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Abstract

The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to
elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye
movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in
previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential
artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL
databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than
grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when
measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-
animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast
processing of animal images is possible irrespective of the particular database. With the ANID images, the difference
between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images
might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is
better suited for the investigation of the processing of natural scenes than other databases commonly used.
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Introduction

The visual system has a remarkable ability to extract categorical

information from complex natural scenes, and the recognition of

objects and scenes appears to be instantaneous and effortless.

When we view an image, we can usually understand what is

displayed very quickly and easily, and we do it countless times

every day. It was shown that the complex processing needed to

perform an object categorization task can be extremely fast in

humans [1]. The speed of processing is particularly remarkable

when considering that responses in early visual areas are

dominated by rather elementary image features. For example,

neurons in primary visual cortex (V1) respond best to oriented

edges, movement or color. Only a few synapses further, in

inferotemporal cortex, neurons are already selective to objects and

give differential responses to different faces or persons

[2,3,4,5,6,7].

Evidence for ‘‘ultra-fast’’ processing in the visual system mainly

comes from EEG-recordings in manual response tasks and

response times of saccadic eye movements [1,8]. Simon Thorpe

and colleagues reported that their observers were capable of

detecting animals within novel natural scenes with remarkable

speed and accuracy. In a manual go/no-go animal categorization

task images were only briefly presented (20 ms) and already

150 ms after stimulus onset the no-go trials showed a distinct

frontal negativity in the event related potentials (ERPs). Median

reaction times (RTs) showed a speed-accuracy trade-off but for

RTs as short as 390 ms observers were already approx. 92%

correct (increasing to 97% correct for 570 ms) [1]. In a more

recent study Kirchner & Thorpe [8] found that saccadic latencies

in a 2-AFC (two alternatives-forced-choice) task were even shorter

than the manual reaction times. Subjects on average took 228 ms

to indicate which one of two images contained an animal. The

shortest reaction times where subjects could reliably identify the

animal image were on the order of 120 ms – saccadic latencies for

more elementary discriminations (e.g. orientation of a line) are

only slightly faster [9,10,11,12], or not faster at all [13]. This leaves

very little time for visual cortical processing, other than a feed-

forward sweep through the ventral stream.

This ultra-rapid and accurate object detection has been found

under various complex stimulus conditions, besides the detection

of objects embedded in natural scenes, such as animals, food, fish

and trees [14,15], there are artificial objects such as various

vehicles containing cars, aircraft, boats, etc. [16]. However the role

of low level image features for the recognition of objects in natural

scenes is still very controversial [17,18,19,20,21]. On the one

hand, in Thorpe, Fize, and Marlot ’s research, they suggested that

the presence of ‘no-go’ specific frontal activity at 150 ms implies

that the visual processing for task performance has been completed

before this time, and much of this processing is based on essentially

feed-forward mechanisms [1]. Other studies also found large

effects with onsets at about 150 ms in the animal detection task
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[16,22]. Furthermore, Kirchner and Thorpe suggested low level

differences between target and distractor images were unable to

account for these exceptionally fast responses [8]. On the other

hand, Johnson and Olshausen suggested that the early component

(around 135 ms) of neural activity is not correlated to recognition

but low-level feature difference between images, and the neural

signatures of recognition have a substantially later and variable

time of onset (150–300 ms) [23].

Most of the research about the animal detection in natural scene

used professional photographs from the Corel Stock Photo Library

(COREL) which contains images taken by professional photogra-

phers. Thus, the animal images contain animals in sharp focus at

the center of the image, in front of a mostly blurry background.

The distractor images mostly contain landscapes, including man-

made objects, which are all in sharp focus [20]. This selection of

the stimulus material might have affected stimulus processing.

Aude Oliva, Antonio Torralba and colleagues suggested that

observers might guide their decision using a form of contextual

information. Instead of recognizing the animal in a scene,

observers use other cues (called ‘‘proxies’’) that are correlated

with the presence of an animal. In this case, it was mainly the

spatial frequency content of the scenes under study [24]. In order

to remedy that situation, an image database called All Natural

Images Database (ANID) (http://www.allpsych.uni-giessen.de/

ANID/) was newly developed to overcome the drawbacks of the

COREL database. The pictures were taken with high resolution

with the animal occupying a small standard region at the center of

the image. This way, the images can be shifted around so that the

animal can take up different positions in the image, or in the

extreme case be shifted out of the image altogether. The

advantage is that all contextual cues can be excluded, because

the animals are just as likely to be present given the background of

the distractor images. The kind of ‘‘photographer-induced’’ proxy

strategy suggested fails in these images, yet observers were still

capable of ultrafast animal recognition [20,25].

Furthermore, context (or global scene) congruence has generally

been shown to have a significant effect on classification accuracy

and speed [26,27]. In the ANID database, images of animals were

taken in their natural habitats or in zoo environments coming

close to the natural habitat of the animals. Thus the animals from

ANID have a more contiguous background than in previous

studies using the COREL database. These stimuli maintain

animal/background integrity and thereby avoid any kind of ‘‘cut

out’’ or ‘‘cut and paste’’ effect [25]. While a host of literature exists

regarding image databases in computer vision (see e. g. [28,29]),

there is little direct research about the role of image databases in

visual perception, including rapid animal detection performance.

Thus we used this new natural image database as a comparison to

the COREL images.

We also investigated the role of another low level feature, color,

for object recognition. The role of color information for

recognizing scenes and objects has been somewhat elusive so far.

The results have been quite different depending on the particular

Figure 1. Sample images: animal (top) and non-animal (bottom) images of the Corel (left) and ANID databases (right); both color
and gray-scale versions are shown.
doi:10.1371/journal.pone.0075816.g001

Figure 2. Schematics of the paradigm used in experiment 1.
Participants were instructed to direct their gaze towards the target
image as quickly as possible.
doi:10.1371/journal.pone.0075816.g002

Figure 3. Schematic of the paradigm used in experiment 2. In
the go/nogo task, participants were instructed to release a button when
a target image was shown, and to hold on to the button otherwise. In
the forced choice task, participants were asked to press different
buttons for animal and non-animal images.
doi:10.1371/journal.pone.0075816.g003

Effects of Color and Database on Animal Detection
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task. While many researchers have found great advantages of color

in scene and object recognition, no such effect was obtained for the

reaction times in the animal detection experiments [14].

Color provides humans with extraordinarily rich sensory access

to the surrounding environment, for example to detect ripe fruit

and distinguish young leaves against a background of mature

leaves [30]. And it is well established that color information plays

an important role in early visual processing [31,32]. Color has

been shown to aid image segmentation [33] and object recognition

[34]. Image segmentation is typically used to locate objects and

boundaries (lines, curves, etc.) in images, which help to determine

‘‘what’’ is ‘‘where’’. Moller and Hurlbert demonstrated an early

contribution of region-based processes to segmentation by color

[33]. Gegenfurtner and Rieger used a delayed match-to-sample

task to test the role of color vision in the recognition of briefly

presented images of natural scenes. Recognition accuracy was

higher for color images of natural scenes than for luminance-

matched black and white images, and color information contrib-

uted to both very early and later stages of the recognition process

[34]. This result concluded that color vision, whose processing

starts at the very earliest stages of analysis, helps us to recognize

things faster and to remember them better. More studies suggested

that color facilitate recognition memory on a sensory level, at

encoding, by improving edge detection and segmentation as well

as on a cognitive level by being bound as a part of the memory

representation [34,35]. In general, these studies indicate that color

helps to see things quicker, and to remember them better.

However, some studies found little effects of color for target

detection in natural scenes [36,37]. Fei-Fei et al. using a dual-task

paradigm, whose peripheral task is a go/no-go detection task with

a speeded response to detect animal targets, found that subjects

performed equally well with grayscale and colored stimuli in

briefly presented scenes [36]. Delorme et al. had both humans and

rhesus monkeys perform a go/no-go detection task requiring a

speeded response to detect targets on briefly flashed images

(32 ms). They found that both accuracy and response times were

virtually the same for grayscale and colored targets [37]. In

contrast, when the response time was slower (.400 ms) than the

ultra-rapid task (characterized by response times less than 360 ms

in humans), color seems to have a more decisive role in scene

categorization tasks [38,39,40]. The subjects were typically faster

and more accurate when color diagnostic scenes were presented in

original coloring rather than in grayscale [39,41]. The conclusion

from these studies seems to be that color information is available at

a very early level, but that this information is not available to guide

quick reactions.

The aim of our study is to investigate two aspects of low-level

visual processing (color and database) on object recognition and its

neural basis. In addition to behavioral data (reaction time and

accuracy), we recorded the event-related potentials (ERPs) to

obtain a more direct measure of the neural processes related to

rapid scene categorization. Based on the excellent temporal

resolution of neural events, ERPs have been regarded as neural

manifestations of specific cognitive functions, reflecting brain

activity from synchronously active populations of neurons [42].

ERPs can reveal, at much finer temporal resolution (millisecond

range), the time course of neural processes underlying categori-

zation [1,23]. For example, Thorpe and his colleagues studied the

processing time for natural scenes and found that the difference

between go and no-go trials develops roughly 150 ms by ERP [1].

Importantly, the timing of this ERP component onset is constant

across trials [23] and therefore is not correlated with the

subsequent reaction time. The latency of this component is also

constant for both novel and previously learned images [43]. Thus

it is would be interesting to study the role of color and database in

the scene categorization by ERP. No previous ERP studies have

attempted to measure the neural basis for the color and database

role in rapid categorization of natural scenes, thus, we used ERP to

Figure 4. Performance of experiment 1. Saccade latency (A) and Accuracy (B) of image database (COREL vs. ANID) 6 image hue (color vs. gray-
scale), in two sessions (C, D). Error bars represent 1 s.e.m.
doi:10.1371/journal.pone.0075816.g004
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Figure 5. Grand average ERP waveforms of experiment 1. Frontal areas: F3, F4, F7, F8, FZ, FP1, FP2. ERP waveforms elicited by Color and Gray-
scale images and their difference waveforms in COREL (A) and ANID (B) databases separately. Topographic maps for the difference waves in COREL
(C) and (D). The ERPs were integrated across 20 ms time windows from 120 ms to 259 ms. Maps are viewed from above, with the nose pointing
upwards. (F) ERP waveforms of COREL and ANID and their difference waveforms at frontal areas. (E) and (G) Statistics of N1 amplitudes (left) and
latency (right). Error bars represent 1 s.e.m.
doi:10.1371/journal.pone.0075816.g005

Effects of Color and Database on Animal Detection
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investigate: how and when these low level image features affect the

processing of ultra-rapid animal detection in natural scene.

In Kirchner and Thorpe’s study, eye movements instead of

button presses were used: human observers have been shown to

be capable of deciding which of two simultaneously presented

natural scenes contains a target object in even less than 150 ms.

On average, when using saccadic choice paradigms, human

observers have been found to perform rapid animal detection

with mean latencies around 200 ms, while maintaining accuracy

ratings of 80% and up to 95% (Kirchner & Thorpe, 2006).

Thus, in our study, different response paradigms and modalities

were used (go/nogo vs. forced-choice; saccade vs. button

presses) to test the effects of color and database in animal

detection.

Methods

Ethics statement
All experiments were approved by the local Ethics Committee

of the Giessen University or Kunming Institute of Zoology,

Chinese Academy of Sciences, and performed according to the

principles expressed in the Declaration of Helsinki. All participants

were informed about the procedure of the experiment. Written

informed consent was obtained from all participants.

Subjects
34 subjects participated in experiment 1 (10 male, 24 female,

aged 18–34: mean = 23, SD = 3.01). 18 subjects were tested on

color images, and the remaining 16 subjects on gray-scale images.

The participants were students recruited from Giessen University

and were paid hourly for their participation.

Figure 6. Behavioral performance of experiment 2. Accuracy (top) and Response Time (bottom) were compared between color and gray-scale
stimuli (left) and between COREL and ANID databases (right) in go/nogo and forced choice task. Error bars represent 1 s.e.m.
doi:10.1371/journal.pone.0075816.g006

Table 1. Performance of go/nogo and forced choice task in experiment 2.

Accuracy (%) Response time (ms)

Database COREL ANID COREL ANID

Hue Color Gray Color Gray Color Gray Color Gray

Go/nogo

Animal 94.6 92.6 89.8 85.4 367.7 339. 9 366.3 340.9

Non-animal 93.6 90.0 92.3 93.9 - - - -

Forced choice

Animal 93.9 93.0 89.6 88.2 359.5 342.4 357.9 335.4

Non-animal 92.2 90.8 90.7 90.9 367.0 337.8 361.3 335.2

doi:10.1371/journal.pone.0075816.t001

Effects of Color and Database on Animal Detection
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Another 34 subjects participated in experiment 2 (17 male, 17

female, aged 20–26: mean = 22.3, SD = 1.39), who did not take

part in the experiment 1. 16 subjects performed in a go/nogo task,

and another 18 subjects performed in a forced choice task. The

participants were students recruited from Yunnan University and

were paid hourly for their participation.

All participants had normal or corrected-to-normal vision and

were naive to the purpose of the experiment.

Stimuli
1200 images were used in the experiments. Six hundred images

were selected from the Corel Stock Photo Libraries (COREL)

[44], and another 600 images were selected from the All Natural

Images Database (ANID) (http://www.allpsych.uni-giessen.de/

ANID).

Many important studies involving rapid animal detection used

images drawn from the COREL database [23,43,45,46]. The

center objects (animals) in the COREL database frequently cover

a large portion of the available image area, leaving relatively little

target-free surround [25]. The animal and non-animal stimuli of

the COREL database were therefore collected from independent

images, which may have resulted in systematic differences between

animal and non-animal stimuli [20]. In contrast, the newly

collected ANID database contains larger images with large,

contiguous, yet animal-free surround. This enabled us to crop

the animal and non-animal images from the same scenes in the

ANID database. In order to compare with the COREL database,

the animal images of the ANID stimuli were selected and cropped

in such a way that the animal appeared in the center of the

stimulus image.

All of the images were cropped into square shape of 480-pixel

side length, thus the display size of each image was 18618 degree

visual field. Half of the images were animal images, and the other

half were non-animal (no-target) images. Figure 1 shows examples

of the type of animal images (top row) and non-animal images

used. The gray-scale images were converted from RGB color using

MATLABs (TheMathWorks, Inc., 2010) standard rgb2gray

routine, which is a simple linear combination of the RGB color

channels (0.2989*R+0.5870*G+0.1140*B).

Image statistics. In experiment 1, target and non-target

stimuli were composed of two sets of images (animal and non-

animal images) from two different image databases (COREL and

ANID). The average amplitude spectra of the animal and non-

animal images of the two databases were compared. In both of the

image databases, the average amplitude spectra were similar

between classes. For the COREL database, the mean difference

between the average animal and the average non-animal

amplitude spectra was 33% of one standard deviation, with a

maximum of 65%. For the ANID database, the mean difference

between the average animal and the average non-animal

amplitude spectra was less than 12% of one standard deviation,

with a maximum of 38%.

As the next step, the luminance of all images was calculated.

Since the gray-scale images were transformed from the color

images by using a simple linear combination of the RGB values

(see above), the luminance of the color and gray-scale images were

always pairwise the same. The average luminance measures when

averaged per image database were extremely similar. The mean

difference between the average COREL and ANID luminance

measures was 33% of one standard deviation.

Subsequently, the average luminance of the animal and non-

animal images of both databases was compared. For the COREL

database, the mean difference between the average animal and the

average non-animal luminance was 21% of one standard

deviation. For the ANID database, the mean difference between

the average animal and the average non-animal luminance was

merely 2% of one standard deviation.

In general, the difference between animal and non-animal

images in the ANID database was smaller than between those in

the COREL database. Other than the spectral differences

investigated earlier [25], there do not seem to be any major cues

to animal presence in both image databases.

Experimental Procedure
Experiment 1. Experiment 1 was a standard 2AFC discrim-

ination paradigm. The participants performed a rapid animal

detection task: did the left or the right of the presented images

contain an animal? All subjects took part in two sessions. In session

1, their eye movements were recorded; in session 2, their EOG

and EEG data were recorded. In one condition the original color

images were used, in another condition the gray-scale versions

were used.

Target (animal) and distractor (non-animal) images were

arranged to the left and right randomly, each located at 10.5

degree horizontal eccentricity, with equal probability in blocks of

100 trials. Each trial contained exactly one target (animal) image.

Every subject participated in six blocks, presented in random order

exactly once in each session.

Prior to the experiment, subjects were instructed that the animal

could appear ‘‘either to the left or to the right’’. Subjects initiated a

trial with a button press. Each trial started with the display of a

fixation cross (about 1.2u61.2uof visual angle) in the center of the

screen, in front of a gray background. After a random interval of

800–1600 ms, the fixation cross disappeared, followed by a gap

period of 200 ms. After the gap period, the main stimulus image

was displayed for 1000 ms, after which it disappeared. Subjects

were required to direct their gaze to the side of the target image as

quickly and accurately as possible. Before the next trial was

initiated, there was a gap period of 400 ms. Subjects were

permitted to take a break anytime during the experiment if they so

desired. The schematic of the task paradigm is shown in figure 2.

Experiment 2. Two kinds of tasks were used in experiment 2,

a go/nogo task and a forced choice task. Every subject took part in

only one of the tasks, and their EEG data were recorded during

the experiment.

Target (animal) or distractor (non-animal) images were shown in

the center of the screen randomly, with equal probability in blocks

of 120 trials. Half of the stimuli were color images and the other

half were gray-scale images, counterbalanced between subjects.

Every subject participated in ten blocks in random order exactly

once. Prior to the experiment, subjects were instructed that there

could be animal or non-animal images appearing on the screen.

In the go/nogo task, subjects initiated a trial by pressing and

holding the left button of a mouse. Each trial started with the

display of a fixation point (about 1.1u61.1uof visual angle) in the

center of a gray background. After 500 ms, the fixation point

Table 2. Mean accuracy and response time of go/nogo and
forced-choice task in experiment 2.

Task Animal Non-animal

Accuracy (%) Rt (ms) Accuracy (%) Rt (ms)

Go/nogo 90.6 358.3 92.45 null

Forced choice 91.2 348.4 91.15 350.3

doi:10.1371/journal.pone.0075816.t002
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disappeared, followed by a random gap interval of 200–400 ms.

After the gap period, the stimulus image was displayed for 200 ms.

After the stimulus image disappeared, a fixation cross (about

1.1u61.1uof visual angle) was shown in the center of the screen for

a time period of no more than 1000 ms. The display of the cross

could be aborted by the subject through releasing the left button of

the mouse. Subjects were required to release the button of the

mouse when they saw a target as quickly and accurately as

possible. Before the next trial was initiated, there was a gap period

of 400 ms. In the forced choice task, subjects were required to

respond by pressing one of two buttons. One button was assigned

to the right hand, the other one to the left hand. Target/non-

target button assignments were switched after 5 blocks to balance

against possible biases.

Subjects were permitted to take a break anytime during the

experiment if they so desired. The schematic of the task paradigm

is shown in figure 3.

Eye movement recording and data analysis
In session 1 of experiment 1, eye movements were recorded

using an EyeLink II video-based eye tracking system (SR

Research, Canada). The recording frequency was set to 500 Hz.

Images were presented on a CRT screen, the active display of

which was approximately 40.5 cm wide and 30.5 cm high, at a

resolution of 128061024 pixels. The refresh rate of the screen was

set to 100 Hz.

Stimulus presentation was controlled by a PC running the

software written in Matlab, using the Psychtoolbox (Brainard,

1997). The experimental chamber had all major surfaces covered

in black and was otherwise dimly lit; the lighting was kept at the

same level throughout the experiment. Subjects were seated at

45 cm from the screen with a chin rest to stabilize the head

position. At the beginning of each session, subjects were calibrated

using the default 9-point calibration algorithm suggested by the

manufacturer.

Trials in which the subject had drifted by more than 3u during

fixation, or in which the first saccade was smaller than 4.2u were

marked invalid. If subjects did not move their gaze onto the target

stimulus within 5 s, the trial was marked invalid as well. Finally,

saccades faster than 100 ms were considered as errors, possibly

driven by the sudden appearance of the stimulus rather than

stimulus content, and were also marked invalid. Invalid trials were

ignored during further analysis.

Event-related potential recording and data analysis
In session 2 of experiment 1, the subjects were fitted with an

Easy-Cap (Brain Products, Germany). EEG was recorded (using a

Brain products system) from 32 channels, based on the interna-

tional 10–20 system. All electrode sites were referred to an

electrode placed on the left mastoid.

In experiment 2, the subjects were fitted with a Quick-Cap

(Neuroscan-USA). EEG was recorded (using a Neuroscan system)

from 64 channels, based on the international 10–20 system. All

electrode sites were referenced to bilateral mastoid electrodes.

Eye movements and blinks were monitored using electrodes

placed near the outer canthus of each eye (horizontal electrooc-

ulogram HEOG), and above and below the left eye (vertical

electrooculogram, VEOG). Inter-electrode impedance levels were

kept below 5 kV.

EEG was recorded continuously throughout the experiment and

was bandpassed from 0.05 to 100 Hz, at a 1000 Hz sampling rate.

After completing data collection, the EEG recordings were

segmented into 500 ms epochs, starting from 100 ms prior to

stimulus onset. Epochs contaminated with artifacts (the threshold

for artifact rejection was 680 mV in all channels) were rejected

before averaging. ERPs were filtered digitally prior to peak

detection using a bandwidth from 0.1 to 30 Hz.

For session 2 of experiment 1, saccade timing was measured

using HEOG with a similar procedure as described by Kirchner

and Thorpe [8]: As a first criterion, the difference signal between

the left and right EOG electrodes had to exceed an amplitude

threshold. Subsequently, the saccade onset time was determined as

the nearest signal inflection preceding this point.

Saccadic reaction time was determined as the time difference

between the onset of the images and the start of the saccade. Only

when the difference signal between the left and right HEOG

electrodes exceeded 630 mV was the trial considered as valid.

Then, the saccade onset time was determined as the nearest signal

inflection preceding this point. Saccades faster than 100 ms and

slower than 250 ms were considered invalid.

Whenever error bars are shown in the figures, these represent

one standard error of the mean.

Results

Experiment 1
The participants performed a 2AFC animal detection task with

the stimuli both in original color and in the gray-scale versions.

Images were selected from both the COREL database and the

ANID database.

Results of saccade measurements. The latency and

accuracy of the first saccade were analyzed using an ANOVA

design for repeated measures with three factors: image database

(COREL vs. ANID), ‘‘presence of color’’ and experiment sessions

(session 1 vs. 2). Greenhouse–Geisser adjustments to the degrees of

freedom were applied when appropriate.

Main effects. Subjects completed the task faster with lower

accuracy in session 2 (168 ms, 83%) than in session 1 (176 ms,

87%). The difference between two sessions was significant for

saccade latency (F (1, 32) = 15.7, P,0.001), and for accuracy (F (1,

32) = 21.8, P,0.001). This could result from a trade-off effect

between accuracy and latency.

The ANID had higher accuracy than COREL (89% vs. 80%, F

(1, 32) = 401.5, P,0.001), with nearly identical latencies (172 vs.

173 ms, F (1, 32) = 5.05, P = 0.032), see figure 4.

There was no significant overall difference between color and

gray-scale images on either saccade latency (170 ms vs. 174 ms) or

accuracy (84.5% vs. 85.2%).

Interactions: Latency. The difference of latency between

the color and gray-scale versions of the ANID database (5.09 ms)

was bigger than in the COREL database (3.12 ms). The difference

between COREL and ANID databases only reached significance

in color images (171.11 ms vs. 168.96 ms, F (1, 17) = 15.78,

P = 0.001), not in gray-scale images (174.23 ms vs. 174.05 ms, F

Figure 7. Grand average ERPs of the go/nogo task in experiment 2. (A) Animal and non-animal stimuli ERPs and their difference waveforms
of COREL and ANID for color and gray-scale images from frontal areas (FP1, FP2, F3, F4, F7, F8, FZ). (B) The difference waveforms between animal and
non-animal stimuli in four conditions. (C) Topographic maps for the difference waves in four conditions. The ERPs were integrated across 20 ms time
windows from 120 ms to 259 ms. Maps are viewed from above, with the nose pointing upwards. (D) Paired t-test at each time point of the difference
ERPs between 2100 ms to 400 ms at frontal areas (n = 16, t (15) = 1.75, p,0.05).
doi:10.1371/journal.pone.0075816.g007
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(1, 15) = 0.04, P = 0.85). There was no other significant interaction

on latency.

Interactions: Accuracy. The accuracy interaction between

presence of color and session showed that the color images had

higher accuracy (88% vs. 86%, p = 0.207, no significant difference)

than gray-scale images in session 1, and lower accuracy (81% vs.

84%, p = 0.023) in session 2 (F (1, 32) = 8.26, P = 0.007). This

difference in accuracy was only significant for the ANID database

(F (1, 32) = 16.40, P,0.001), not for the COREL database (F (1,

32) = 2.44, P = 0.128). The interaction of all three factors was also

significant (F (1, 32) = 5.56, P = 0.025). Statistics are illustrated in

figure 4-B.

The accuracy interaction between presence of color and session

showed that the accuracy our subjects achieved in session 2

decreased compared to session 1, however this difference was only

significant for color images (81% vs. 88%; F (1, 17) = 39.4,

P,0.001), not for gray images (86% vs. 84%, F (1, 15) = 1.21,

P.0.05). This difference in accuracy was similar for both image

databases, but significant only with the ANID database (F (1, 32)

= 16.4, P,0.001). The interaction of all three factors was also

significant (F (1, 32) = 5.56, P = 0.025). Statistics are illustrated in

figure 4-B.

Results of EEG. The correct-response event-related potential

(ERP) of both image databases (COREL vs. ANID) were analyzed

separately for the color images and for the gray-scale images. We

calculated the frontal brain areas response by averaging the

responses for all seven frontal electrodes: FP1, FP2, F3, F4, F7, F8,

FZ [1]. Figure 5 showed the pooled ERP waveforms and

difference waveforms between color and gray-scale (figure 5A,

B), and between COREL and ANID databases (figure 5F) at the

frontal brain areas. Here we focus on the analysis of the negative

ERP component N1, which was quantified by means of peak

amplitude and peak latency, with peak amplitude measured

relative to baseline and peak latency measured in relation to

stimulus onset.

The amplitudes and latencies of N1 were analyzed using an

ANOVA design for repeated measures with image database

(COREL vs. ANID) and electrodes as within-subjects factors, and

the ‘‘presence of color’’ as between-subjects factor. Greenhouse–

Geisser adjustments to the degrees of freedom were applied when

appropriate.

The color images induced greater N1 amplitude (25.62 mV)

than the gray-scale images (24.27mV), F (1, 32) = 7.32, P = 0.007,

with shorter latency (196.43 ms vs. 209.05 ms), F (1, 32) = 5.69,

P = 0.018, figure 5 E. We plotted topographic maps for the

difference waves between color and gray-scale images separately

per database. The ERPs were integrated across 20 ms time

windows, from 120 ms to 259 ms. N1 was located mainly in the

frontal brain areas, and this difference began at around 170–

180 ms. Comparing figures 5 C and D, the difference between

color and gray-scale images can be seen to emerge earlier with the

ANID database than with the COREL database.

The N1 amplitude of COREL (24.97 mV) and ANID

(24.92mV) were very similar with very close latency (203.17 ms

vs. 202.30 ms). There was no interaction for the N1 amplitude and

latency.

In Experiment 1, we investigated the effects of color and

database on human rapid animal detection performance by means

of a 2AFC paradigm. We chose eye movements as our response

modality, as they are fast and usually very precise. However, some

of the effects we found may be specific to eye movements, as they

are easily influenced by the appearance of the task. Additionally,

the visual processing in the direct comparison of two images may

differ from conditions where only one image is shown at a time.

To investigate this, we devised a second experiment, which

included a different response modality as well as a different

experimental paradigm.

Experiment 2
The participants performed a go/nogo or a forced choice

animal detection task with the stimuli both in original color and in

the gray-scale versions. Images were selected from both the

COREL database and the ANID database. In this experiment,

subjects used button press instead of eye movements.

Behavioral results. The accuracy and response time (Rt) of

the subjects were analyzed using an ANOVA design for repeated

measures with two factors: image database (COREL vs. ANID)

and ‘‘presence of color’’. Greenhouse–Geisser adjustments to the

degrees of freedom were applied when appropriate.

Color images had higher accuracy and slower response time

than gray-scale images both in go/nogo task (accuracy: F (1, 15)

= 552.6, P,0.001; response time: F (1, 15) = 14.5, P = 0.002) and

in forced choice task (accuracy: F (1, 15) = 599.5, P,0.001;

response time: F (1, 15) = 6.18, P = 0.024).

The COREL database had higher accuracy than the ANID

database in both tasks: go/nogo: F (1, 15) = 29.4, P,0.001; forced

choice: F (1, 15) = 19.3, P,0.001), with almost the same response

time. See figure 6. Table 1 lists the details of the accuracy and

response time in both go/nogo and forced choice tasks.

Comparing between go/nogo and forced choice

task. The accuracy in both tasks was very high, both more

than 90%. In the forced choice task, animal and non-animal image

trials had very similar accuracy (91.2% vs. 91.15%). But in the go/

nogo task, the accuracy of non-animal trials was higher than

animal trials (92.45% vs. 90.6%). The response time of the

detection of animal stimuli in the forced choice task was faster than

in the go/nogo task (see table 2).

Results of EEG. The correct-response ERPs of target

(animal) and distractor (non-animal) images were computed

separately. These two ERPs were compared by subtracting the

target ERPs from the distractor ERPs. For both go/nogo and

2AFC tasks, the ERPs of the two image databases (COREL vs.

ANID) in the two hue conditions (color vs. gray-scale) were

analyzed separately.

The ERPs of animal and non-animal stimuli diverged at around

150 ms after stimulus onset, an effect which was particularly clear

at frontal electrodes, thus we calculated the frontal brain areas

response by averaging the responses for all seven frontal

electrodes: FP1, FP2, F3, F4, F7, F8, FZ (Thorpe, Fize, & Marlot,

1996).

The peak amplitude and peak latency of P1 and N1 were

analyzed using an ANOVA design for repeated measures with

‘‘animal/non-animal’’, ‘‘presence of color’’, image databases

Figure 8. Grand average ERPs of the forced choice task in experiment 2. (A) Animal and non-animal stimuli ERPs and their difference
waveforms of COREL and ANID for color and gray-scale images from frontal areas (FP1, FP2, F3, F4, F7, F8, FZ). (B) The difference waveforms between
animal and non-animal stimuli in four conditions. (C) Topographic maps for the difference waves in four conditions: The ERPs were integrated across
20 ms time windows from 120 ms to 259 ms. Maps are viewed from above, with the nose pointing upwards. (D) Paired t-test at each time point of
the difference ERPs between 2100 ms to 400 ms at frontal areas (n = 18, t (17) = 1.74, p,0.05).
doi:10.1371/journal.pone.0075816.g008
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(COREL, ANID) and electrodes as within-subjects factors.

Greenhouse–Geisser adjustments to the degrees of freedom were

applied when appropriate.

The N1 amplitude with non-animal stimuli was bigger than

with animal stimuli both in the Go/nogo task (211.12 mV vs.

29.22 mV, F (1, 15) = 14.06, P = 0.002) and in the Forced choice

task (28.26 mV vs. 27.25 mV, F (1, 17) = 12.03, P = 0.003). The

two ERPs diverged to a statistically significant amount from

182 ms (p,0.05) for the Go/nogo task and 179 ms ((p,0.05) for

the Forced choice task. This results are similar to those reported by

Thorpe, see figure 7, 8 (A) (Thorpe, Fize, & Marlot, 1996).

However, the difference between animal and non-animal

stimuli with the COREL database was bigger than with the

ANID database (Go/nogo: F (1, 15) = 10.13, P = 0.002; Forced

choice: F (1, 15) = 6.20, P = 0.001), figure 7, 8(B, C). Especially,

this difference was statistically significant from 179 ms (go/nogo),

Figure 9. Comparison of ERP characteristics of experiment 2. P1 (top) and N1 (bottom) amplitude at frontal areas (FP1, FP2, F3, F4, F7, F8, FZ)
were compared between color and gray-scale stimuli (left) and between COREL and ANID databases (right) in go/nogo and forced choice task. Error
bars represent 1 s.e.m.
doi:10.1371/journal.pone.0075816.g009

Table 3. P1 and N1 amplitude and latency of go/nogo and forced choice task in experiment 2.

Task Go/nogo Forced choice

amplitude (uv) amplitude (uv)

latency (ms) latency (ms)

Database COREL ANID COREL ANID

Hue Color Gray Color Gray Color Gray Color Gray

P1

Animal 2.83 2.44 2.33 2.25 3.73 3.61 3.21 3.19

127.8 133.3 120.4 125.8 132.1 128.4 123.9 125.4

Non-animal 2.48 1.57 2.14 1.86 3.25 3.02 3.01 2.59

117.7 118.3 119.9 116.8 120.1 124.2 119.1 119.0

N1

Animal 28.82 28.31 210.3 29.46 26.44 26.59 28.24 27.74

217.6 224.6 221.0 222.6 212.2 214.1 221.5 225.3

Non-animal 211.02 210.94 211.37 211.21 27.95 27.60 28.62 28.86

222.8 222.8 218.5 228.8 218.0 227.3 211.3 216.9

doi:10.1371/journal.pone.0075816.t003
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147 ms (forced choice) for the COREL-color images, 171 ms (go/

nogo), 183 ms (forced choice) for the COREL-gray-scale images

(p,0.05) on go/nogo and 2AFC tasks separately, however no

similar effects were found on the images of the ANID database

(paired t-test at each time point of the difference ERPs between

2100 ms to 400 ms; figure 7D, 8D).

For both animal and non-animal stimuli, the color images

induced larger and earlier amplitudes than gray-scale images,

however the difference was statistically significant only on the go/

nogo task: P1: F (1, 15) = 5.36, P = 0.035; N1: F (1, 15) = 5.75,

P = 0.018, figure 9. On the forced choice task, color images

induced larger N1 than gray-scale images on animal trials with the

ANID database (28.16 mV vs. 27.79 mV, P = 0.001).

The COREL database induced larger P1 and smaller N1 than

the ANID database: go/nogo task: P1: F (1, 15) = 8.08, P = 0.012;

N1: F (1, 15) = 3.9, P,0.001); forced choice task: P1: F (1, 15)

= 4.67, P = 0.032; N1: F (1, 15) = 11.5, P = 0.01). Table 3 listed

the detailed data both go/nogo and forced choice tasks.

Discussion

We discovered several significant differences in behavioral

performance between color and gray-scale images. However, all

these differences were rather small and it is difficult to exclude

possible trade-offs between speed and accuracy as their cause. In

contrast, we found that in all tasks color images induced greater

N1 at earlier time points than the gray-scale images. The ERP

results of go/nogo and forced choice tasks were similar to those

reported by Thorpe and colleagues [1]: the N1 amplitude with

non-animal stimuli was bigger than with animal stimuli. However,

this difference was bigger for the COREL images than within the

ANID images.

In addition to these general findings, we observed several

differences between the different paradigms. Color did not

increase the performance in the 2AFC task, but increased both

accuracy and response time in the go/nogo and forced choice

tasks. The ANID images had higher accuracy than the COREL

images in the 2AFC task, but had opposite effects in go/nogo and

forced choice tasks. The ANID and COREL images showed

significant differences on ERPs in the go/nogo and forced choice

tasks, but not in the 2AFC task. With the ANID images, the

difference between color and gray-scale version images was more

pronounced than with the COREL images. This bigger difference

within the ANID database may result from the way the ANID

database was constructed: animal and no-animal images were

taken from the same original scene, resulting in very similar color

distributions. In the extreme case, the only noteworthy color

distribution difference between two images would be the animal

itself (e.g. green grass and blue sky vs. green grass, blue sky and a

brown or black-and-white cow). This might make color a more

diagnostic feature for the ANID database, as the pairwise

unrelated images from the COREL database naturally exhibit

more variable color distributions. However, the images of the

ANID database were taken in the natural habitats of the animals,

and therefore exhibit a higher ecological validity than the COREL

images. The nature of the difference varies with the different tasks:

(a) In the 2AFC task, the saccade latency of the color images was

smaller than that of the gray-scale images and this difference was

larger with the ANID database than with the COREL database.

(b) In the 2AFC task, the ERP difference waves between color and

gray-scale images emerged earlier with the ANID database than

with the COREL database. (c) In the forced choice task, during

animal trials, the difference of the N1 amplitudes between color

and gray-scale images was bigger with the ANID database than

the COREL database.

Effects of color
Color appears as a more relevant feature in the processing

required to detect whether there is an animal in one given image

(animal or non-animal, experiment 2) than the processing required

to identify where the animal is in two images (animal and non-

animal, experiment 1). Table 4 showed the detailed comparison

between color and gray images in different tasks.

Color might be more or less ‘‘diagnostic’’ in the recognition of

certain object categories [39,41,47]. In other words, the use of

color features to determine whether an item belongs to a category

Table 4. The effects of color on different tasks.

Accuracy Response time P1 N1

amplitude latency amplitude latency

2AFC ns ns - - color.gray* color,gray*

Go/nogo color.gray* color.gray* color.gray* color,gray color.gray* color,gray*

Forced choice color.gray color.gray* color.gray* color,gray* color.gray color,gray*

*the mean difference is significant at the.05 level.
doi:10.1371/journal.pone.0075816.t004

Table 5. The effects of database on different tasks.

Accuracy Response time P1 N1

amplitude latency amplitude latency

2AFC COREL,ANID* COREL.ANID* - - ns ns

Go/nogo COREL.ANID* COREL.ANID COREL.ANID* COREL.ANID* COREL,ANID* COREL,ANID*

Forced choice COREL.ANID* COREL.ANID COREL.ANID* COREL.ANID* COREL,ANID* COREL.ANID

*the mean difference is significant at the.05 level.
doi:10.1371/journal.pone.0075816.t005
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might depend on the pertinence of color in identifying objects

from that category [37]. For animal categorization, the color

showed different effects on different tasks, perhaps because the

effect of color was masked by other features in the recognition of

animal, for example global scene cues and context congruence

[24]. In experiment 1, both animal and non-animal images were

shown simultaneously on the screen, which supplied more

contextual information for the detection than when only one

image was shown on the screen in experiment 2.

The effect of color on the recognition of animals was confirmed

by the EEG data. Colorful images induced larger activation at an

earlier time point in the EEG in both experiments. Thus, we

conclude that color images induce more neural activity than gray-

scale images, at least during tasks requiring the recognition of

animals. The effects were stronger in the ANID database.

It has been suggested that early differences in EEG signals (prior

to 150 ms) may reflect systematic differences in low-level stimulus

properties common to objects in a given category – such as spatial

frequency content, simple spatial patterns and textures [16,23].

The early ERP components, P1 and N1, have been associated

with initial sensory input, bottom-up processing [48], and

selectively attending to non-spatial stimulus features, such as color

[49,50].

On the other hand, the ERP components elicited by stimuli

having the attended feature were interpreted as reflecting the

attentional facilitation of processing in feature-specific ‘‘channels’’

of visual input [51,52]. The amplitude of P1 has been shown to

represent the cost of shifting the attention to the place where the

target stimulus is located [53]. The amplitude increase in the N1

has been taken as evidence that attention allows for more extensive

analysis of visual information, such as color [54]. Thus, we suggest

that color images might attract more attention, which modulates

or facilitates the processing of animal detection compared to gray-

scale images.

Effects of image database
Image database appears as a relevant feature in our experi-

ments. The ANID images were classified with higher accuracy

than those from the COREL database in the 2AFC tasks but lower

accuracy in the go/nogo and forced choice tasks. It has been

shown that contextual cues [24] and context congruence [25] are

important for animal categorization. As we discussed previously, in

experiment 1, animal and non-animal images were displayed

simultaneously on the screen, which supplied more contextual

information for the recognition of the animal. In contrast, in

experiment 2, animal and non-animal images were displayed

separately in different trials. The non-animal images of the ANID

database are crops taken from the spatial neighborhood of the

animal crops, which probably reduced the difference between

animal and non-animal images and may have resulted in increased

difficulty of recognition. The EEG results provided further

confirmation. In experiment 2, we replicated the results reported

in Thorpe’s paper [1] that the N1 amplitude with non-animal

stimuli was bigger than with animal stimuli. However, the

difference within the COREL images was bigger than within the

ANID images. It has been suggested that the enhanced negativity

observed on no-go trials, ‘‘could reflect a role for frontal areas in

inhibiting inappropriate behavioral responses’’ [1]. Thus, we

conclude that the non-animal images of the COREL database on

average induced larger activation to inhibit ‘‘inappropriate

behavioral responses’’ than the non-animal images of the ANID

database, which resulted in better performance of the COREL

database in go/nogo and forced choice tasks.

It has been shown that the differential activity between targets

and non-targets does not simply reflect systematic ‘‘low-level’’

visual differences or the extraction of basic visual properties, but

correlates with the status (target or distractor) of the stimulus [16].

However, in our experiments, the ‘‘low-level’’ visual differences

between image databases most likely influenced the differential

activity between targets and non-targets. Table 5 showed the

detailed comparison between the ANID database and the COREL

database on different tasks.

In our research, the role of low level image features for the

recognition of objects in natural scenes was investigated. We found

that rapid animal detection is not unaffected by color, but that the

influence of color may be masked by other factors, such as

contextual cues and context congruence. However, even when the

‘other factors’ masked the effects of color in the measured subjects

during the animal detection task, color images still induced more

neural activity than gray-scale images. The controversial conclu-

sions in previous literature about the effects of low level features on

object recognition might be due to different image databases, tasks

and measurement modalities used in the experiments. Therefore,

we conclude that the ANID image database is better suited for

psychophysical research than other databases commonly used,

especially those based on the popular Corel image collection. With

the ANID database, low-level features are better controlled, and

fewer global differences exist between target and non-target

images.
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