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Abstract

A West Nile virus (WNV) human risk map was developed for Suffolk County, New York utilizing a case-control approach to
explore the association between the risk of vector-borne WNV and habitat, landscape, virus activity, and socioeconomic
variables derived from publically available datasets. Results of logistic regression modeling for the time period between
2000 and 2004 revealed that higher proportion of population with college education, increased habitat fragmentation, and
proximity to WNV positive mosquito pools were strongly associated with WNV human risk. Similar to previous investigations
from north-central US, this study identified middle class suburban neighborhoods as the areas with the highest WNV human
risk. These results contrast with similar studies from the southern and western US, where the highest WNV risk was
associated with low income areas. This discrepancy may be due to regional differences in vector ecology, urban
environment, or human behavior. Geographic Information Systems (GIS) analytical tools were used to integrate the risk
factors in the 2000–2004 logistic regression model generating WNV human risk map. In 2005–2010, 41 out of 46 (89%) of
WNV human cases occurred either inside of (30 cases) or in close proximity (11 cases) to the WNV high risk areas predicted
by the 2000–2004 model. The novel approach employed by this study may be implemented by other municipal, local, or
state public health agencies to improve geographic risk estimates for vector-borne diseases based on a small number of
acute human cases.
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Introduction

Since its emergence in 1999, West Nile virus (WNV) triggered

the largest recorded arbovirus outbreak in North America [1,2].

Although most clinical WNV infections are either asymptomatic

or flu-like, the rare (,1%) neuroinvasive disease represents the

most common form of viral encephalitis in the US [3] with the

fatality rate of 10% and long-term morbidity in 50% of the patents

[1]. Consequently, WNV is expected to remain one of the most

important mosquito-borne diseases in North America [2,3].

In the absence of a human vaccine, vector surveillance and

control are the most effective tools for arboviral disease prevention

on the population level [4]. However, these programs typically

have low priority and are inadequately funded [5]. Predictive

geographic models of elevated arbovirus transmission risk on a

sub-county level could greatly improve the use of these limited

resources and lead to improved understanding of arbovirus

epidemiology, ecology, and risk factors crucial for efficient detec-

tion and targeted control [6]. Accordingly, this study’s objective

was to develop a predictive spatial model for WNV human risk for

a large suburban county using tools that are readily available to

state or local public health agencies.

Vector-borne disease modeling has emerged as a methodology.

Vectors and pathogen reservoirs are often associated with environ-

mental factors [7], distinct landscape features, and ecological

settings where vector, host, and pathogen intersect within a

permissive climate [8]. A number of studies have attempted to link

WNV human transmission risk with such environmental and

landscape elements. In large cities, WNV risk factors included

higher amount of vegetation, habitat fragmentation or clumpiness,

open or grassy areas, poor drainage, and open water [9–11]. In

suburban or rural areas, WNV risk factors included high popu-

lation and road density, agricultural or grass areas, wetlands, open

water, and streams [12–14]. WNV positive birds and mosquitoes

can also be important environmental predictors of WNV human

risk [11,13,15,16]. Spatial patterns of disease risk may also be

associated with socioeconomic factors due to effects of urbaniza-

tion on the natural environment [17,18]. While the data on

socioeconomic WNV risk factors are still insufficient, pioneering

studies in Chicago and Detroit established a positive link between

neighborhoods characterized by older housing and aging white

populations with increased risk for WNV infection [11,17].

Conversely, in southern US and California, higher risk of WNV

infection was associated with low income areas [18–20].

Many spatial analytic studies of WNV risk predictors utilized

aggregated data based on administrative divisions such as census

tracts or zip codes. The statistical power of analysis associated with

this approach may be low due to greatly reduced sample size. It

may thus be difficult to detect significant differences in disease risk

where municipalities exhibit sporadic or highly clustered WNV
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human cases. Additionally, aggregated spatial scale characteriza-

tion can be susceptible to ecological fallacy, lack of precision, and

measurement error [21]. To address this issue, researchers have

stated that aggregate level studies should be supplemented by

individual level data [22], and requiring more spatially explicit

data collection and analysis through the use of geographic

information systems (GIS) [7].

Our goal was to employ vector biology and knowledge of

environmental and socioeconomic risk factors to predict spatial

patterns of human West Nile Virus risk in Suffolk County, New

York, USA on a local scale. A large number of factors relevant to

vector, host, and human ecology were tested and the significant

predictors used to generate a logistic model rendered geograph-

ically by GIS tools into a county-wide WNV human risk map.

Similar approach can be easily adopted by state, county, or

municipal public health agencies to investigate factors associated

with WNV human transmission to enhance surveillance and con-

trol efforts, and to better understand WNV landscape epidemiology.

Materials and Methods

Study Area
The study was conducted in Suffolk County, NY located on

Long Island east of New York City (Figure 1). Suffolk County has

,1.4 million residents and a land area of about 912 sq. miles

(,2,363 km2) with densely populated suburban areas, commercial

and light industrial sites, agricultural areas, forested parkland, and

numerous fresh and saltwater wetlands. WNV enzootic activity in

birds and mosquitoes has been detected every year since the

original virus introduction to North America in 1999, with

sporadic epidemic outbreaks resulting in human cases.

Study Design Overview
This study utilized a case-control design with household

geographic location as the unit of analysis. Study cases included

a) 19 households with acute WNV human cases in 2000–2004,

and b) 81 additional households with no acute WNV human cases,

but located inside the WNV hotspots delineated by SatScan spatial

scan statistic [23] based on the 19 acute WNV human cases

(Figure 1). Study controls included 100 households located outside

of all WNV hotspot areas. Eighty one case and 100 control

households were randomly selected from a geodatabase containing

all Suffolk County households using ArcMap 9.1 (ESRI Inc.,

Redlands, CA). The sample size was predetermined by a pilot

experiment using a= 0.05, p= 0.8, and the target effect size OR

(odds ratio) = 2.0 [24–26].

The predictors of risk of WNV human transmission were

derived from those reported in the literature (reviewed in the

Introduction section) and developed from publicly available data-

bases. These predictors characterized landscape elements relevant

to vector and host ecology (i.e. land cover, natural and manmade

wetlands, soils, habitat fragmentation), socioeconomic conditions

relevant to human ecology (education, income, race, housing), and

indicators of WNV activity (WNV positive mosquito pools and

birds). The risk factors were evaluated at three spatial scales based

on the flight range of mosquito vectors, which are the main force

driving the pathogen transmission [27]. Spatial scales of up to

2.0 km radius were commonly employed in WNV epidemiological

assessments [16,28–32] including in Suffolk County [33], roughly

corresponding to the flight ranges of important WNV vector

species [34]. This study used similar spatial extents of buffering

around each case and control location at 0.5, 1.0, and 2.0 km.

To evaluate the logistic model, the acute WNV human case

dataset was split into two: 19 acute WNV cases in 2000–2004 were

used as a training dataset for model development, whereas 46

acute WNV cases in 2005–2010 were used as a validation dataset.

Data Sources
Human WNV infection is a reportable disease in New York

State. For each acute WNV human case, Suffolk County Depar-

tment of Health Services collected relevant epidemiological

information including travel history. For privacy protection, the

only data available for this study were the geographic locations of

acute WNV human cases.

Georeferenced environmental and socioeconomic data were

obtained from federal, state, and county databases (Table 1). All

files were processed in ArcMap. Raster files were converted into

Figure 1. SatScan West Nile Virus (WNV) hotspot analysis and case/control selection. WNV spatial clusters (i.e. hotspots) were determined
based on 19 acute WNV human cases in 2000–2004. Only Cluster 1 was statistically significant at p,0.05. Additional cases (n = 81) were selected
inside each hotspot weighted for the number of acute WNV human cases as follows (see Table 2): Cluster 1 (n = 33), Cluster 2 (n = 17), Cluster 3
(n = 11), Cluster 4 (n = 10), and Cluster 5 (n = 10). Control household locations (n = 100) were randomly selected from outside of the WNV hotspots.
doi:10.1371/journal.pone.0023280.g001

Predictive Mapping of West Nile Virus Human Risk
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ArcMap GRID format at 30630 meter resolution to match the

National Land Cover Database.

Data Processing and Analysis
The data processing and analysis are schematically presented in

Figure 2. The geographic extent of WNV hotspots was determined

by publically available spatial cluster detection software SatS-

canTM [23] based on19 acute WNV human cases in 2000–2004.

Purely spatial Bernoulli model included cases (i.e. 19 acute human

WNV cases) and the reference grid consisting of 620 points

regularly spaced at 0.02 degree interval over the entire County

land area. Moving circular window with 10 km maximum radius

was set to detect non-overlapping high rate clusters. Additional 81

case locations and 100 control locations were then randomly

selected from within or outside the delineated clusters, respective-

ly. These locations were buffered at 0.5, 1.0, and 2.0 km radius

using ArcMap. The resulting circles were intersected with the

geographic data layers containing either environmental or

socioeconomic factors to extract the independent variable (IV)

values at each spatial scale using ArcMap with Spatial Analyst or

Hawth’s Tools extensions. The output in a database format was

imported into SPSS statistical software v.15.0 (SPSS Inc, Chicago,

IL) for analysis.

For pairwise comparisons between cases and controls, chi-

square test, t-test, 2-way ANOVA, or Mann-Whitney test were

used depending on data type and distribution (normalized by

transformations, if possible). To minimize collinearity, variables

with Pearson’s correlation coefficient .0.75 were either combined

or excluded from further analysis (Table S1). Statistically

significant variables (p,0.05) at all three spatial scales were tested

for multicollinearity and either combined or removed until

resolved.

The resulting set of IVs was characterized by Principal

Component Analysis (PCA) to uncover grouping among IVs and

to understand the data structure (Table S1). The entire set of IVs

was then entered in a logistic regression and significant IVs at

p,0.1 were used for the final parsimonious model with the lowest

Akaike’s Information Criterion (AIC). The statistical power

analysis of the final model was performed using the algorithm

specifically developed for multiple logistic regressions [35] and

implemented in PASS 2008 software (NCSS, Kaysville, UT).

Potentially serious violations of non-spatial regression assumptions

by presence of spatial autocorrelation may lead to an effective

Table 1. Sources of environmental and socioeconomic data and the derived independent variables used in this study.

Source Source URL (if available) & independent variables

Federal Government

Multi-Resolution Land Characteristics Consortium http://www.mrlc.gov
National Land Cover Database (NLCD 2001): Land Use/Cover, Tree Canopy, Urban Imperviousness

NASA http://glcf.umiacs.umd.edu/index.shtml
Moderate Resolution Imaging Spectroradiometer (MODIS): Vegetation Vigor (NDVI) and Cover

United States Census Bureau (Census) http://factfinder.census.gov
Census 2000: Socioeconomic, Hydrography, Roads

United States Department of Agriculture (USDA) http://soildatamart.nrcs.usda.gov
Soils (SSURGO)

United States Department of Homeland Security (FEMA) http://www.fema.gov
Flood Zones

United States Geological Survey (USGS) 1999 National Hydrography Dataset (USGS NHD) through Suffolk County Information
Technology Dept.

New York State

Department of Environment. Conservation (NYS DEC) http://www.nysgis.state.ny.us
Suffolk County Wetlands

Suffolk County

Dept. of Health Services WNV data

Dept. of Information Technology Hydrography (derived from1999 USGS NHD), Land Records, Groundwater retention basins

DPW Vector Control Mosquito complaints, Mosquito larval habitat

doi:10.1371/journal.pone.0023280.t001

Figure 2. Procedure for logistic regression model construction
and West Nile Virus (WNV) human risk map development. IVs -
independent variables.
doi:10.1371/journal.pone.0023280.g002
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reduction in sample size and increased type I error [36].

Therefore, a diagnostic test for spatial non-randomness of residuals

in the final model was performed by using Moran’s I statistics in

ArcMap [37,38]. After ascertaining the lack of global spatial

clustering of the final multivariate model’s residuals, the original

IVs shapefiles were converted to rasters in ArcMap GRID 306
30 meter format to match the image resolution of the National

Land Cover Database satellite data. The resulting grid layers were

processed using Neighborhood function in ArcMap Spatial

Analyst extension to produce smoothed output layers in which

the value of each grid cell was a function of the cells within

specified neighborhoods, i.e. the corresponding spatial scales of

0.5, 1.0, or 2.0 km for each independent variable (Figure 3).

Similarly, each cell in distance grid layers was assigned a value

representing Euclidean distance to the nearest source cell. The

outputs were mathematically combined by Raster Calculator

function in ArcMap Spatial Analyst extension using the regression

coefficients in the final logistic model formula. To obtain the

probability of WNV risk from the logit values (Y), the inverse

logistic transformation was applied, PWNV = eY/(eY+1), where e is a

base of the natural logarithm. The final model and map were

validated by 46 acute WNV cases in 2005–2010.

Results

Initially, 64 environmental and socioeconomic factors were

developed from the geodatabases listed in Table 1. Census variables

were acquired at the smallest geographic unit available, i.e. census

block, or, if not available, at a block group or census tract. All forest

and development land use/cover (LUC) types were merged

into Forest and Developed areas, respectively. A new composite

variable, Natural area, contained forest, shrub, and all wetland

LUC. Habitat fragmentation was operationalized as the number (or

count) of separate Forest, Wetland, or Natural area polygons within

each spatial scale. Grassy, herbaceous, barren, and agricultural

LUCs were also combined (i.e. Grass). Four variables were eli-

minated due to high correlation .0.75: number of housing units,

stream length (USGS NHD), ‘‘% Black’’, and ‘‘% Other race’’.

Figure 3. Geographic distribution of West Nile Virus (WNV) human risk predictors with the corresponding spatial scales in the final
logistic regression model. Census variables were acquired at the smallest geographic unit available, i.e. census block to a block group, to census
tract. The original independent variable shapefiles were converted to rasters in ArcMap GRID 30630 meter format. The resulting grid layers were
processed using Neighborhood function in ArcMap Spatial Analyst extension to produce smoothed output layers in which the value of each grid cell
was a function of the cells within specified neighborhoods, i.e. the corresponding spatial scales of 0.5, 1.0, or 2.0 km (indicated by a number after
each independent variable on the map). Similarly, each cell in distance grid layers (indicated as Distance to on the map) was assigned a value
representing Euclidean distance to the nearest source cell.
doi:10.1371/journal.pone.0023280.g003
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Different ‘‘highest education level’’ categories were correlated at

school and postsecondary levels, and thus combined into 2 new

variables, school (some school and high school) and college (some

college, college, and graduate) percent, resulting in 57 IVs (see

Tables 1 and 2).

SatScan analysis of 19 acute WNV human cases in 2000–2004

identified five WNV clusters or hotspots (Figure 1). Only one

cluster (Cluster 1) with 6 acute WNV human cases was statistically

significant (Table 2). This cluster also contributed the greatest

number of additional cases through the stratified random sampling

procedure weighed for the number of actual WNV human cases in

each cluster (Table 2). This case selection procedure aimed to

create a set of cases that was representative of environmental and

socioeconomic conditions in the vicinity of all acute WNV human

cases and to minimize potential spatial autocorrelation problems.

Subsequently, the 57 IVs or factors developed from the

geodatabases were transformed, if appropriate, and compared

pairwise between the 100 case and the 100 control locations at 3

spatial buffers (0.5, 1.0, and 2.0 km), or as a distance to the nearest

feature. Thirty factors were significantly different between case

and control locations at p,0.05 resulting in 53 independent

variables due to multiple spatial scales, out of which 14 redundant

IVs were eliminated to reduce multicollinearity (Table S1).

The structure of the remaining 39 IVs for 200 case and control

locations was analyzed by Principal Component Analysis (PCA)

using eigenvalue .1.0 to retain the principal components (PCs). A

total of 8 PCs accounted for ,73% of the total variance and were

interpreted as follows (Table S1). PC1 (Urbanized/WNV)

accounted for ,22% of the total variance correlating positively

with urbanization (e.g. development, roads, housing age, retention

basins) and WNV activity (i.e. proximity and density of WNV

positive birds and proximity to WNV positive mosquito pools), but

negatively so with natural vegetation (e.g. forest). PC2 (Larval

Hydrology) accounted for ,14% of the total variance correlating

positively with mosquito larval sites, wetlands, and poor drainage

soils. PC3 (Affluence) accounted for ,8% of the total variance

correlating positively with income and college/graduate education

and negatively so with school education (i.e. some school and high

school combined). Each PC4–PC8 accounted for ,5–7% of the

total variance containing one factor type, i.e. wetlands (woody,

emergent, open water), senior households, and density of WNV

mosquito pools. Four variables with loadings on more than one PC

were omitted from PCA (Table S1).

The same 39 IVs were entered in a logistic regression model.

The full model classified correctly (i.e. as cases or controls,

respectively) 93% of the cases including 16 out of 19 (84%) acute

WNV human cases in 2000–2004, and 91% of the controls with a

U-shape distribution around the cut value of 0.5. Out of 39

original IVs in the full model, 14 IVs were statistically significant at

p,0.1 and were used for the final model created by removing the

least significant IV and introducing a new IV with the goal of

increasing the parsimony while preserving the overall model fit.

The final reduced model contained 12 IVs classifying correctly

89% of the cases including 16 out of 19 (84%) acute WNV human

cases in 2000–2004 (identical to those in the full model), and 85%

of controls (Table 3). Further exclusion of all non-significant

variables at a= 0.05 resulted in a model with fewer predictors

(n = 9), but also with significantly reduced sensitivity and the

overall fit of the model (data not shown; see [39] for details). There

was no statistical difference between the full and the final models

with 12 IVs (22LL ratio test, p = 0.181), however, the final model

(AIC = 147.5) was more parsimonious than the full model

(AIC = 168.1). Given the sample size n = 200, statistical signifi-

cance a= 0.05, power p= 0.8, the baseline probability of the high

WNV risk (PWNV = 0.5–1.0) P0 = 0.3, and the multiple correlation

coefficient R2 = 0.53 estimated for the model as an average of (1 -

tolerance) for all IVs, the final model’s effect size was OR = 1.9

which was in line with the original goal.

Spatial autocorrelation in the residuals was non-significant

(Moran’s I statistics 0.092, Z-score = 1.78, p = 0.0744) indicating

negligible to weak unexplained clustering on a global scale. Visual

map examination showed large residuals (Anselin local Moran’s I,

Z-score.1.96) in both cases and controls scattered throughout the

western part of the County (data not shown). Slightly higher

number of large residuals in and around Cluster 4 (Figure 1)

suggested poorer fit and less predictive power of the model in that

area [40]. Given the non-significance of global spatial autocorre-

lation in the residuals after including all factors in the final multiple

regression model, it was concluded that there was no statistical bias

in the overall regression analysis [41].

To generate the WNV human risk map, the shapefiles of

individual IVs were processed by Neighborhood function (ArcMap

Spatial Analyst extension) to calculate statistics for each IV at the

corresponding spatial extent of 0.5, 1.0, or 2.0 km. The resulting

raster files (see Figure 3 for each factor and spatial scale com-

bination indicated on the map) were merged by Raster Calculator

function using the final logistic regression equation with minor

adjustments to correct for discrepancies between tabular and

raster processing. The output was transformed into a probability

scale yielding the final WNV human risk map (Figure 4). Census

variables lacked complete coverage in some locations such as

federal holdings (Plum Island, Brookhaven National Lab, parts of

Table 2. SatScanTM WNV human cluster analysis and case selection.

Cluster Radius, km p # WNV acute human cases Weighta Additional case locationsb

1 5.5 .024 6 0.4 33

2 2.1 .407 3 0.2 17

3 2.7 .999 2 0.14 11

4 4.0 1.000 2 0.13 10

5 5.3 1.000 2 0.13 10

Nonec NA NA 4 NA None

aCalculated as # WNV acute human cases/total.
bCalculated as Weight*81 (the number of cases to bring the total to 100).
cSingle locations of acute human WNV cases that were not included with five spatial clusters.
NA-not applicable.
doi:10.1371/journal.pone.0023280.t002
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Table 3. Final logistic regression model for WNV human risk.

Variable Spatial scale Std Bb B S.E. Wald P Exp(B) 95.0% C.I.

College education, percent 2.0 km 2.56 0.307 0.073 17.6 ,.001 1.36 1.18 1.57

Distance to tidal wetland, ft NA 1.51 0.037 0.010 14.2 ,.001 1.04 1.02 1.06

# senior households, age.65 2.0 km 21.21 21.594 0.481 11.0 .001 0.20 0.08 0.52

Distance to WNV positive
mosquito pool (2000–2004), ft

NA 21.29 20.034 0.010 10.8 .001 0.97 0.95 0.99

Woody wetlands, count 0.5 km 22.31 21.228 0.379 10.5 .001 0.29 0.14 0.62

Road polygons (fragmentation),
count

2.0 km 1.01 0.222 0.103 4.6 .031 1.25 1.02 1.53

Median household income, $ 2.0 km 20.98 26.361025 0.0 4.5 .033 1.00 .0.99 ,1.00

Wetland (USGS NHD)a area, sq. ft 0.5 km 1.96 1.361025 0.0 4.0 .046 1.00 .1.00 ,1.01

Natural areas fragmentation,
count

2.0 km 0.75 0.198 0.101 3.8 .051 1.22 1.00 1.49

# retention basins 1.0 km 20.69 20.483 0.282 2.9 .087 0.62 0.35 1.07

Vacant housing, percent 1.0 km 20.96 20.052 0.032 2.6 .105 0.95 0.89 1.01

Wetland (USGS NHD)a, count 1.0 km 0.47 0.131 0.094 2.0 .162 1.14 0.95 1.37

Constant 20.23 26.963 4.052 3.0 .086

aUSGS NHD- United States Geological Survey National Hydrology Dataset (1999).
bStandardized B calculated with all variables converted to their respective Z-scores.
NA-not applicable.
The spatial implementation of this model in ArcMap was used to produce the county-wide WNV human risk map.
doi:10.1371/journal.pone.0023280.t003

Figure 4. Suffolk County West Nile Virus (WNV) human risk map based on the final logistic regression model. WNV risk probabilities
range from p = 0 (lowest) to p = 1.0 (highest). High WNV risk areas are defined as WNV human risk probability p.0.5. The geographic locations of
acute WNV human cases in 2000–2004 (training dataset to generate the risk map) and 2005–2010 (validation dataset to assess the map accuracy) are
shown. ‘‘No data’’ areas were generated due to incomplete census variables coverage in federal holdings (Plum Island, Brookhaven National Lab,
parts of Fire Island National Seashore), privately owned islands, and along some sinuous coastlines.
doi:10.1371/journal.pone.0023280.g004
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Fire Island National Seashore), privately owned islands, and along

sinuous coastlines resulting in ‘‘No data’’ areas in the final map

representing ,1.3% (,31 km2) of the total land area in Suffolk

County.

The final model and map were validated using 46 acute WNV

human cases in 2005–2010 (Figure 4). The distance from each

location to the high WNV risk area was calculated. A case was

considered correct if located within 0.5 km from the nearest high

WNV risk area to account for human mobility within typical

suburban residential neighborhoods [42]. For training dataset

(2000–2004), the risk map sensitivity varied from 100% in 2001 (1

out of 1) and 2002 (8 out of 8), to 80% in 2003 (8 out of 10). For

validation dataset (2005–2010), the risk map sensitivity was 78% in

2005 (7 out of 9), 0% in 2006 (0 out of 2), 44% in 2008 (4 out of 9),

100% in 2009 (1 out of 1), and 72% in 2010 (18 out of 25). Out of

46 validation cases, only 5 occurred at a distance exceeding

1.0 km from high WNV risk areas. The overall risk map sensitivity

of 89% (17 out of 19) for the experimental dataset was significantly

higher compared to 65% (30 out of 46) for the verification dataset,

Chi-square exact test X2 = 4.0, df = 1, p = 0.047. Out of 65 WNV

acute human cases in 2000–2010, 47 (,72%) occurred in high

WNV risk areas, which comprised ,33% of Suffolk County’s land

area This distribution of WNV human cases was significantly

different from random based on the land area (21 out of 65

expected), Chi-square exact test X2 = 20.1, df = 1, p,0.001. Only

11% of all acute WNV human cases (7 out of 65) occurred at a

distance exceeding 1.0 km from high risk areas delineated by the

model.

Discussion

To be useful for disease surveillance and control program, a

geographic human risk model should a) use predictors that are

easily available and interpretable, b) be accurate against inde-

pendent data, and c) generate outputs that can assist control

decisions [43]. Many of the previously reported WNV risk models

[9,12–14,16] were lacking in one or more of these aspects, being

too conceptual and technically complex rather than practical and

easily interpretable, or providing insufficient spatial resolution

for targeted control action. To overcome these problems, we

developed a simple yet statistically rigorous protocol to create

interpretable and testable model integrated with the county WNV

surveillance and control program. In addition to providing opera-

tional county-wide WNV human risk map, the model allowed a

close examination of the most significant risk factors selected from

a large pool of environmental and socioeconomic parameters

relevant to WNV ecology and epidemiology.

Socioeconomic conditions have emerged as the key determi-

nants of WNV human risk [11,17,18]. Urbanization and increased

WNV activity were linked by the number of studies [18,44].

Similarly, in our study, WNV human risk was also associated with

urbanization effects such as increased road density and fragmented

natural areas, but even more so with a particular type urban

environment characterized by a higher proportion of people with

college education, which was the most significant risk factor in the

model (Table 3). Increased percent of people with college educa-

tion and median income were positively correlated with Affluence

PC, but had an opposite effect on WNV human risk in the model

(i.e. the former as a risk factor and the later as a protective factor)

suggesting middle class suburban neighborhoods rather than

higher income communities as the areas with the greatest WNV

human risk. This conclusion was similar to that reached by

investigators in Chicago and Detroit where the highest WNV

human risk was associated with the middle class neighborhoods or

‘‘inner suburbs’’, but was much lower in the more affluent high

income ‘‘outer’’ suburbs, or in the impoverished inner cities [17].

The middle class suburban areas appeared to support the

appropriate combination of vegetation, open space, and potential

vector habitat favoring WNV transmission. Wealthier neighbor-

hoods had more vegetation, more diverse land use, and less habitat

fragmentation likely resulting in higher biological diversity poten-

tially protective against the WNV human transmission, e.g. the

avian host ‘‘dilution effect’’ [45]. Interestingly, while WNV risk

appears to be the highest in the middle class suburban environ-

ment in the north-central and northeastern US ([17], this study) in

southern and western US the higher risk of WNV infection was

often associated with low income areas [18–20]. This discrepancy

may have multiple explanations. One is the differences in vector

ecology between these regions of the United States. In the south

and west, mosquito vector populations were strongly associated

with urban breeding sources such as containers [19] and aban-

doned swimming pools [46]. In contrast, the main enzootic and

possibly epidemic vector in the northern US, Culex pipiens, was

most prevalent in urban areas with significant vegetation cover

and plentiful avian hosts [47]. However, high vector densities are

not always correlated with human risk [18,48]. Additional

contributing factors may include differences in low income urban

habitat, with densely built up inner cities in the northern US versus

single family home with adjacent vegetation and swimming pools

in southern or western US [18,20]. Variability in patterns of

human behavior may have also played a role leading to higher risk

of exposure to mosquito bites in lower socioeconomic status popu-

lations in the southern and western US [18,26].

Although these findings have clearly demonstrated the interde-

pendence between socioeconomic and natural environments, such

relationships may be multifaceted. For example, elderly popula-

tion and vacant housing were negatively associated with WNV

human risk in our study, contrary to the expectation [3,10,11,46].

Examination of these factors’ geographic distribution (Figure 3)

revealed their concentration in less developed areas of the County

corresponding to the unique Central Pine barrens region or the

affluent and rural east end of Long Island’s South Fork. Both

factors had no or negative association with Urbanized/WNV PC

(Table S1), and, therefore, may have represented a proxy for

specific physiogeographic regions less favorable for WNV main-

tenance or transmission, a possibility noted in previous studies

[11].

Among predictors of WNV human risk in the model, habitat

fragmentation (operationalized as number of road polygons and

disconnected natural areas) is an important factor facilitating

transmission of many vector-borne diseases worldwide. The

anthropogenic habitat fragmentation effects vary from increased

erosion and surface water accumulation, reduced species richness,

extinction of top predators with increase of prey species, enhanced

host-vector interactions, and a shift to anthropophyllic feeding by

vectors [49,50]. Association of higher road density or habitat

patchiness with elevated WNV activity or human risk was also

previously established [10,12,51].

Habitat fragmentation by roads and WNV enzootic activity

parameters (positive birds and distance to a positive mosquito pool)

were grouped within Urbanized/WNV PC in our study. While

proximity to a WNV positive mosquito pool was a strong human

risk factor in the model as expected, WNV positive mosquito pool

density was not significant in the final multiple regression model,

and, moreover, was not correlated with Urbanized/WNV PC.

These results supported inconsistent association of WNV positive

mosquito pool density with human risk [13], and suggested

proximity to a WNV positive mosquito pool as a stronger indicator
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of human risk. WNV positive birds, another common human risk

indicator used in surveillance and risk assessment [11,12,15] was

also not significant in our model supporting the assertion that bird-

based surveillance may be unreliable due to its dependence on the

general public, bias toward urban areas, and sensitivity to herd

immunity [7,21,52,53].

The remaining predictors in this study’s model described

natural or manmade wetlands. WNV human risk association with

freshwater wetlands and open water, potential mosquito larval

habitat, has been well documented [10,14,54]. In our study,

freshwater wetland area and fragmentation (count) grouped with

Open Water PC and Larval Hydrology PC pointing to the same

link. Larger wetland areas with increased fragmentation could

create aquatic edge habitat favorable for mosquito larvae and

contain intermittent standing water hostile to larvivorous fish.

Conversely, woody wetlands (a strong negative predictor in the

model) flood in the spring and remain largely dry through the

summer supporting mostly floodwater mosquitoes that are unlikely

to vector WNV due to early season emergence and lower vector

competence compared to Culex and container breeding Aedes

species [34]. In addition, woody wetlands aggregate in more rural

parts of the county exhibiting lower WNV activity in general

(Figure 3). Another negative term in the model was proximity to

tidal wetlands. The possible explanations for this finding may

include long range migration by salt marsh mosquitoes, routine

vector control activities near tidal marshes due to higher level of

mosquito populations, greater use of mosquito repellents or win-

dow screens, or a modeling artifact due to the stratified sampling

selecting more human cases from the inland WNV hotspots in

2000–2004. Similarly, negative association of manmade wetlands,

i.e. retention basins with WNV human risk in the model can be

explained by lower number of retention basins in drier areas,

which nevertheless may serve as more efficient amplification foci

for WNV transmission cycle by concentrating vectors and hosts in

isolated vegetated sites within residential areas [48].

In addition to interpretability, predictive accuracy assessment is

crucial for determining the model’s utility, yet vector-borne disease

model evaluation mostly focused on the past rather than predicted

outcomes [8]. To address this issue, we created two independent

data sets for model training and validation purposes. Although the

model accuracy was significantly higher for the training dataset in

2000–2004, 89% (17 out of 19) versus 65% (30 out of 46) for the

verification dataset in 2005–2010, the majority of acute human

cases in the validation dataset (41 out of 46) occurred either inside

or in close proximity (i.e. ,1.0 km) to the WNV high risk areas

delineated by the 2000–2004 model (Figure 4). There are many

potential sources of error and confounding to explain reduced

model sensitivity for verification dataset. Environmental and

socioeconomic factors were assumed static, but may have changed

over the time period covered by the model. WNV human trans-

mission may have been affected by increased vector control

activities at targeted areas with human cases as well as many

coastal areas near the south shore of Long Island, which routinely

experience high mosquito populations to require control. Human

behavior was another potential confounder not captured by the

model. For instance, it is not known whether the socioeconomic

factors might be correlated with repellent use or tolerance for

mosquito bites.

Apart from those limitations due to incomplete data or

imperfect understanding of the epidemiological and biological pro-

cesses, multiple regression analysis may encounter two important

methodological caveats, namely collinearity and spatial autocor-

relation. Collinearity is caused by inclusion of many highly cor-

related environmental and socioeconomic factors in a model

leading to instability in the estimation of the partial regression

coefficients. This is especially relevant to WNV risk modeling,

since the complex epidemiology of the virus transmission cycle

typically necessitates entering multiple factors at several spatial

scales in the analysis. One plausible approach to deal with this

problem is to use principal components analysis to reduce the

dimensionality among the predictors [41]. Regression analysis using

principal components identified in this study resulted in similar but

slightly less accurate estimates compared to individual predictors

(data not shown; see [39] for details). Accordingly, regression

analysis with individual predictors was preferable in this case.

Another important issue that may impede correct application of

standard statistical tests in a geographic context is spatial auto-

correlation (i.e. lack of independence) found in most natural

ecological phenomena [36]. Failure to account for positive spatial

autocorrelation in the model may cause test statistics to be reported

as significant, when they are not due to the effectively reduced

number of the degrees of freedom. In multiple regressions, spatial

autocorrelation can be detected by clustered distribution of the

residuals [38]. If not statistically significant, non-spatial models may

be used [41]. Conversely, if significant clustering of the residuals is

detected, spatial regression analysis is warranted; not allowing for

spatial autocorrelation in the models has been a common source of

error in epidemiological analyses [55]. Geographically Weighted

Regression (GWR) function for spatial linear regression analysis is

included with ArcGIS 9.3 Spatial Analyst. Only specialized software

is currently available for spatial logistic regression implementation.

Relatively simple methodological procedures have been reported in

literature (for example [56]), and applied to improve prediction and

understanding of causal factors using spatially explicit models for

vector-born disease risk (for example [37,57,58]).

Despite limitations and technical caveats, in our study, the

WNV risk map developed using 2000–2004 human cases pre-

dicted the locations of the 2005–2010 human cases with sufficient

operational accuracy. The map serves in conjunction with the

entomological data, which did not fully accounted for the patterns

of WNV human transmission risk in Suffolk County [48]. In

practical terms, the WNV human risk map may assist with selecting

surveillance sites, guiding preventive control measures such as catch

basin and marsh larviciding, and determining the thresholds for

triggering reactive control activities, i.e. adulticiding. Such activities

in the highest risk areas may commence earlier in the season or after

detection of WNV enzootic activity. Targeted surveillance and

control efforts prioritized for high WNV risk areas should lead to

increased public health protection during outbreaks while reducing

costs, labor, and environmental impacts associated with these

measures. Serious WNV outbreaks in lower risk areas may suggest

changes in the environment, virus biology (e.g. a new strain), or

ecology (e.g. a new vector species), assisting and directing further

epidemiological inquiry.

This study demonstrated the feasibility of state or local level GIS

based modeling using limited epidemiological data to create risk

maps for outbreak investigations, arbovirus surveillance, and

scientific discovery. The risk map may be further improved by

incorporating entomological and climatic data ultimately leading

to a real-time risk model. However, the increased complexity of

such undertaking will likely require much closer cooperation than

is currently in place between local public health agencies and

academic or research institutions.

Supporting Information

Table S1 Environmental and socioeconomic independent var-

iables in this study. Bivariate analysis compared cases (locations of
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acute WNV human cases and households within human WNV

spatial clusters identified by SatScan) and controls (locations of

households outside of SatScan WNV spatial clusters) at 3 spatial

scales. Principal component analysis grouped significant indepen-

dent variables determined by bivariate analysis and assisted in the

interpretation.
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