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Abstract

Background: Improved genetic resolution and availability of sequenced genomes have made positional cloning of
moderate-effect QTL realistic in several systems, emphasizing the need for precise and accurate derivation of positional
confidence intervals (CIs) for QTL. Support interval (SI) methods based on the shape of the QTL likelihood curve have proven
adequate for standard interval mapping, but have not been shown to be appropriate for use with composite interval
mapping (CIM), which is one of the most commonly used QTL mapping methods.

Results: Based on a non-parametric confidence interval (NPCI) method designed for use with the Haley-Knott regression
method for mapping QTL, a CIM-specific method (CIM-NPCI) was developed to appropriately account for the selection of
background markers during analysis of bootstrap-resampled data sets. Coverage probabilities and interval widths resulting
from use of the NPCI, SI, and CIM-NPCI methods were compared in a series of simulations analyzed via CIM, wherein four
genetic effects were simulated in chromosomal regions with distinct marker densities while heritability was fixed at 0.6 for a
population of 200 isolines. CIM-NPCIs consistently capture the simulated QTL across these conditions while slightly narrower
SIs and NPCIs fail at unacceptably high rates, especially in genomic regions where marker density is high, which is
increasingly common for real studies. The effects of a known CIM bias toward locating QTL peaks at markers were also
investigated for each marker density case. Evaluation of sub-simulations that varied according to the positions of simulated
effects relative to the nearest markers showed that the CIM-NPCI method overcomes this bias, offering an explanation for
the improved coverage probabilities when marker densities are high.

Conclusions: Extensive simulation studies herein demonstrate that the QTL confidence interval methods typically used to
positionally evaluate CIM results can be dramatically improved by accounting for the procedural complexity of CIM via an
empirical approach, CIM-NPCI. Confidence intervals are a critical measure of QTL utility, but have received inadequate
treatment due to a perception that QTL mapping is not sufficiently precise for procedural improvements to matter.
Technological advances will continue to challenge this assumption, creating even more need for the current improvement
to be refined.
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Introduction

Through genome-wide searches for statistical associations

between genotypes and phenotypes, quantitative trait locus

(QTL) analysis simultaneously locates genetic effects on the trait

of interest to positions within the genome and characterizes the

relative phenotypic consequences of carrying certain natural alleles

at these loci [1]. Since the inception of this approach several

decades ago, these alluring capabilities have driven innovations in

genetic marker technologies, population design and statistical

methods, largely targeted at realizing the potential of this method

to clone the nucleotide polymorphisms that cause the natural

phenotypic variations we observe [2].

For many QTL studies, genetic resolution remains limited by

the number of recombination events and/or the marker density

required to fully delineate them. The number of recombination

events is a function of population type and size, and has been

overcome in several systems by elegant breeding designs,

particularly among plants. For example, in maize, three

intermated recombinant inbred line (iRIL) populations have been

created [3; A. Charcosset, unpublished; N. Lauter and S. Moose,

unpublished]. These are dramatically enriched for the number of
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recombination events per line, such that genetic resolution is

improved by up to 50-fold compared to traditional RIL

populations [4]. In order to be realized, gains in genetic resolution

were accompanied by commensurate improvements in genetic

marker density [5,6]. Although none of these maize populations is

fully resolved by markers, achievement of appropriately high

marker density will fade as a major limitation, since transcript-

derived markers have been shown to be reliable for generation of

thousands of new markers per experiment [7], and suitable

transcript profiling platforms exist for at least 14 crops as well as

for all animal model systems. More recently, experimental

populations with even higher genetic resolution have been

developed for public use [8,9]. Collectively, these advances place

the burden on statisticians to evolve methods that accommodate

these gains in QTL resolution, such that statistical methodologies

are not limiting in this process.

There has been extensive literature written on identifying QTL.

Much of this literature is statistical in nature and, as with any

statistical problem, it is not enough to simply state an estimate of a

parameter of interest without indicating some measure of

uncertainty. Especially in cases when fine-mapping is being

pursued toward goals such as positional cloning or establishing

pleiotropic action, a hard set of bounds that contain a QTL with a

certain confidence is of great interest. Thus, the statistical

challenge has turned from QTL estimation to the construction

of confidence intervals for these locations.

The first and most widely used confidence estimation method is

the LOD drop-off, or support interval (SI) method [10]. For an

estimated QTL, a SI is determined by plotting the LOD score

(obtained from a chosen QTL estimation method) along a

chromosome to generate the LOD curve and then by following

the curve from the peak to its prescribed drop in LOD value on

each side. It has been shown in previous studies of standard

interval mapping that in order for a SI to have 95% coverage, the

LOD drop should be between 1.5 and 2.0 units, depending on the

length of the genome and marker density [11,12]. SI widths

intimately depend on the shape of the LOD profile, specifically the

steepness of the drops flanking the QTL peak.

Another approach to constructing confidence intervals for

estimated QTL is to use a non-parametric bootstrap confidence

interval (NPCI) method that repeatedly samples n observations,

with replacement, from the original sample of size n [13,14]. For

each resampled data set, the location of the QTL of interest is

estimated using a particular QTL estimation method. This process

is repeated B times and a 95% NPCI is constructed by ordering

the B estimated QTL peaks along the chromosome and reporting

the 2.5 and 97.5 percentiles as a= 0.05 positional bounds for the

QTL [14]. Alternatively, the CI can be assumed to be symmetric

and calculated from the replications accordingly [13]. NPCI

methods are not as dependent as SI methods on the shape of the

LOD profile around the maximum LOD value [14].

Both SI and NPCI methods have previously been used to

analyze QTL positions estimated by standard interval mapping

(SIM) [10,14]. SIM tests for the presence of a QTL at any location

along the genome using the nearest fully informative genetic

markers (flanking markers) that capture the position in question.

Composite interval mapping (CIM) does this as well, but is much

more widely used because it has been shown to localize QTL more

precisely [15,16,17]. When testing a putative QTL, CIM includes

additional markers as covariates in the model to help control for

effects of other QTL.

There are marked differences in the shapes of LOD profiles

generated from SIM versus CIM (Figure 1). In addition to effects

of the number of selected background markers and their minimum

statistical significance, adjustable parameters which affect LOD

curve shape include the distance between test interval sites and the

size of the blockout window in which background markers are

excluded from the model [4,18]. When markers selected as

covariates for CIM are linked to a test position, drastic changes in

the LOD curve shape are caused by moderate adjustments to CIM

parameters set by the user, rather than by actual changes in the

likelihood of a QTL existing at the test site [19]. Naturally, such

differences in profile shape alter positional confidence results more

dramatically for SIs than for NPCIs.

Since neither SI nor NPCI methods were developed specifically

for use with CIM, we developed and investigated a CIM-specific

confidence interval estimation method, CIM-NPCI. Here we

report an extensive simulation study that compares the two

existing confidence interval estimation methods to our proposed

method when using composite interval mapping at varying marker

densities and at varying distances from the nearest genetic marker

to the simulated QTL positions. We show that CIM-NPCIs

consistently capture the simulated QTL across all sets of

conditions, and that the slightly narrower SIs and NPCIs fail to

do so at unacceptably high rates, especially when marker density is

high. As high marker densities are essential in studies attempting to

finely localize QTL, these findings are significant. Further, in

examining the consequences of a known propensity for CIM LOD

peaks to gravitate toward nearby genetic markers, we uncovered

Figure 1. LOD profile plot for one simulated data set with
n = 200 individuals. In the simulation there are four chromosomes
where each chromosome contains a single QTL. The dashed line
indicates the LOD profile when using SIM and the solid line indicates
the LOD profile when using CIM. SIs where drawn under each profile.
Marker locations are indicated by tick marks.
doi:10.1371/journal.pone.0009039.g001

Confidence Intervals for CIM
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several trends that are instructive for considering how best to apply

the CIM and CIM-NPCI methods to achieve optimal results.

Methods

Software
The QTL Cartographer v1.17 suite of applications [18] was

used for all QTL simulations and QTL analyses. Python scripts

(http://www.python.org) that perform the CIM-NPCI method

were recently reported [20], but were revised extensively for this

study in order to perform simulations of thousands of runs of

thousands of resamplings. R scripts (http://www.r-project.org)

were written and used to harvest and summarize the results from

the analyses of simulated QTL data and are available upon

request.

Genetic Map Specification
The RIL population type (RI1) was selected for testing

confidence interval methods because positional cloning efforts

are currently best suited to high resolution plant populations of

isogenic lines. A typical sample size of n = 200 lines was used. The

linkage map was designed to have four 165 cM chromosomes with

identical marker coverages. On each chromosome, 23 markers

were placed such that their density varies progressively from high

to low as cM distance from the short arm telomere increases

(Figure 1). In order to specify this genetic map, a data file with the

sequential intermarker distances was created and converted into

map format (software specific) for simulating data. Specifically,

using the QTL Cartographer software, an input file specifying this

information was processed by Rmap in order to generate the

RI1.map file used for simulating QTL effects in the next section

[18].

Simulation of QTL Effects
Only additive effects were simulated since we used an RI1

population design. For all simulations, heritability was held

constant at 0.6, meaning that 60% of the total phenotypic

variance could be explained by genetic effects. In all cases, four

genetic effects were simulated with one on each chromosome to

ensure genetic independence. So that effects of marker densities

could be assessed and tracked, the simulated position of the QTLs

within the 165 cM length of any of the chromosomes was

deliberately varied from 1 cM to 20 cM intermarker distance

(Figure 1). Q1 was placed on chromosome 1 in the most marker-

dense region, Q2 on chromosome 2 in a moderately dense region,

Q3 on chromosome 3 in a moderately sparse region, and Q4 on

chromosome 4 in the most sparse region of the generic

chromosome (Figure 1). All four QTL were assigned equivalent

additive effects, with an overall trait mean of zero, such that the

scale of the phenotype data was irrelevant. On average then, each

of the four QTL should have accounted for 15% of the phenotypic

variance, since heritabilites of 0.6 were simulated.

In order to permit examination of the relationship between the

simulated location of the QTL and the nearest genetic marker,

four sub-simulations were conducted. In the first sub-simulation,

the QTL were placed precisely at the left marker (0 cM distance).

In the three other sub-simulations the QTL were placed at

progressively increasing distances from the left marker, 10%, 30%,

and 50% of the marker intervals where they were placed (Table 1).

We designate the parameter D be the distance of the QTL from

the left marker. For each sub-simulation, N = 1000 distinct RI1

sample data sets of size n = 200 were generated with the specified

genetic map and QTLs. In the QTL Cartographer software, we

used Rqtl to simulate datasets with QTL effects at assigned

positions and equivalent effect magnitudes [18].

QTL Estimation and SI Extraction
CIM was performed on all 4,000 RI1 data sets. CIM is done by

regressing the trait on each locus in the genome with some markers

used as covariates and called background markers. Background

markers for CIM were selected using stepwise regression of the

trait on all markers with forward and backward elimination to

determine which markers are significantly related to the trait (meet

the p = 0.05 significance threshold). A hard bound of 10 was

placed on the number of forward regression steps. In our

simulations, this is done using SRmapqtl with model set to two

(the model with forward and backward selection in stepwise

regression) in the QTL Cartographer software [18]. CIM was

implemented using up to five background markers as cofactors

(covariates in the regression of trait on locus). The specific loci to

be tested for significance with CIM are determined by the walking

speed or distance between test sites. The walking speed was set

such that test positions were spaced at 1.0 cM intervals throughout

the genome. Since all marker positions were specified as whole

numbers, exactly 166 positions were tested per chromosome per

run. A 10 cM blockout window (any markers in that window are

blocked) on each side of the test position was used to exclude

nearby background markers from being covariates in the

regression model. The use of a blockout window should avoid

multicollinearity arising from linkage between loci and nearby

markers. Specifically, using the QTL Cartographer software, the

Zmapqtl function was used with the model set to six (the model

with up to five background markers used as covariates and a

10 cM blockout window around the test position) [18].

LOD curves of all four QTL in each of the 4,000 RI1 data sets

were constructed and used to extract 2.0 LOD SIs, which are

more conservative than 1.5 LOD SIs. For all 16,000 simulated

trait-locus associations, the width of each SI and whether or not it

contained the assigned QTL position were recorded and

summarized.

The CIM-NPCI Method
The CIM analysis yields a LOD profile plot for the genome.

These LOD scores are based on regressing a quantitative trait on

each locus in the genome with some markers designated as

background markers and used as covariates in the regression.

When the locus is a strong predictor of the quantitative trait (while

controlling for the background markers), the LOD score will be

Table 1. QTL locations by flanking marker and sub-simulation.

Distance from LM

Chr. QTL LM RM
Intermarker
distance 0% 10% 30% 50%

1 Q1 11 12 1 11.0 11.1 11.3 11.5

2 Q2 23 26 3 23.0 23.3 23.9 24.5

3 Q3 69 84 15 69.0 70.5 73.5 76.5

4 Q4 114 134 20 114.0 116.0 120.0 124.0

Notes: One QTL (Qx) was placed on each of the four chromosomes (Chr.) in
regions of varying marker density (from dense to sparse). For four
subsimulations the QTLs were placed at varying distances from the left marker.
The QTL locations and the left and right flanking marker (LM and RM) locations
are indicated in cM.
doi:10.1371/journal.pone.0009039.t001
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PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9039



large. We expect that a significant peak in LOD score reveals a

QTL at that approximate location.

There are many loci in the genome and we must be careful

about choosing a threshold for significance to avoid making many

Type I errors. A model-free method for setting the experiment-

wise Type I error rate is using a permutation test. This is done by

permuting the trait values among the individuals in the dataset P

times and calculating the LOD scores using CIM for each

permuted data set. LOD scores which are large compared to this

set are considered significant and only a peak LOD score that

exceeds this threshold is considered for calculating a CIM-NPCI.

To create a confidence interval for the location of the

underlying QTL creating a significant LOD peak, we use

bootstrapping techniques. One bootstrap sample consists of a

resampling with replacement the same size as the original dataset.

A bootstrap dataset may include one observation from the original

data several times, but unlike a permutation dataset the trait values

are always paired with the same genetic data as in the original

dataset. A 95% interval calculated from bootstrapped datasets will

have 95% coverage without making distributional assumptions.

To calculate a CIM-NPCI, B bootstrap datasets are generated

and the peak of the LOD for each chromosome is calculated.

Mimicking the ‘‘selective method’’ for NPCI estimation developed

for Haley-Knott regression methods [14,19], only LOD peaks

which exceed the significance threshold for the original dataset are

considered significant. When analyzing these bootstrap datasets,

we perform complete CIM analysis on each one including

determining appropriate background markers. So, the threshold

for significance is set by the original data, but the background

markers used in CIM are specific to each analysis of bootstrapped

data.

The locations of the LOD peaks for bootstrap datasets which

exceed the threshold are ordered. The central 95% of these

location values defines the 95% CIM-NPCI for QTL location. An

alternative method is to order all the LOD peak positions without

applying the selective method and calculate the central 95%. We

call these intervals non-selective CIM-NPCIs.

Bootstrapping and CI Estimation
The same 4,000 RI1 data sets were resampled by bootstrapping.

We implemented this bootstrapping in the QTL Cartographer

software using Prune [18]. B = 1,000 bootstrap datasets were

created from each of the 4,000 RI1 datasets by sampling with

replacement until n = 200 individual observations were obtained.

All 4,000,000 bootstrap data sets were analyzed by CIM as

described above. The LOD curves were created for these

16,000,000 trait-locus associations and the peak heights and

positions were recorded. The permutation significance threshold

was calculated from P = 1,000 permuted datasets. We implement-

ed this bootstrapping in the QTL Cartographer software using

Prune [18]. From the peak heights and the significance threshold,

16,000 CIM-NPCIs and 16,000 non-selective CIM-NPCIs were

calculated as previously described. The width of each CI and

whether or not it contained the assigned QTL position were

recorded and summarized.

Since it has been used in the literature on simulated and real

CIM results [21], we also tested the bootstrap CI method

implemented in QTL Cartographer, which lacks the background

marker selection step after each new bootstrap data set is created

[18]. We term this method NPCI estimation for its similarity to the

Visscher et al. method [14], however statistically incorrect this

application of NPCI may be. Using Python scripts, CIM was

implemented on all 4,000 RI1 data sets with all of the same

parameters as described above, except that for each RI1 data set,

the original set of background markers selected during initial

analysis of the simulated dataset was used in the analysis of all

B = 1,000 resampled datasets. Just as for CIM-NPCI calculations,

the 16,000,000 trait-locus associations were interrogated to

produce 16,000 NPCIs and 16,000 non-selective NPCIs. The

width of each CI and whether or not it contained the assigned

QTL position were recorded and summarized.

Statistical Comparison of Methods
The aim of this study is to compare several positional

confidence measures for QTL detected by CIM. For assessing

performance of these methods, both coverage probability and

interval width are metrics of interest in the context of high

resolution QTL mapping studies that aim to localize genetic effects

so narrowly that positional cloning and demonstrating pleiotropic

action are reasonable next steps. Coverage probabilities are

obtained by calculating the percentage of simulations where the

constructed confidence interval actually captures the true

parameter, in this case, the QTL position. If a 95% confidence

interval method is appropriate, then one would expect 95% of the

simulations to result in confidence intervals that capture the

location of the true QTL. Interval widths are equally important; a

confidence measure that achieves adequate coverage via wide

intervals that are too conservative is sub-optimal, although the

consequences of conservatism are typically preferred over those of

under-coverage in this context.

Results

Coverage Probabilities
Independent of genetic marker density, the SI, NPCI and CIM-

NPCI methods are all too conservative when the QTL are placed

precisely at markers; the first sub-simulation (0% distance) results

show that all three coverage probabilities are .95% for Q1, Q2, Q3

and Q4 (Table 1; Figure 2). For the sub-simulation where the QTL

are placed 10% of the inter-marker distance away from the left

marker, the SI method performed very poorly for the QTL in a

dense marker region, Q1, but was slightly conservative for the

other QTLs, Q2, Q3 and Q4 (Figure 2). Performance of the SI

method remains inadequate, but improves for Q1 across sub-

simulations in sparse marker regions where the QTL are placed

30% and 50% of the inter-marker distance away from the left

marker (Table 1, Figure 2). By contrast, performance of the SI

method is worse for QTL in a moderately dense region, Q2, in sub-

simulations with QTLs far from markers (30 & 50% distance)

compared to QTLs on and close to markers (0 & 10% distance),

demonstrating that marker density and QTL placement each

affect CIM accuracy differently.

NPCIs have sub-optimal coverage probabilities for all four loci

in the sub-simulations with QTLs in the middle of two markers

(50% distance), and for several of the loci in sub-simulations with

QTLs that are 10 and 30% of the interval distance away from the

flanking marker (Figure 2). For SIs and NPCIs, a pattern of

decreasing spread among coverage probabilities for QTL in all

marker densities is visible across sub-simulations with the QTL not

on the left marker (10–50% distance). This pattern is only

extensible to CIM-NPCI for the sub-simulation with QTLs at 10%

distance from the left marker, where all three methods show their

largest spreads in coverage probabilities for QTL capture across

the four marker densities (Figure 2). CIM-NPCIs give insufficient

coverage in only this one case, where Q2 falls below 0.95.

Otherwise, CIM-NPCIs perform well, with Q1, Q2, Q3 and Q4

clustering more tightly in the coverage probability plots than they

do for SIs and NPCIs, indicating that they are less variable as a

Confidence Intervals for CIM
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function of the local marker density (Figure 2). On average, CIM-

NPCIs were closest to the 95% coverage level that is desired.

Interval Widths
Averaged across loci for all four sub-simulations, interval widths

are relatively similar: 9.64, 10.79 and 11.34 cM for the SI, NPCI

and CIM-NPCI methods, respectively (Table 2). Since the NPCI

method shows the worst coverage probabilities and does not have

the narrowest intervals (Figure 2; Table 2), further discussion of

NPCI results is minimized. When SI and CIM-NPCI widths are

compared, SIs are 17% narrower when averaged across all

conditions. If only the cases where both of these methods had

.0.95 coverage probabilities are considered, average widths are

11.47 and 13.04 cM, making SIs 14% narrower (Table 2).

Averaged across the four cases where SIs are anti-conservative and

CIM-NPCIs have appropriate coverage, 5.79 and 7.61 cM

average widths are observed, making SIs 31% narrower than

CIM-NPCIs (Table 2).

Selective versus Non-Selective CI Estimation
Similar to findings of Visscher and colleagues [14], selection of

the bootstrap resamplings to include on the basis of whether or not

the QTL peak exceeded the Type I error rate threshold had

almost no effect on coverage probabilities or interval widths. For

the comparison of CIM-NPCI to non-selective CIM-NPCI,

pairwise correlation coefficients across the 16 sub-simulation by

QTL combinations are r = 0.99 (p,0.0001) for coverage proba-

bility and r = 0.99 (p,0.0001) for interval widths. However, CIM-

NPCIs were 0.18 cM narrower than non-selective CIM-NPCIs on

average, a statistically significant (p,0.001), but negligible

difference. The NPCI to non-selective NPCI comparisons follow

these trends exactly (not shown). If a lower heritability or a smaller

population size were used, one might expect to see a greater

benefit from using the selective method.

Marker Density versus Chromosome End Effects
Coverage probability results for Q1 were different than those

from the other three loci in several sub-simulations (Figure 2;

Table 2). Since it is possible that the proximity of the Q1 locus to

the end of the chromosome could account for its different

behavior, we performed additional simulations to test whether or

not similar proximity to the chromosome end could affect

coverage probabilities for a simulated QTL placed between widely

spaced markers. Using an identical map and the same experi-

mental framework, Q1 was relocated to cM positions 154, 152, 148

and 144 in four respective sub-simulations of N = 1000 RI1 data

sets. These positions represent 0%, 10%, 30% and 50% of the

distance from position 154 toward position 134. These sub-

simulations spatially mirror the original tests of Q1 coverage

probabilities because the ‘‘0%’’ sub-simulation places Q1 11 cM

from the telomeric markers, which occur at cM positions 0 and

165. In the subsequent sub-simulations, Q1 was simultaneously

moved toward the midpoint between the two markers and away

from the chromosome end (see Table 1 and Figure 1 for

comparison). Q1 coverage probabilities for both SIs and CIM-

NPCIs in these four modified sub-simulations were all above 0.95

(data not shown), closely matching what was observed for Q4,

which represented the sparse marker density condition in the

primary study (Figure 2). These results suggest that marker density,

rather than proximity to the end of the chromosome, explains the

variation in Q1 coverage probabilities observed in the primary

study.

Discussion

Improved genetic resolution and availability of sequenced

genomes have made positional cloning of moderate-effect QTL

realistic in several systems, emphasizing the need for precise and

accurate derivation of positional confidence intervals (CIs). To

investigate the performance of SI, NPCI and CIM-NPCI methods

for estimating positional confidence for QTL detected by CIM,

4,000 RI1 data sets each simulating four equivalent and moderate

Table 2. Average interval widths by confidence interval
method, marker density and sub-simulation.

Distance from
LM Method Q1 IW Q2 IW Q3 IW Q4 IW

0% SI 4.8 (.19) 4.4 (.06) 9.3 (.08) 11.5 (.10)

NPCI 4.5 (.27) 4.1 (.26) 5.4 (.27) 6.3 (.33)

CIM-NPCI 7.5 (.13) 7.5 (.13) 8.9 (.14) 11.1 (.17)

10% SI 5.0 (.10) 4.9 (.07) 11.6 (.12) 14.5 (.12)

NPCI 7.4 (.38) 7.8 (.39) 11.7 (.54) 14.4 (.60)

CIM-NPCI 7.1 (.11) 7.5 (.12) 10.7 (.16) 13.2 (.17)

30% SI 6.1 (.20) 6.0 (.08) 13.9 (.12) 17.3 (.22)

NPCI 7.6 (.37) 8.2 (.39) 16.5 (.72) 21.5 (.92)

CIM-NPCI 7.5 (.13) 8.4 (.12) 16.1 (.21) 20.0 (.27)

50% SI 6.0 (.11) 6.2 (.08) 14.7 (.21) 17.8 (.17)

NPCI 7.4 (.38) 8.4 (.39) 18.3 (.73) 22.3 (.90)

CIM-NPCI 7.4 (.11) 8.6 (.12) 18.1 (.22) 21.6 (.28)

Notes: For the four QTL positions (dense marker region to sparse marker region
Q1—Q4) of each sub-simulation, interval widths (IW) are averages from N = 1,000
simulations and are given in cM with standard errors denoted in parentheses.
An IW in italics indicates that its coverage probability is below 0.95.
doi:10.1371/journal.pone.0009039.t002

Figure 2. Plot of coverage probabilities of confidence interval
methods. For the four QTL positions relative to the nearest marker
(sub-simulations), interval coverage probabilities are shown for the four
marker densities examined. SI (black), NPCI (red) and CIM-NPCI (blue)
coverage probabilities are plotted for Q1, Q2, Q3 and Q4 (denoted by
chromosome number only). The dashed line indicates the desired 95%
coverage level.
doi:10.1371/journal.pone.0009039.g002

Confidence Intervals for CIM
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QTL effects were generated and analyzed by all three methods.

We found that one of the three methods, NPCI, performs very

poorly and that neither SIs nor CIM-NPCIs are perfect, although

they each have strengths for particular applications.

Balancing Exactitude and Accuracy
If two confidence interval methods attain the same coverage

probability, then the narrower of the two intervals would be

considered better because it places narrower bounds on the value

of the true parameter while maintaining the same level of

confidence. However, interval widths are of no consequence when

coverage probabilities are inadequate. CIM-NPCIs give consis-

tently adequate, but slightly conservative coverage. As a result,

they are 14% wider than SIs in the subset of cases where coverage

probabilities for both methods are acceptable. While it is possible

to calculate this percentage with the simulated data available,

analysis of real data sets has no such luxury.

With a real QTL, one can not know whether the allelic

difference underpinning the phenotypic effect resides at a marker,

or 10% of the way toward the next marker. In these sub-

simulations, CIM-NPCIs perform well, while SIs perform

admirably for the first, but atrociously for the second. One must

then conclude that SIs perform poorly when marker density is high

(Figure 2). It is true that CIM-NPCIs are substantially wider for Q1

and Q2 across all four sub-simulations, but this should be viewed as

an acceptable cost for accuracy and certainty. It is precisely

because they are slightly wider that CIM-NPCIs encompass the

QTL with appropriate coverage; the bias of CIM toward

preferentially locating QTL effects at markers is overcome by

the interrogation of 1,000 bootstrap samples of the dataset. While

a single LOD curve can be artificially steep and lead to an SI that

does not contain the true QTL location, it is much less likely that

peak positions for resampled data sets will fall too close together

and miss the true location.

In cases where marker density is as low as it is surrounding Q3,

CIM-NPCI confers no advantage in coverage probability and

incurs a moderate penalty for its wider interval widths (Tables 1

and 2; Figure 2). Thus, we do not recommend using the CIM-

NPCI method for cases when marker density is low, and conclude

that the SI method actually is appropriate for these cases.

Application to Real Data
CIM-NPCIs were compared to SIs in two recent studies that

used maize iRILs to obtain high genetic resolution [20; N. Lauter,

W. Zhang, D. Hessel, S. Moose, in preparation]. The map for this

population has an average intermarker distance of 3.2 cM, so

many of the intervals are quite narrow. More than 40 QTL from

six oligogenically inherited traits have been comparatively

analyzed, and surprisingly, the CIM-NPCIs are ,30% narrower

than the SIs on average. It is possible that the levels of missing data

or proportions of outlying datapoints in these studies are

responsible for this difference from simulated results, which draw

on complete data sets that collectively offer a full range of

distributions. It is also possible that the 40 trait-locus associations

examined are non-representative and that the observed difference

in performance of these methods is artifactual. However, the CIM-

NPCI did capture the QTL peak in every case, and in some cases,

peaks for two traits are tightly overlapping to suggest pleiotropic

action. In one case, the a= 0.05 CIM-NPCI is confined to a single

BAC, confining the QTL to a region of about 160 kb (N. Lauter,

W. Zhang, D. Hessel, S. Moose, in preparation). While this feat

must clearly credit the iRIL strategy [3], the performance of the

CIM-NPCI method on a dense genetic map with several markers

per BAC in this region should not be overlooked. Application to

additional real data sets will be required to further investigate

whether or not CIM-NPCIs are consistently narrower than SIs in

practice.

Choosing a CI Method According to Purpose
Some good reasons to perform CIM-NPCI are that marker

density is high and accuracy is critically important. For most other

cases, it is not necessary to perform 1,000-fold more mapping runs

than otherwise required. This decision is best made on a locus by

locus basis, as marker density is not typically uniform on a map.

That said, regardless of where a QTL is located relative to the

flanking markers, the SI method seems appropriate to use on CIM

results so long as intervals between markers remain greater than

3 cM.

The advent of new marker and breeding approaches will

continue to change what we define as dense marker spacing. As

transcript derived markers are increasingly used, maps will

become more dense, and expectations of QTL cloning and

establishment of pleiotropic action will go up. Collection of

molecular phenotype data in large quantities is becoming more

common [22], bringing increases in data volume that on the one

hand are ill-suited to lengthy reinterrogation methods, but on the

other hand are more likely to require them. As the phenotype of

interest becomes more narrowly defined, its inheritance becomes

increasingly tractable [1,15]. Higher heritabilities lead to narrower

LOD peaks, and when tens of thousands of trait-locus associations

are all mapped, the challenge turns to testing for pleiotropic

action, where confidence intervals become increasingly relevant

[23,24].

Conclusions
We have observed that increasing the level of detail in a data set,

which is often an interim goal for us as experimentalists, weakens

the performance of the most widely used confidence measure,

which had heretofore not been explicitly tested for its performance

with CIM results. The plasticity of LOD curve shapes generated

by CIM makes use of the SI method subject to bias, as the curve

can be optimized for peakedness and then assessed for its spread.

An attractive feature of an empirical computational method such

as CIM-NPCI is that this bias is removed. Moreover, CIM-NPCI

outperforms the SI method, which is surprising, because non-

parametric bootstrapping is outperformed by parametric methods

when applied to SIM results [25]. The discovery that CIM LOD

curve shapes are especially sensitive to false-reporting (under-

coverage) in marker-dense regions is significant, and the potential

for the CIM-NPCI method to consistently provide narrower

localizations with higher confidence is encouraging.
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