwaxiids by ingesting lumps

of soft tissues where small sclerites were still attached. The

consistent orientation of ASE in GC may be explained by both the

unidirectional imbricated pattern of the Wiwaxia scleritome [60]

and also by capture constraints (see hyolithids). The cannibalistic

behavior of Ottoia based on a single poorly preserved specimen

[35] is not confirmed here although this behavior clearly remains

plausible (see recent priapulid worms such as Priapulus; [61]). I re-

examined this specimen (USNM 198922). The spinules and

proboscis hooks that are assumed to be present within its gut are

most probably preservational artefacts or due to the chance

juxtaposition of two ill-preserved Ottoia specimens as suggested by

L. Wilison [21]. Gut contents from the Raymond Quarry are

largely dominated by hyolithids, whereas SLE (assumed poly-

chaetes), hyolithids and ASE (assumed wiwaxiids) prevail in GC

from the Walcott Quarry (Fig. 1). This suggests that Ottoia was not

Figure 6. Hyolithids, brachiopods and arthropods within the gut of Ottoia prolifica from the middle Cambrian Burgess Shale. A–C,
ROM 61747, with 4 hyolithid shells (Haplophrentis carinatus), their apex pointing anteriorly. D, ROM 61767, hyolithid with operculum and conch in
connexion. E, F, ROM 61749, hyolithid conch and a pair of disarticulated helens. G, ROM 61774, hyolithid conch and disarticulated operculum. H,
USNM 202777, hyolithid conch within the posteriormost part of the gut (bursa everted). I–K, ROM 61779 with two brachiopods (Micromitra
burgessensis) in posterior gut. L, M, ROM 61775 with complete agnostid arthropod (Ptychagnostus praecurrens) within the anterior gut. N, O, ROM
61777 with a trilobite pygidium (Ehmaniella burgessensis) inside the gut. P, ROM 61785 with a trilobite cephalon (E. burgessensis). Abbreviations: a,
anus; ag, agnostid; an, trunk annulation, ANT, anterior; ase, almond-shape element; br, brachiopod; br1, br2, from anterior, brachiopod 1 and 2; bu,
bursa; ce, cephalon; co, hyolithid conch; gc, gut content; gu, gut; gw, gut wall; h1–h4, from anterior, hyolithid 1 to 4; he, helen; in, introvert; m, mouth;
op, hyolithid operculum; ph, posterior hook; POST, posterior; pt, pharyngeal teeth; py, pygidium; tr, trunk. Scale bar: 1 cm for A, I, L; 5 mm for B, C, E,
H, M; 2 mm for K; 1 mm for D, F, G, J, N–P.
doi:10.1371/journal.pone.0052200.g006
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Figure 7. Hyolithids in the gut of Ottoia prolifica from the middle Cambrian Burgess Shale. A, ROM 61753a, showing 3 hyolithids preserved
with their opercule. B–E, ROM 61782, with 5 hyolithid shells (Haplophrentis carinatus) within the gut, their apex pointing anteriorly; general view and
details. F–H, USNM 196381, with 6 hyolithid shells within the gut. I, USNM 188604, with 3 hyolithids (h3 close to the anus). Abbreviations: ANT,
anterior; an, trunk annulation; co1–co3, hyolithid conch 1 to 3; gc, gut content; gu, gut; he, helen; h1–h6, from anterior, hyolithid 1 to 6; op1–op3,
hyolithid operculum 1 to 3; lo, loop; ph, posterior hook; POST, posterior; tr, trunk. Scale bar: 1 cm for B, F, H, I; 5 mm for A, C–E; 2 mm for G.
doi:10.1371/journal.pone.0052200.g007
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dependent on one particular food source but could adapt its diet

with local food availability.

Fossil Associations
Two fossil associations with several specimens of Ottoia forming

a wreath around the carcass of the arthropod Sidneyia [31,32]

indicate that Ottoia had possible scavenging habits (Fig. 13).

Decaying carcasses of relatively large epibenthic animals such as

Sidneyia (length up to ca 140 mm [31]) may have represented a

substantial food source for Ottoia, easily accessible from its

supposed shallow subhorizontal burrows [50]. The tiny pharyn-

geal teeth of Ottoia (Fig. 2E, F) are interpreted as a possible

adaptation for scraping soft material such as decaying tissues.

Discussion

Feeding Process
The feeding mechanism of Ottoia was remarkably simple, being

limited to the transit of food via a tubular gut with no physical

breakdown (except the disarticulation of composite exoskeletons)

and storage process. Nutrients were probably chemically extracted

from food via digestive fluids produced in the midgut lumen as in

Recent priapulids [48]. The assumed low nutritional value of some

of the food items such as hyolithids, brachiopods that probably

contained less protein-rich tissues than arthropods and worms;

[62]) may have been offset by the richer intake of dead tissues from

carcasses (Fig. 13). Ottoia lacked visual and complex sensory

organs, in contrast with the arthropods from the same horizons

that had potential features (e.g. compound eyes, antennae) for

visual [10] and chemo-tactile recognition. Attraction to food was

probably triggered by chemical cues released from living and dead

tissues (Fig. 14A). Chemoreceptors were possibly located in the

well-developed circumoral scalids (Fig. 2G), as is the case in

modern priapulids worms ([63] and Fig. 3E, G).

Trophic Complexity of the Cambrian Ecosystem
Ottoia obtained food from diverse animal sources (nine species in

GC) and by using different techniques: 1) predation on small

invertebrates that lived at or near the water-sediment interface

(e.g., hyolithids, brachiopods, and polychaetes); and 2) scavenging

Figure 8. Other skeletal elements in the gut of Ottoia prolifica from the Middle Cambrian Burgess Shale. A–D, USNM 196204, with
articulate brachiopod, possibly Diraphora bellicostata [1,50,51]. E, ROM 61756, with the inarticulate brachiopod Micromitra burgessensis [1,50,51] and
undetermined gut contents. F, ROM 61750 with Micromitra burgessensis and a hyolithid. G, H, ROM 61770 with agnostid (possibly Pagetia bootes
[1,52]), general view and close-up. I, J, ROM 61783 with complete agnostid and hyolithid. Abbreviations: ag, agnostid; an, trunk annulation; ANT,
anterior; br, brachiopod; ce, cephalon; gc, gut contents; gu, gut; h, hyolithid; op, operculum of hyolithid; ph, posterior hook; POST, posterior; py,
pygidium. All light photographs. Scale bar: 1 cm for A, G; 2 mm for B–F, H–J.
doi:10.1371/journal.pone.0052200.g008
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Figure 10. Setae-like elements (SLE) within the gut of Ottoia prolifica from the middle Cambrian Burgess Shale, compared with the
chaetae of Burgessochaeta. A–D, ROM 61755b, general view, accumulations and details of SLE in gut. E, ROM 61772b, SLE in gut. F, ROM 61746a,
SLE in cross section, preserved in aluminosilicate. G–I, Burgessochaeta setigera (Polychaeta; [1,54]); G, ROM 56967 complete specimen with numerous
chaetae on parapodia; H, ROM 56968a(1), ROM 56968a(1), decayed specimen; I, ROM 56968a(2), chaetae on parapodia. J, ROM 56969a, bundle of
chaetae (compare with C). Abbreviations: ANT, anterior; bd, possible bundle of SLE; cf, carbonaceous film; ch, chaetae; gc, gut content; gu, gut; pa,
parapodium; POST, posterior. Scale bar: 1 cm for A, G; 1 mm for E, H–J; 500 mm for B; 100 mm for D; 20 mm for F.
doi:10.1371/journal.pone.0052200.g010

Figure 9. Other skeletal elements in the gut of Ottoia prolifica from the middle Cambrian Burgess Shale. A, B, ROM 61785, showing gut
contents with a trilobite cephalon (probably Ehmaniella burgessensis [1,52]). C, D, ROM 61761, with contents containing trilobite remains (e.g. thoracic
segments). E, USNM 196425, with gut contents containing possible trilobite remains. F, G, ROM 61776, with bradoriid arthropod [53] in anterior part
of gut. H, I, ROM 61778, with possible shields of bivalved arthropods in posterior gut, general view and detail. J, ROM 61771, with possible shields of
bivalved arthropods. Abbreviations: ANT, anterior; ba, bivalved arthropod (shield); bd, bradoriid; ce, cephalon; gc, gut contents; gu, gut; ph, posterior
hook; POST, posterior; px(e), everted pharynx; tr, trilobite; ts, thoracic segment. All light photographs (J, whitened with ammonium chloride). Scale
bar: 1 cm for A–C; 5 mm for F; 2 mm for D, E, G; 1 mm for I, J.
doi:10.1371/journal.pone.0052200.g009
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on carcasses and detritus. The brachiopods and hyolithids from

the Burgess Shale biota were most probably slow moving animals

that could have been equally ingested alive or scavenged after

death by Ottoia. No fossil evidence indicates that Ottoia favored

predation over scavenging or the reverse. In contrast, polychaetes

such as Burgessochaeta were probably far more active errant and

burrowing animals with capabilities to escape predators such as

Ottoia. Again, Ottoia may have fed indiscriminately upon dead and

living polychaetes in various proportion depending on its hunting

abilities and the rapidity of the prey. The idea that hyolithids were

‘‘hunted’’ [39] may not reflect the exact reality of feeding

relationships. More likely these small invertebrates that often lived

in large populations were taken off randomly by Ottoia which may

have lived in sub-horizontal burrows just below the water sediment

interface [50]. The presence of disarticulated elements in GC,

typically trilobites, cannot be interpreted as unambiguous evidence

of predation, because it may result from chance ingestion during

scavenging. Similarly, fine sediment was inevitably ingested along

with consumable food. The high percentage of empty guts

indicates that Ottoia was neither a sediment eater sensu stricto nor

Figure 11. Comparative measurements between the setae-like elements (SLE) within the gut of Ottoia prolifica, the chaetae of
Burgessochaeta setigera [1,59] and sponge spicules. The diameter of most spicules of sponges occurring in the same horizons as Ottoia ranges
between 10 and 20 mm and is lower than that of most SLE. Interpolation (up right diagram) suggests that SLE are undigested chaetae of small
individuals of Burgessochaeta, possibly between 5 and 10 mm long. Size distribution of chaetae (blue) and SLE (red) lengths are given for three well-
preserved Burgessochaeta specimens (A–C) and one Ottoia gut content (number 4). Diagonella (bottom left) is a typical sponge in the Burgess Shale
biota. Abbreviations: ANT, anterior; BL, body length; bo, body; ch, chaetae; CL, chaeta length; pa, parapodium; POST, posterior; sp, spicule. 1, ROM
61786b; 2, ROM 61787; 3, ROM 61772b; 4, ROM 61755; 5, ROM 61788; 6, ROM 61789; 7, ROM 61746. A, ROM 56968a; B, ROM 56968b; C, ROM 56967; D,
ROM 56968b; E, ROM 56969a.
doi:10.1371/journal.pone.0052200.g011
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Table 5. Numerical abundance of Ottoia prolifica and the animal taxa that constituted its diet (evidence from gut contents and
feeding assemblages, present paper) through successive bed assemblages in the Great Phyllopod Bed (Walcott Quarry Member,
Burgess Shale Formation, Middle Cambrian).

BA nb. ind. nb. taxa A B(1) C(2) D(3) E(4) F(5) G(5) H(5) I(6) J(7) K

+120 516 43 11 8 0 1 23 21 10 4 1 0 2

0 1423 55 6 2 14 1 53 11 24 0 0 0 3

240 229 26 1 1 9 3 10 7 0 0 0 0 0

2110 585 53 6 4 3 1 134 3 38 194 0 1 10

2120 3312 92 272 8 54 1 165 4 106 164 16 16 12

2130 3267 79 27 4 5 1 107 2 156 7 5 6 44

2150 2930 85 3 27 0 1 326 35 757 106 9 44 54

2170 1488 73 10 8 0 28 47 10 393 4 11 5 9

2210 4609 105 35 29 0 31 274 18 1011 65 54 12 139

2220 93 28 1 0 0 5 6 1 2 0 1 0 1

2235 2247 84 63 12 0 51 284 4 175 33 6 5 38

2245 4614 62 3 13 0 44 1400 14 238 248 1 13 54

2250 2478 74 12 8 0 7 833 7 91 98 2 8 18

2260 3844 79 46 10 25 25 1079 19 203 51 2 19 76

2265 1842 70 22 2 2 2 414 9 140 11 4 3 25

2270 216 33 3 0 0 1 28 2 4 2 0 0 0

2310 915 63 4 3 0 15 49 16 115 1 1 1 21

2315 189 22 0 0 0 1 3 23 30 0 0 2 11

2320 1561 66 16 5 1 14 11 12 64 1 2 1 10

2350 4258 40 44 0 2 100 13 14 22 0 1 0 1

2355 233 27 0 1 2 38 6 6 57 1 0 1 6

2360 2392 43 2 1 2 4 29 21 74 1 4 2 1

2370 582 48 0 3 0 3 19 26 76 21 0 3 14

2380 455 38 9 0 9 5 69 4 20 2 5 0 1

2400 2548 92 56 7 32 29 65 23 41 2 12 1 62

2410 172 32 1 1 0 1 3 1 6 0 0 0 3

2418 115 18 1 0 0 1 29 1 1 1 0 0 0

2420 1570 40 12 8 9 2 475 3 10 0 1 1 14

2430 430 31 1 1 0 7 40 2 15 2 1 0 6

2445 1563 41 0 1 0 5 98 41 72 1 1 2 13

2455 404 29 1 0 11 31 13 5 0 0 1 1 2

2465 686 23 0 7 0 1 13 5 19 2 0 6 9

2480 381 59 8 4 2 1 25 13 8 0 1 6 1

2495 101 24 1 1 6 1 9 5 0 0 0 0 0

2500 192 27 0 7 0 0 33 3 7 0 1 1 4

2502 180 25 0 0 1 2 15 1 0 0 1 0 0

Faunal data courtesy J.-B. Caron and [2,42,52].
A, Ottoia prolifica (Priapulida); B, Haplophrentis carinatus (hyolithid); C, Burgessochaeta setigera (Polychaeta); D, Wiwaxia corrugata (wiwaxiid); E, Liangshanella burgessensis
(bradoriid arthropod); F, Ehmaniella ssp. (Trilobita); G, Ptychagnostus praecurrens (agnostid arthropod); H, Pagetia bootes (agnostid arthropod); I, Sidneyia inexpectans
(Arthropoda); J, Mitromitra burgessensis (Brachiopoda); K, Diraphora bellicostata (Brachiopoda).
(1) including individual shell operculum or shell whichever is greater; (2) all collected specimens; (3) excluding isolated sclerites. Count of one specimen when presence of
isolated remains only (levels: 120, 2110, 2130, 2150, 2270, 2315, 2418, 2465, 2495); (4) number of specimens without soft tissues divided by two to compensate for the
presence of dissociated valves;(5) including number of cephala or pygidia whichever is greater; (6) excluding isolated thoracic tergites. Count of one specimen when
presence of isolated remains only (levels: 120, 2350, 2430, 2445, 2455, 2500, 2500); (7) excluding fragments of shells (exception 2500 with a single occurrence).
doi:10.1371/journal.pone.0052200.t005
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a continuous feeder. Its straight cylindrical gut is also poorly

consistent with continuous deposit feeding exemplified by modern

sipunculans [64]. The gut of Recent and Cambrian [65]

sipunculans is typically U-shaped and highly coiled. Although

we cannot exclude that Ottoia collected and ingested undifferen-

tiated particles and detritus (as possibly indicated by the organic

enrichment of GC), this worm had none of the characteristics of a

surface deposit feeder (e.g., introvert with small tentacles).

Moreover, the ratio of its body to gut volume (0.8–1.5%) [21] is

much lower than in typical deposit feeders. Ottoia was more likely

an intermittent omnivorous feeder with low maintenance require-

ments. Possible modern analogues are macrobenthic priapulids

such as Priapulus and Halicryptus [66,67], in which guts are

frequently empty and contain detritus mixed with identifiable

animal food items (Table 6; [66–68]). Our study undermines the

status of Ottoia as an iconic predator and selective hunter [39] and

gives this taxon the more realistic status of being a generalist and

possibly facultative feeder [69] – i.e., an animal with the capacity

to vary its diet with local availability. In recent marine ecosystems,

facultative feeders play an important role in conferring resilience

in the benthic communities to environmental disturbances and

habitat changes [69]. Ottoia may have played a comparable and

important role at a critical time when the first modern-style

ecosystems started to build up.

The recognition of genuinely generalist feeding strategies, as

seen here in Ottoia, reveals a high level of trophic complexity and

flexibility that has no equivalent in preceding eras (e.g., Ediacaran

ecosystem; [70,71]) and foreshadows modern-style ecosystems.

Direct documentation of this behavior in the immediate aftermath

of the Cambrian explosion indicates that the marine ecosystem

had already become too complex to be understood in terms of

simple linear dynamics. More likely, the ecosystem already

functioned as an interactive web, with multiple interactions

between animal species and the exploitation of diverse food

sources. This mode of functioning, which probably set up in the

Early Cambrian, is likely to have generated important feedback

and accelerating effects on diversity, ecosystem stability and

macroevolutionary dynamics.

Early Onset of Parallel Trophic Pathways
Predation was undoubtedly one of the driving forces in the early

diversification of metazoans and the build-up of complex animal

interactions and trophic web [12,16,19,29,35,72]. Grazing [11,20]

and suspensivory [73] were also major feeding techniques used by

numerous Cambrian animals. The case of Ottoia highlights the role

of scavenging as another key-consumption mode. We think that

the rise of epibenthic communities [2] resulting from the

Cambrian radiation fuelled the food web with a new pool of

detrital material that became a major and abundant food source

for numerous scavengers and detritivores thus promoting and

boosting the detrital pathway. The input of animal-derived

organic matter into the ecosystem probably deeply modified the

food supply in terms of quantity, energy, chemical quality and

digestibility with probable feedback effects on the evolution of

digestive systems [21] and feeding modes. In common with Ottoia,

Figure 12. Almond-shape elements (ASE) within the gut of Ottoia prolifica from the middle Cambrian Burgess Shale, compared to
the sclerites of Wiwaxia [60]. A–C, G, H, ROM 61768, general views, and details of ASE (bulbous feature in G is an artefact due to mineralization). D,
ROM 61763b with aligned ASE. E, ROM 61773a, with ASE and other skeletal elements. F, ROM 61781a, three aligned ribbed ASE. I, ROM 61745b,
isolated ASE within gut. J, ROM 61747, Wiwaxia corrugata [1,60] with sclerites in situ. K, L, ROM 56965, W. corrugata, ribbed sclerite and general view
of decayed specimen. Abbreviations: a, anus; ANT, anterior; ase, almond-shape element; gc, gut content; m, mouth; ma, mouth apparatus; POST,
posterior; scs, scale-like sclerite; se, skeletal element; sps, spine-like sclerite. Scale bar: 5 mm for A–C, J, L; 2 mm for D, E, K; 1 mm for F–I.
doi:10.1371/journal.pone.0052200.g012
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Figure 13. Three fossil associations from the Burgess Shale Formation, middle Cambrian, showing Ottoia prolifica around and below
the carcass of the arthropod Sidneyia inexpectans and suggesting scavenging behaviour in Ottoia prolifica. A, B, USNM 196241, showing
at least 5 worms around the decaying carcass of Sidneyia. This specimen was interpreted [32] as a death assemblage with the worms feeding around
the collapsed and decaying carcass of Sidneyia inexpectans. I follow this interpretation here, although the number of worms is more likely to be five
than nine [32]. C, D, ROM 61748a, showing an assemblage very similar to USNM 196241; four worms form a wreath-like arrangement around the
remains of Sidneyia. E, F, USNM 250218, showing a curved specimen of Ottoia closely associated with Sidneyia. All light photographs (A, courtesy
Jean-Bernard Caron, ROM). Scale bar: 1 cm. Abbreviations: an, annulation; dg, digestive glands; gc, gut content; gu, gut; hy, hyolithid conch; ph,
posterior hook; px, pharynx; w1–5, worm (Ottoia) 1–5.
doi:10.1371/journal.pone.0052200.g013
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Figure 14. Major components of the diet of Ottoia prolifica from the middle Cambrian Burgess Shale. 1, hyolithids (Haplophrentis); 2,
brachiopods (Micromitra); 3, polychaete worms (Burgessochaeta); 4, bradoriids (Liangshanella); 5, trilobites (Ehmaniella); 6, agnostids (Ptychagnostus);
7, 8, carcasses of Sidneyia and Wiwaxia. (A–C), feeding behavior of Ottoia: detection of food via possible chemical cues and ingestion. gu, gut; in,
introvert with spiny scalids; px(e), everted pharynx; px(i), inverted pharynx; sc, scalid; tr, trunk.
doi:10.1371/journal.pone.0052200.g014

Table 6. Diet of Recent macrobenthic priapulid worms exemplified by Priapulus caudatus and Halicryptus spinulosus (see
morphology in Fig. 3).

Diet of Priapulus caudatus higher taxa 1 higher taxa 2 source of data refs

Aphrodite Annelida Polychaeta feces [61]

Amphiura chiaji Echinodermata Ophiurida feces; feeding exp. [61]

Terrebellides strömi Annelida Polychaeta feeding exp. [61]

Mellina costata Annelida Polychaeta feeding exp. [61]

Amphicteis gunneri Annelida Polychaeta feeding exp. [61]

Priapulus caudatus (cannibalism) Priapulida – live observations [61]

Priapulus caudatus (cannibalism) Priapulida – live observations [68]

Saccoglossus kowalewskyi (fragment) Hemichordata Enteropneusta feeding exp. [68]

Cerebratulus marginatus (fragment) Nemertea – feeding exp. [68]

algal remains – – gut contents [61]

mud and unrecognizable debris – – feces [68]

mud – – gut contents [61]

Diet of Halicryptus spinulosus higher taxa 1 higher taxa 2 source of data refs

Halicryptus spinulosus Priapulida – gut contents [67]

Harmothoe sarsi Annelida Polychaeta gut contents [67]

Pygospio elegans Annelida Polychaeta gut contents [67]

Naididae undet. Annelida Oligochaeta gut contents [67]

Oligochaeta undet. Annelida Oligochaeta gut contents [67]

Monoporeia affinis Arthropoda (Cru.) Amphipoda gut contents [67]

Pontoporeia femorata Arthropoda (Cru.) Amphipoda gut contents [67]

Crustacea undet. Arthropoda – gut contents [67]

Tanypodinae undet. Arthropoda (Ins.) Chironomidae gut contents [67]

Chironominae undet. Arthropoda (Ins.) Chironomidae gut contents [67]

Arthropoda undet. – – gut contents [67]

animal remains undet. – – gut contents [67]

eggs – – gut contents [67]

algal remains undet. – – gut contents [67]

detritus – – gut contents [67]

Abbreviations: Cru, Crustacea; exp, experiments; Ins, Insecta,
doi:10.1371/journal.pone.0052200.t006
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arthropods may have acquired adaptations to exploiting this

detrital food store with relatively low cost of energy expenditure.

This requires testing from detailed studies on the digestive systems

and appendage functionalities of Cambrian arthropods and their

possible modern analogues. Parallel circuits such as the ‘‘green

pathway’’ (through primary producers, herbivore/grazers to

carnivores) and the detrital pathway that is essential in the energy

flow of modern marine ecosystems [41] may have been already

operating in the Cambrian adding to the trophic complexity.

Supporting Information

Figure S1 Sponge species that co-occur with Ottoia
prolifica in level -120 [2,42,52] of the Walcott Quarry
(Burgess Shale Formation, middle Cambrian). A, B,

Hazelia nodulifera Walcott, ROM 40317B(1), general view and

details. C, D, Hazelia palmata Walcott, ROM 53585, general view

in polarized light and details of closely packed spicules. E, F,

Falospongia falata Rigby, ROM 40317B(2), general view and details

of skeletal tracts. G, H, Pirania muricata Walcott, ROM 53309,

general view and details of radiating spicules. I–K, Diagonella hindei

Walcott, ROM 61766, general view and details of the spicule

network of a small and larger specimen on the same slab. L, Eiffelia

globosa Walcott, ROM 53567, details of six-rayed spicules. msp,

monaxial spicule; rsp, radial thick spicule; rtr, radial tract; tr, tract

composed of numerous spicules. (Scale bar, 2 mm for A, C, E, G, I;

1 mm F, H, J-L; 500 mm for B, D.

(PDF)

Table S1 Studied material (Ottoia prolifica from the
middle Cambrian Burgess Shale, British Columbia,
Canada). The specimens are housed in the Royal Ontario

Museum (ROM), Toronto, Canada and the Smithsonian National

Museum of Natural History (originally US National Museum;

USNM), Washington D.C. All the specimens have preserved

digestive tracts with or without gut contents.

(XLS)
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73. O’Brien LL, Caron J-B (2012) A new stalked filter-feeder from the Middle

Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7: e2923.

Gut Contents of Cambrian Worm Ottoia

PLOS ONE | www.plosone.org 20 December 2012 | Volume 7 | Issue 12 | e52200


