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Abstract

Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They
account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest
component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small
ones (,500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or
IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across
multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine
tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we
combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to
estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap
individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism
(gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker
platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger
than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation
and to assess the functional role of the new variants. We investigated the possible enrichment for variant’s regulatory effect
and found that smaller variants (,1 Kb) are more likely to regulate gene transcript than larger variants (p-value = 2.04e-08).
Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility
studies and provide evidence of the importance of genetic variants in regulatory network studies.
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Introduction

The extent to which genetic differences among humans are

associated with human disease susceptibility is still unknown [1].

Genetic differences, sometimes referred to as genomic variability,

can be of several types, including single nucleotide polymorphism

(SNPs) and structural variation mainly consisting of DNA copy

number changes. Copy number variants (CNV) are defined as

intra- or inter- chromosomal duplications or deletions of 1 Kb or

larger DNA segments, which vary in copy number among

individuals. The definition of CNV is elusive due to the existence

of long interspersed nucleotide elements (LINEs) and small

(#1 Kb) insertions and deletions [2].

CNVs are currently estimated to encompass between 6% and

10% of the human reference genome assembly (Database of

Genomic Variants (DGV), http://projects.tcag.ca/variation/)

[3,4]. The popular belief used to be that SNPs represent the vast

majority (about 0.1% of the total nucleotide content of the

genome) of genomic differences in humans. However, recent

studies have shown that structural variation can account for

variability in as much as 0.7% of the total nucleotide content, of

which CNVs are the largest component [4]. Unlike the catalogue

of known SNPs, the number and characterization of CNVs in

humans remain incomplete. Earlier this year, Conrad et al 2010

[5] presented the most comprehensive population-based CNV

map where they have discovered 80–90% of common CNVs

(Minor Allele Frequency (MAF).5%) greater than 1 kb in length

and have been able to genotype approximately 40% of these.

Nonetheless it is believed that CNVs, especially smaller ones, and

INDELs are underrepresented in existing databases and require

better characterization [5].

Genomic variants may play an important functional role in the

human transcriptome regulation in both normal and disease states.

Emerging data suggest that regulatory complexity of the human

transcriptome can partially be explained by genetic make-up. Two

recent papers from Montgomery et al 2010 [6] and Pickrell et al

2010 [7] evaluated the regulatory effects of SNPs by performing

extensive expression Quantitative Trait Locus (eQTL) analysis in

Utah residents with Northern and Western European ancestry

(CEU) and Yoruba from Ibadan, Nigeria (YRI) populations. They

confirmed that the effect of SNPs on gene regulation can be local

(i.e., by the disruption or duplication of coding sequence) or long-
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range and can translate into direct effect (e.g., dosage) or inverse

effect based upon the involvement of enhancers or repressors.

They demonstrate that SNPs have an effect on protein coding and

non-coding genes, on isoform diversity and on transcript diversity,

which can translate into protein structure diversity [6,7]. In 2007

Stranger et al [8] showed that CNVs, in addition to SNPs, have a

significant impact on gene expression phenotypes and reported

that the signal from the two types of variation had little overlap.

These observations, taken together, attest the importance of

structural variations as critical to understanding human protein

regulation in the normal and disease states.

In this paper, we propose a 3-step method for the Identification

of germline Changes in Copy Number, IgC2N, to discover and

genotype CNVs and show its application to genome-wide array-

based data (Figure 1).

There is a large body of literature describing methods to the

problem of estimating DNA copy numbers across the genome.

Among these, PennCNV [9] and Birdsuite [10] packages are the

most comprehensive software tools providing copy number calls

for Illumina SNP bead arrays and Affymetrix Genome Wide 6.0

SNP arrays, respectively. PennCNV uses a Hidden Markov Model

(HMM) based approach on SNP genotyping data to detect CNV

on a sample basis. On the other hand, Birdsuite packages

sequentially assigns copy number genotypes across common

CNVs (Canary: uses a Gaussian Mixture Model approach and

heuristics to determine the CN genotypes), calls genotypes of SNPs

(Birdseed), identifies rare CNVs via a hidden Markov model

(HMM) approach (Birdseye) on a sample basis and generates an

integrated sequence and CN genotype at each locus (Fawkes).

Other computational tools to detect CNVs exist [11,12,13,14].

While these approaches determine copy number on an individual

sample basis, we propose a method, which borrows information

across multiple samples to propose candidate CNV loci, gaining

power as the sample size increases. We use smoothed intensity

data from multiple samples to distinguish meaningful copy number

change signal from random background signal, an approach

similar in spirit to the one described in Beroukhim et al [15].

The common practice to eliminate variation due to marker-specific

hybridization is to normalize signal intensities with respect to a

reference model on a marker basis. The reference model could be a

single sample or an average across several samples. Although this

successfully eliminates the technical variation, it introduces a bias as the

inferred copy number state would be only with respect to the reference

model [16]. Given the goal of accounting for this bias and inferring

CNV genotypes, we propose steps two and three of our method. In

step two, we fit Gaussian Mixture Models using EM-algorithm [17] as

implemented in R/CNVtools [18] to each candidate CNV and record

the relative distance between consecutive copy number classes. Using

this information along with biological information we then estimate the

location bias introduced by the reference model or the reference model

bias and infer copy number genotypes.

There are three distinct advantages in our approach. First, we

use information across multiple samples to discover CNVs which

improves power to detect rare CNVs. This aspect will be

demonstrated by an extensive simulation study and by the analysis

of the HapMap data. Second, we explicitly estimate the reference

model bias, which to our knowledge is a novel attempt. Also,

previous studies have focused on CNV discovery, with at least one

notable exception [19], and not on genotyping owing to technical

challenges and lack of a comprehensive computational framework.

Genotyping CNVs is extremely important to understand the

dosage effect of genes in the context of human diseases. Third, the

detection method does not pose any restriction to either the

number of markers to define a variant or to the size of the variant.

We apply IgC2N to the genomic profiles of 1250 HapMap

individuals. We compare the performance of our method (in terms

of CNV detection) on a subset of individuals previously analyzed

using Birdsuite [19]. To independently validate the newly detected

variants, we query 42 million marker tiling array data [5]. We then

assess the functional impact of the variants by analyzing the

mRNA levels of 129 HapMap individuals using next generation

sequencing data from Pickrell et al [7] and Montgomery et al [6].

Unless explicitly stated we will refer to all variants as CNVs.

Throughout the manuscript we will refer variants of size #1 kb as

short CNVs (sCNVs).

Results

Simulation Study
Firstly, we evaluated the predictive performance of IgC2N on

simulated data. We simulated datasets with several CNVs

spanning a wide range of characteristics in terms of size, incidence

(frequency in the population) and type of variant, namely deletion,

gain or deletion/gain. To assess the adequate number of datasets

to be used in the simulation, we monitored the behavior and

stabilization of the false positive rate over simulated datasets (File
S1) and power (data not shown) by generating up to 500 datasets

with a sample size of 200 and found that both stabilize at 100

datasets. Figure 2 shows the average empirical power (described

in details in the Materials and Methods section) for each CNV

characteristic (e.g. size and frequency). Note that the size of a

CNV is inherently related to the number of markers covering the

CNV which depends on the marker distribution of the specific

platform in question. Figure 2 indicates that IgC2N has at least

80% power to detect polymorphisms of frequency 5% in datasets

of sample size 200 which are at least 100 kb long or have at least

10 covering markers. On the other hand, with larger sample size

(2000 or more) IgC2N has 80% or more power to detect similar

CNVs (in terms of size of the CNV and number of covering

markers) with frequency of 1% or more. The False Positive Rate

(FPR) for detecting CNVs is provided in greater details in File S1.

Briefly, the mean (maximum) FPR (over 100 datasets) was 0.0072

(0.04), 0.0026 (0.01), 0.0029 (0.01) and 0.0113 (0.03) for sample

sizes of 200, 400, 800 and 2000 respectively.

IgC2N applied to HapMap individuals
The IgC2N pipeline was run on the HapMap phase 3 dataset

(1250 samples profiled on Affymetrix 6.0 platform). IgC2N

identified 2497 variants including 734 variants which were not

reported before (up to the DGV March 2010 release). These 734

CNVs are termed as novel CNVs. Before moving to their

characterization, we focused on comparing the performance of

IgC2N with other competing methods and previously reported

CNVs. For direct comparison, we focused on the data reported by

McCarroll et al [19] on HapMap phase 2 individuals profiled with

the same platform (Affymetrix 6.0). The data were analyzed using

the Birdsuite software and 1319 CNVs were reported. Our

simulation study indicates that IgC2N has 80% power to detect a

CNV with frequency of polymorphism $5% with a sample size of

200. We impose this restriction on the set of McCarroll CNVs, i.e

we consider McCarroll CNVs for which at least 5% of the samples

have CN states other than ‘‘2’’. We call two CNVs equal if a target

CNV overlaps with at least 50% of the reference CNV (McCarroll

CNV) in terms of base pairs. IgC2N (on HapMap phase 2) detects

397/457 or 86.87% of McCarroll CNVs while McCarroll detects

602/2070 or 29.08% of IgC2N CNVs. This provides a

comparison with a gold standard (Birdsuite) and demonstrates

that IgC2N is able to detect majority of the CNVs detected by
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Figure 1. Schematic of the approach used for the Identification of germline Changes in Copy Numbers (IgC2N). IgC2N is a multistep
approach, which includes the identification of potential CNV loci along the genome (A–F), a bias correction step (H) and the CN genotyping (I),
leveraging the experimental data from many samples. (A–I) The log2 intensity ratio signals or the segmented signal (A) is dichotomized on a marker
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Birdsuite. 1468 of the 2070 CNVs detected by IgC2N were not

reported by McCarroll et al 2008 [19] and 852 (58.04%) of these

CNVs were reported in DGV by other investigators indicating the

credibility of the IgC2N CNVs. However, for CNVs with

polymorphism frequency ,5% the overlap between IgC2N and

McCarroll is 35.57%. The low overlap is due to the fact that

Birdseye detects CNVs on a sample basis and while IgC2N uses

multiple samples and therefore is underpowered to detect less

frequent CNVs. We evaluated the concordance of CN genotypes

(at the level of gains, losses and CN 2) for every HapMap

individual for the 397 McCarroll CNVs detected by IgC2N and

found that majority of the CNVs showed high degree of

concordance (between 90–100%) across samples. Please refer to

File S1 for the histogram of the concordance of CN genotypes.

HapMap trio discordance
The mother-father-child trios of the HapMap phase 3 data were

used to evaluate Mendelian consistency of the data. A CNV is

called discordant in a trio if the child of the trio has a

polymorphism and neither parent have it. Unless the CNV is de

novo, a discordant result is indicative of a false positive call in the

child or a false negative call in either of the parent. For every CNV

the discordant rate (percentage of discordant trios) was evaluated.

The average discordant rate for the IgC2N detected CNVs is

30.31% (29.34–31.29% 95% CI) while that for the set of novel

CNVs is 27.81% (26.21–29.41% 95% CI). When considering

CNVs with at least 1% frequency of polymorphism, the discordant

rates reduced to 24.21% (23.41–25.01% 95 CI) and 25.13%

(23.02–27.24% 95% CI). The Mendelian discordant rates

stratified by CNV frequencies are graphically presented in File
S1. These discordant rates are significantly lower than that of

Birdseye and that expected by chance as presented in [11] and

[20] while being comparable with ÇOKGEN [11]. Considering

the discordant rate on a trio basis, the average percentage of

discordant CNVs for each trio was 18.49% (17.7%–19.28%, 95%

CI). These percentages constitute a small fraction of de novo CNVs

[21] and false positives/false negatives.

Characterization of the novel CNV
The characterization of 2497 detected variants is summarized in

File S1. Here we focus on the characterization of the novel CNVs

detected by IgC2N. Table 1 and Table 2 describe the frequency

and the size of the novel CNVs against different types of

polymorphisms. Each CNV is classified into del (deletion only:

where the polymorphisms are deletions only), gain (gains only:

where the polymorphisms are gains only), del-gain (deletion and

gain: where the polymorphism are both deletions and gains) only if

the overall polymorphic incidence of the variant is more than 5%.

The majority (61.48%) of novel dels have Minor Allele Frequency

(or MAF which is the frequency of the CN state different from the

major class) #5%, while majority of gains have MAF between 10–

30% (Table 1). Table 2 presents the tabulation of size (in

Kilobases) of the variant across different types of polymorphisms.

Among all the novel variants, the majority (64.31%) are sCNVs

(,1 kb in size). Among the novel CNVs, the majority are small in

size (1–10 kb) and this pattern is consistent across different types of

polymorphisms.

In agreement with previous studies [22], gene and exon overlap

analysis showed that 40–48% of CNVs overlap genes for each

CNV size range (Table 3), while the percentage of variants

overlapping exons is overall lower and increases with larger CNVs.

Thus the proportion of variants which overlap exons is 2.97% for

CNVs smaller than 1 kb, 8.58% for CNVs ranging from 1 Kb to

10 Kb in size, and 17.24% for CNVs larger than 10 kb.

We then analyzed the sequences around the putative break-

points to assess the distribution of the CNV formation mechanisms

(Table 4). In accordance with previous studies [22] Non

Homologous Recombination (NHR) constitutes the major part

of all CNV formation mechanisms (69.21%), while Transposable

Element Insertion (TEI) and Variable Number of Tandem Repeat

(VNTR) take up 20.84% and 6.27%, respectively. Non-allelic

homologous recombination (NAHR) events constitute 3.68% of all

CNV mechanisms. VNTR events are most likely underrepresent-

ed in most of the studies due to the difficulty in querying those

sequences. In our set of novel CNVs the major contributors to the

VNTR class (9.32%) are sCNVs (size ,1 kb) [23].

Validation of the novel (IgC2N discovered) CNVs
We assessed the detection power and the performance of IgC2N

with respect to McCarroll et al [19]. To further validate our

approach and to explicitly assess credibility of the novel 734 CNVs,

we utilized the recent data from the Genome Structural Variation

(GSV) Consortium (ftp://ftp.sanger.ac.uk/pub4/humgen/cnv/),

where 40 HapMap individuals were profiled using a set of tiling

arrays with approximately 75 bp resolution. Note that none of the

734 novel CNVs was reported by the original study’s analysis of this

dataset [5]. For each predicted novel CNV, we considered

NimbleGen data within the genomic location and evaluated their

correlations with the Affymetrix data used for IgC2N detection on a

sample basis. This approach takes into consideration the limited

ability of Affymetrix platform to precisely define variant breakpoints

and the difference between the discovery and the validation

platform probe length (25-mers versus ,60). We investigated the

validation performance on the basis of the discovery platform

marker coverage, the predicted variant size and the allele frequency

as evaluated in the discovery dataset. The results showed that the

best validation rate occurs for CNVs (variants of more than 1 kb in

size), with no advantage for very large variants and that neither

higher marker coverage nor higher MAF play a role (Figure 3A).

66.26% of novel CNVs were validated, whereas the rate for very

small ones (#500 bp) was as low as 37.6%. The genotype

distributions of the validated and non validated variants are similar

(see Figure 3B). An example of a very small variant (,100 bp)

discovered by IgC2N and validated using the independent platform

is presented in Figure 3C. The smoothed signals from validation

platform along the predicted genomic location are plotted for the 40

samples and color coded based on the predicted (IgC2N) CN

genotype. The variant resides within an intron of the BC040612

gene. All Repeat Mask sub-tracks other than Low Complexity are

omitted as empty.

and sample basis (B). A genome-wide score vector S is obtained by summing the transformed signal across all samples on a marker basis (C). The null
distribution of the score is obtained by permutations in order to identify the level of significant deviation of the score S, S_sig, from the baseline
signal. (D) S_sig value corresponding to a pre-specified FDR threshold is applied to the data vector S (E). The intermediate output is a collection of
putative polymorphic loci across the genome. No restriction on size or coverage is applied (F). A Gaussian Mixture Model (GMM) is applied to predict
the CN classes (genotypes not assigned) (G). The distance between the median of consecutive CN classes (1 CN class difference) is compared to the 1
CN class difference of all CNVs, and relative classes are inferred (H). Along with 1 CN class differences, the presence of ‘‘0’’ class and expected direction
of bias are also considered to infer the genotypes of these CN classes and the reference model bias is estimated (I).
doi:10.1371/journal.pone.0017539.g001
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Regulatory effect of CNVs and short CNVs
We posited that functionally significant CNVs should contribute

to gene regulation. To this end, we explored for association

between copy number states and gene transcripts in cis. We

interrogated the mRNA expression profiles from lymphoblastoid

cell lines of 129 HapMap individuals [24] from CEU [6] (N = 60)

and YRI [7] (N = 69) populations for association with copy

number changes for all the detected variants applying a 2 Mb

window. We detected previously reported and unreported CNV-

gene expression associations in both populations such as

UGT2B17, SIGLEC14, GSTM1 (previously reported [8]) and

GSTT1, OR7D2, SIGLEC14, RHD, and IFI27L1 (unreported,

Figure 2. Results of Power Simulation Study as function of Size and Coverage. In silico power computations for IgC2N. The panel of 8 plots
is organized in rows by sample size of the datasets used for simulations and in columns by the number of markers covering a CNV and size (in kb) of a
CNV. Each plot shows the average power to detect CNVs with three different frequencies, i.e. 1%, 5% and 15% for the dotted, dashed and solid lines
respectively.
doi:10.1371/journal.pone.0017539.g002
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to the best of our knowledge) (graphical representation in File S1)

and a larger number of population specific associations (tabulated

data are presented in File S1). Overall, larger number of

significant associations was detected in the CEU population,

possibly due to the higher coverage. To evaluate the extent of

novel information with respect to the genetic contribution to the

transcriptome, we considered association results both from SNP-

gene and clone-gene analysis from Stranger et al [8] and identified

,250 novel associations (at 10% FDR, tabulated data is presented

in File S1). Among the strongest associations, we observed outlier

expression levels for individuals harboring one or more copy

number gains at loci of rare polymorphism (File S1). Fifty-seven

(out of 298) of the non-validated CNVs based on NimbleGen data

showed a statistically significant effect on gene transcript.

Focusing on CEU population datasets, we then investigated

possible enrichment for CNVs regulatory effect with respect to

MAF, genomic complexity (segmental duplication), mechanism of

formation, variant size and type of polymorphisms within the cis

analysis window. Small variants are more likely to regulate gene

transcript than larger variants (p = 2.04e-08) with no preference in

terms of type of polymorphism. Whereas, within variants of size

.1 kb, variants involving copy number gains are overall more

effective than deletions (p = 8.5e-05) (Figure 4A). No clear

pattern for CNV effect versus CNV-gene distance was observed,

nor preference in terms of direct or inverse effect (Figure 4B).

Figure 4C lists the top associations detected for the set of new

CNVs located within gene coding regions and Figure 4D shows

examples of mRNA levels with respect to copy number states for

nine new variants. BLMH encodes the enzyme Bleomycin

hydrolase that is a cytoplasmic cysteine peptidase [25,26] and

has been associated with the risk of development of Alzheimer’s

disease [27]. ASF1B belongs to ASF family of proteins and is a

histone chaperone that facilitates histone deposition, histone

exchange and removal during nucleosomal assembly and

disassembly [28]. Interestingly, ASF1A, an ASF1B homolog

protein, was also detected as differentially expressed based upon

a second variant. To rule out the possibility of potential mis-

interpretation of the DNA data due to high homology between the

two variants, we mapped the sequence of the 25-mers Affymetrix

markers against the human genome and confirmed their specificity

on chromosome 6 and chromosome 19, respectively. Other

examples include lemur tyrosin kinase (LMTK2), and nuclear

transport factor 2 (NUTF2) involved in cancer susceptibility [29]

and diabetic retinopathy [30], respectively.

Discussion

We present a novel computational framework, IgC2N, to

identify and genotype copy number variants. We have applied

IgC2N to genome-wide Affymetrix data for HapMap phase 3

samples. However, this approach is conceptually not restricted to

array based data and can be applied to preprocessed sequencing

data.

IgC2N is a three step procedure. The first step, Detection of

Candidate CNV Loci, generates a list of putative CNVs. Unlike

most common CNV detection methods, it does not detect CNV

on a sample basis but combines information across samples, an

approach which increases the detection power. The accuracy of

CNV breakpoints will depend on the marker density of the

platform used, e.g., a high resolution platform or deep DNA

sequencing data will provide good accuracy. Even though not

explicitly investigated, fine tuning of the significance threshold

of the candidate CNV detection loci can be used to query

complex CNVs [31] by comparing boundaries of overlapping

variants. In addition, the approach does not impose any

restriction on the number of covering markers for calling a

CNV, which allows for the detection of smaller CNVs with poor

marker coverage. Recent studies [32] have shown that smaller

CNVs are currently being discovered. The second step, CN Class

Detection, classifies individuals into copy number classes for the

Table 4. Mechanism of formation of sCNVs or Copy Number
Variants.

sCNVs CNV

Size in kb (0,1] (1,10] (10,100] Total

NAHR 0 (0%) 24 (10.3%) 3 (10.34%) 27 (3.68%)

NHR 327 (69.28%) 157 (67.38%) 24 (82.76%) 508 (69.21%)

TEI 101 (21.4%) 50 (21.46%) 2 (6.9%) 153 (20.84%)

VNTR 44 (9.32%) 2 (0.86%) 0 (0%) 46 (6.27%)

All 472 (100%) 233 (100%) 29 (100%) 734 (100%)

doi:10.1371/journal.pone.0017539.t004

Table 1. Frequency of Copy Number Variants.

MAF (0,0.05] (0.05,0.1] (0.1,0.3] (0.3,0.5] Total

All 417 (56.81%) 88 (11.99%) 174 (23.71%) 55 (7.49%) 734 (100%)

Del 249 (61.48%) 59 (14.57%) 73 (18.02%) 24 (5.93%) 405 (100%)

Gains 50 (29.76%) 6 (3.57%) 81 (48.21%) 31 (18.45%) 168 (100%)

Del/Gains 47 (52.22%) 23 (25.56%) 20 (22.22%) 0 (0%) 90 (100%)

#5% 71 (100%) 0 (0%) 0 (0%) 0 (0%) 71 (100%)

doi:10.1371/journal.pone.0017539.t001

Table 2. Size of sCNVs and Copy Number Variants in kb.

sCNVs CNV

Size in kb (0,1] (1,10] (10,100] Total

All 472 (64.31%) 233 (31.74%) 29 (3.95%) 734 (100%)

Del 277 (68.4%) 121 (29.88%) 7 (1.73%) 405 (100%)

Gains 87 (51.79%) 64 (38.1%) 17 (10.12%) 168 (100%)

Del/Gains 62 (68.89%) 27 (30%) 1 (1.11%) 90 (100%)

#5% 46 (64.79%) 21 (29.58%) 4 (5.63%) 71 (100%)

doi:10.1371/journal.pone.0017539.t002

Table 3. Gene or Exon overlap with sCNVs or Copy Number
Variants.

sCNVs CNV

Size in kb (0,1] (1,10] (10,100] Total

Gene
Overlap

189 (40.04%) 95 (40.77%) 14 (48.28%) 298 (40.6%)

Exon
Overlap

14 (2.97%) 20 (8.58%) 5 (17.24%) 39 (5.31%)

All 472 (100%) 233 (100%) 29 (100%) 734 (100%)

doi:10.1371/journal.pone.0017539.t003
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Figure 3. Validation study summary. (A) Barplots of the rate (percentage) of validation categorized with respect to number of marker coverage,
size of the variant and its minor allele frequency. (B) The frequency distribution of CN genotypes of validated, not validated and all CNV. (C) An
example of a new variant validated by NimbleGen data: The line plots of smoothed intensity signal using 42M NimbleGen platform for each of 40
HapMap samples showing polymorphism for the locus IgH3.965 on Chromosome 6. A scatter plot (inset) of the discovery signal (x-axis) and the
validation signal (y-axis) color coded with respect to the IgC2N CN call on the discovery samples.
doi:10.1371/journal.pone.0017539.g003
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candidate CNVs generated from the first step via an EM

approach to a Gaussian Mixture Model problem. We also

conduct a recursive outlier detection step to detect rare CN

classes or rare CNVs which the classification methods fails to

identify. In the third step, we make a novel attempt to estimate

the reference model bias by using the relative 1-CN class

difference (described in details in Materials and Methods)

between loci and some genetic information.

Figure 4. Functional impact of CNVs on human transcriptome. (A) Proportion of functional variants with respect to variant size and type of
polymorphisms. Percentages are evaluated with respect to each subclass. (B) Significance of associations with respect to gene-variant distance. The
cis analysis included 2 Mb windows. Minus log 10 of the q-values are plotted against the distance between the mid points of genes and variants. Up
and down arrows depict the direction of the association. Red symbols identify data points corresponding to the new CNVs. (C) List of top ranked
associations involving new variant residing within protein coding regions. (D) Examples of new variants showing significant effect on gene transcript.
mRNA levels are plotted against the copy number states of new variants identified by IgC2N (box plots) and against the copy number intensity ratios
(scatter plots). P-values from the regression analysis against copy number states are reported.
doi:10.1371/journal.pone.0017539.g004
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We evaluated the performance of IgC2N through a simulation

study and assessed that it has at least 80% power to detect rare

(1%) CNVs with sufficient marker coverage or sufficient variant

size in datasets with larger sample size (N = 2000) while detecting

common CNVs with similar size or marker coverage with datasets

of smaller sample size (N = 200).

By applying IgC2N to the HapMap 3 dataset, 734 novel

polymorphic loci were identified which were not reported in DGV

(as of March, 2010). We characterize this set of novel CNVs based

on MAF, size and type of polymorphism (deletion, gain or both).

We found that the majority of novel deletions are rare (,5%

MAF) while the majority of gains are common (10–30% MAF),

possibly reflecting the fact that deletions are easier to detect than

gains [22]. In terms of size, the majority of the novel CNVs

detected by IgC2N are sCNVs, similar to the findings of Kato et al

[32]. An overlap analysis of the novel CNVs with genes and exons

showed that the size of a CNV does not increase the likelihood of

gene overlap, whereas larger CNVs tend to overlap with more

exons. We then investigated the mechanism of formation of these

structural variants and found that sCNVs are relatively more likely

to be formed by VNTR compared to CNVs while CNVs are more

likely to be formed by NAHR. Overall NHR constitutes the major

part of all CNV formation mechanisms which is consistent with

previous findings [22].

To validate the novel CNVs detected by IgC2N, we queried

high resolution NimbleGen data with 75 bp resolution [5].

66.26% of CNVs (variants with size .1 Kb) were confirmed on

a sample basis. We found a lower validation rate for CNVs of size

#500 bp. Although one would expect a higher false positive rate

for very small variants, it is also plausible that the larger probe size

of the NimbleGen data (.60-mers versus 25-mers for the

discovery platform) would be disadvantageous when positioned

across breakpoints. Also, the smaller variants are enriched to be

formed by VNTR or TEI and ensuing sequence complexities can

explain the low validation rate. Ad hoc qPCR experiments would

confirm or refute the existence of the variants that failed

NimbleGen validation and also determine the accuracy of the

genotyping step.

With the goal of evaluating the detection ability of IgC2N in

comparison to other existing methods, we performed overlap

analysis with the set of variants detected by IgC2N and the list of

variants reported by McCarroll et al that implemented Birdsuite

[19]. We were able to detect 86.87% of the CNVs reported by

McCarroll et al [19] (applying constraints in terms of power as per

IgC2N simulation), while McCarroll et al failed to detect 70.91%

of the CNVs detected by IgC2N, 58.04% of which are reported in

DGV. We looked at individual-level CN genotype comparison for

overlapping CNVs and found that majority of CNVs show high

level (between 90–100%) of concordance in genotypes across

samples. As a surrogate measure for accuracy of the genotyping

algorithm we evaluated Mendelian consistency in HapMap trios.

The discordant rates of IgC2N were lower than Birdseye [19] and

dChip [33] while being comparable to ÇOKGEN [11] as reported

in [20]. These results demonstrate the detection ability and

genotyping accuracy of IgC2N.

Finally, when assessing the functional impact of CNVs on the

human transcriptome, we found that overall 4.4% gene transcript

levels are significantly associated with CNVs at a false discovery

rate of 10%, with 23% of the associations not being previously

reported. In agreement with previous studies, investigation of the

association between transcript and copy number changes in

humans [8] and in mice [34] revealed greater functional impact

from variants residing outside the protein coding gene locus.

Interestingly, small variants were significantly more prone to affect

transcript levels suggesting a preferential localization on (long

distance) gene enhancers and repressors. In addition, variants

involving gains were more likely to be effective than deletions.

Based on the patterns of transcript levels versus observed copy

number classes, it is apparent that different regulatory elements

are partially controlled by genetic variants, either enhancers or

repressors. Some examples of deletion/enhancer effect involve the

regulation of pleckstrin homology domain containing, family F

(with FYVE domain) member 1(PLEKHF1), and Parkinson

disease (autosomal recessive, early onset) 7 (PARK7), and of

farnesyl-diphosphate farnesyltransferase 1 (FDFT1) as deletion/

repressor effect. Associations suggesting gain/repressor effects

include BLMH, ASF1A and Mitochondrial ribosomal protein L17

(MRPL17). Gain/enhancer effects include NUTF2 and Tran-

scription factor Dp-1 (TFDP1) (Figure 4 and File S1).

Interestingly, strong associations were detected involving outlier

transcript levels and rare gain variant (File S1) as for chaperonin

containing TCP1, subunit 6A (zeta 1) (CCT6A), complement

factor D (adipsin) (CDF), and the gene coding the Insulin-like

growth factor-binding protein 7 (IGFBP7), recently shown to alter

the sensitivity to anticancer therapy [35].

The impact of genetic variants on gene expression represents

one mechanism for phenotypic variation observed in humans and

other species. To date the number of genetic regulatory effects is

unknown, as the extent of genetic structural variants has only

begun to be elucidated. SNPs and CNVs represent non-redundant

of genetic variation as manifested by the fact that there is only

partial overlap between gene expression-CNV and gene expres-

sion-SNP correlation [8]. This is not surprising as CNVs and SNPs

are not in complete linkage disequilibrium [32]. Kasowski et al

[36] demonstrated that a significant fraction (26%–35%) of inter-

individual differences in transcription factor binding regions

coincides with genetic variation loci, suggesting a crucial role of

cis elements in the genetics of transcription factors. Altogether,

there is increasing interest in identifying genetic variants that show

regulatory effect and contribute to the explanation of phenotypic

variation of humans. One might argue that discovery of CNV will

plateau with the completion of the 1000 genome project (http://

www.1000genomes.org/) [37] providing a comprehensive list of

CNVs with accurate breakpoints. However, array based data from

large collection of individuals would continue to be necessary in

studying the relationship between CNVs and different human

diseases owing to its cost-effectiveness and methodological

improvements on CNV discovery and detection can accelerate

the success of large scale disease susceptibility studies.

Materials and Methods

Dataset and data preprocessing analysis for 1250
HapMap individuals (discovery platform)

The raw data generated for HapMap Phase 2 individuals was

obtained from Affymetrix (Affymetrix, Santa Clara, CA). Addi-

tional data from HapMap Phase 3 was obtained from the

HapMap Consortium website. All raw data were generated on

Affymetrix Genome-Wide Human SNP Array 6.0. The cohort

includes 1250 individuals from 11 unique populations, represent-

ing several different ethnicities. Of these, we analyzed good quality

data representing 87 individuals of African ancestry from

Southwest USA (ASW); 178 Utah residents with Northern and

Western European ancestry from the CEPH collection (CEU); 90

Han Chinese from Beijing, China (CHB); 90 Chinese from

Metropolitan Denver, Colorado (CHD); 90 Gujarati Indians from

Houston, Texas (GIH); 91 Japanese from Tokyo, Japan (JPT); 90

Luhya from Webuye, Kenya (LWK); 84 individuals of Mexican

Detection of New Functional Copy Number Variants

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e17539



ancestry from Los Angeles, California (MEX); 179 Maasai from

Kinyawa, Kenya (MKK); 90 Toscans from Italy (TSI); and 180

Yoruba from Ibadan, Nigeria (YRI). We also analyzed data for

one non-HapMap individual from the Polymorphism Discovery

Resource (NA15510) [5].

The raw intensity data were extracted from the CEL files and

preprocessed as previously presented in Oldridge et al [16]. Briefly,

raw data was preprocessed according to the Affymetrix CN5

method included in Affymetrix Power Tools (APT) (http://www.

affymetrix.com/partners_programs/programs/developer/tools/

powertools.affx). Following this step, data points were filtered

out based on SNP call rate, call reproducibility, or marker

specificity (i.e. markers mapping to more than 4 locations in the

hg18 build of the human reference genome) as in Oldridge et al

2010 [16]. Preprocessed data was then segmented using the

Circular Binary Segmentation (CBS) algorithm with recom-

mended default settings in Olshen et al 2004 [38].

Consortium dataset for a subset of 40 HapMap
individuals (validation platform)

The preprocessed data, generated with the 42 million marker

NimbleGen array set designed for CNV discovery on 19 HapMap

CEU, 20 HapMap YRI, and a Polymorphism Discovery Resource

individual (NA15510), was downloaded from the GSV. This set of

samples is a subset of the 1250 HapMap samples described above.

RNASeq datasets
mRNA data from 60 CEU and 69 YRI HapMap individuals

generated by sequencing technology by Montgomery et al [6] and

Pickrell et al [7] were queried to investigate the regulatory effects

of CNVs. Sequencing data were originally generated using the

Illumina Analyzer II with 36-base and 35 or 46-base pairs,

respectively. YRI individual data were downloaded from http://

eqtl.uchicago.edu, where CEU individual raw data were obtained

from ArrayExpress under accession numbers E-MTAB-197.

Reference model bias
Every array-based experiment suffers from some technical

variation which is introduced due to the differential amount of

DNA hybridizing for each marker. To eliminate the variation in

the amount of marker-specific hybridization, the common practice

is to take the ratio of the intensities with respect to a reference. The

reference could be a single sample reference or averaged across

several samples. Although this successfully eliminates the technical

variation, it introduces a bias as the inferred copy number state

would be only with respect to the reference model. In this paper,

the bias will be referred to as the reference model bias (bias of the copy

number state) introduced by the reference model and for a more

detailed description refer to Oldridge et al 2010 [16].

Let us denote Xij as the signal intensity of the ith individual and

the jth marker. One may construct a reference model as

log2 X R
j

� �
~

1

jRj
P

i[R log2 Xij

� �
where R is considered as the

reference set which could be a singleton and :j j denotes its

cardinality. The relative intensity (in the log2 scale) of each marker

j with respect to the reference set is of interest. The hybridization

intensity of each marker j depends on the amount of DNA

hybridization and the copy number state of that genomic region.

So it is natural to assume the following model:

log2 Xij

� �
~ajznij ð1Þ

where aj is the marker specific hybridization and nij is the copy

number state of the genomic region corresponding to the ith

individual and jth the marker. The general practice is to consider the

relative intensity of each marker (IRij) with respect to the reference

set to cancel out the marker-specific hybridizationaj ’s. However,

this introduces a bias represented by the second term in (2).

log2 IRij

� �
~log2

Xij

X R
j

 !
~nij{

1

Rj j
X
k[R

nkj ð2Þ

This bias could lead to erroneous inference of copy number states,

as depicted in Figure 1, unless explicitly modeled or accounted for.

We will present here a strategy to detect CNV and provide CN calls

accounting for this bias.

IgC2N Computational Framework
The IgC2N framework has three conceptual steps. First, a set of

candidate CNV loci is generated (a schema is presented in

Figure 1). Secondly, the number of copy number states for each

of these candidate CNV loci is determined which provides the set

of CNV loci. And finally, we use step 2 to estimate the reference

model bias and infer the CN states.

Step 1. Detection of Candidate CNV Loci. A score

Sj~
XN

i~1
I log2 IRij

� ��� ��wt
� �

is applied for each marker along

the genome. Sj counts the number of individuals that have signal

intensity beyond a certain threshold t (user supplied) (Figures 1A–
C). Then a genome-wide significance is calculated for each marker

(Figure 1D). X and Y chromosomes are omitted in this

evaluation to avoid gender complications. The p-values can be

generated using either a permutation-based test or a binomial test

(described below). Based on the p-values we compute the False

Discovery Rates (Benjamini and Hochberg, 1995) or q-values for

each marker.

Permutation-based test: The scores based on the null distribution

are calculated as S�j ~
XN

i~1
I log2 p.IRij

� ��� ��wt
� �

where p is the

permutation group on p : 1,2,:::,Mf g? p(1),p(2),:::,p(M)f g
where M is the total number of markers. In other words, for

each sample the score for all markers are permuted. A limitation of

this approach is that the number of permutations is tied to the

sample size and low sample size may not provide robust results.

Binomial test: Under the null hypothesis of no CNVs, we can

assume Sj*Binomial(N, p0) where N is the number of samples

and p0 is the probability of detecting a copy number event under

the null hypothesis. The limitation of this approach is the choice of

p0. We have used p0~
1

M

PM
j~1 Sj

�
M which is the average score

per sample (averages across all markers). We also perform

simulations to see the correlation between the permutation-based

p-values and the binomial p-values and evaluate our choice of p0

(detail is provided in File S1).

Consecutive markers crossing the q-value threshold (say 10%)

are deemed as candidate CNV loci (Figure 1E) and we call these

markers significant markers for polymorphism. The breakpoints of

the putative CNVs are calculated by the marker positions, that is,

for a run of n significant markers the CNV locus is determined as

[p1, pn] where p1 and pn are the genomic coordinates of the first and

last significant marker respectively of that run. Alternatively, one

could calculate the breakpoints by considering the position of

neighboring markers in order to account for the finite resolution of

the platform. For example, one could consider the starting (ending)

location as the mid-point between the first (last) significant marker

of the current run and the previous (next) marker. Importantly,

there are no restrictions on the minimum number of covering

markers or on the size of putative CNV loci.
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A comprehensive list of CNVs can be created by merging the

IgC2N list with other known variants of interest. . However, in this

manuscript we present results from the IgC2N detected list of

CNVs only.

Step 2. CN Class Detection. The second step, CN Class

Detection, generates copy number classes for the candidate CNVs

generated from step 1 (Figure 1H–I). For each CNV and each

individual a summary signal (e.g median) is calculated when more

than one marker is present at the locus of interest. The following

procedure is applied to the summary signal:

a) Naı̈ve CN Class Detection: A Gaussian mixture model with

number of components (n.comp) = 1, 2, 3, 4, 5 and 6 is fitted

to the data. To model the variance of different mixture

component (or n.comp), the same variance for all n.comps

except 2 and 3 is used. For n.comp = 2 or 3 estimation of

different variance parameters for each component is allowed.

The rationale behind this step is this distribution of deletions.

In presence of deletions, the variances of the components are

quite different and it is impractical to impose of restriction on

them. A Gaussian Mixture Model is fit using the Expectation

Maximization algorithm as implemented in the R library

CNVtools [18]. The following tuning steps are applied:

i. If the EM algorithm does not converge for n.comp = 2 or

3 in (a), then the model is relaxed by assuming the

variance of each component as equal (this is tailored for a

CNV having gains only).

ii. Out of the 6 GMMs fit to the data corresponding to

different number of components the one with the lowest

BIC (Bayesian Information Criterion, [18]) is selected.

iii. If the EM algorithm for the selected n.comp did not

converge, a mixture of ‘‘t’’ distributions is fitted which

allows longer tails.

iv. The predicted class (copy number) is obtained from the

posterior probabilities. If there are overlapping intervals of

the predicted classes, the n.comp is reduced by 1. If the

EM algorithm does not converge with the reduced

n.comp they are made non-overlapping by creating new

classes.

b) Rare variant or CN Class detection: A well-known attribute of any

probabilistic classification technique is that new classes are

not detected for few members. To enhance the chance of

detecting rare CNVs and CN classes we perform a recursive

outlier detection using Grubbs test [39] for single sample

outlier detection. This is performed prior to removing CNVs

with 1 detected CN class. Few examples indicating the

benefits of the outlier detection step are provided in File S1.

c) The differences between the median values (across of all

samples) of the summary signals for each consecutive CNV

class are also stored. We will refer to this distance between the

centers of consecutive CN classes as 1-CN class difference

here on (see Figure 1H). Note that the classification of each

individual for each CNV does not correspond to the actual

CNV genotype owing to the reference model bias. This naı̈ve

classification (or the predicted CNV class) is stored. Among

the candidate CNV loci the ones which have more than one

predicted class (by GMM) are retained and the rest removed.

Step 3. Bias correction and Copy Number calls. The third

step, Bias correction and Copy Number calls, corrects the reference

model bias and infers the true copy number genotype. The

following steps are undertaken:

a) Expected Direction of Bias: If the major (in terms of frequency)

predicted CN class (from Step 2) is also the biggest (or

smallest) integer CN class and the median of this major class

close to ‘‘0’’ (the expected median of the CN = ‘‘2’’ class), say

|distance|#0.25, then we hypothesize this class to be copy

number state ‘‘2’’. The other classes are inferred relative to

this class. This step is motivated for the [0,1,2] and [1,2]

([2,3],[2,3,4]) CN genotype models. For example, if there are

frequent deletions the reference model will be expected to

have lower intensity signal thereby inducing a positive

location bias. The same argument applies in the case of

gains and a negative location bias.

b) Zero Presence Test: In the presence of a CNV with hemizygous

deletions (CN = ‘‘1’’) and under the assumption of Hardy-

Weinberg Equilibrium, we should expect HW proportions for

CN = ‘‘0’’, ‘‘1’’, ‘‘2’’. So, we test the observed ‘‘0’’ proportion

with the expected HW proportion p2 (where p is the allelic

proportion of the deletion allele) using a binomial test.

c) 1 CN Class Distribution: Finally we use the difference in

medians of consecutive copy number classes and compare it

with the 1 CN Class distribution of Step 2c. Using the 1-CN

difference distribution (currently that of known CNVs used)

we fit a Gaussian Mixture Model to four mixtures (0–1, 1–2,

2–3 and 3–4) (Figure 1G).

i. For each CNV the 1-CN difference is computed based on

the predicted CNV class; its probability of belonging to a

particular 1-CN difference cluster (0–1, 1–2, 2–3 or 3–4) is

calculated.

ii. Build a (k21)64 matrix (k CN classes predicted and hence

k21 differences and 4 corresponding to 0–1,1–2,2–3,3–4)

of probabilities. The highest probability of the matrix is

chosen and the corresponding column is removed. The

next highest probability is chosen for the next assignment.

iii. If any assigned class has the copy number class 2 and has

more than 5% frequency then this class is used to estimate

the true 0. If there is no CN 2 state, the most frequent

state is used to perform the centering. If the most frequent

state is 0 then second most frequent state is used for

centering.

Simulation Study
The goal of this simulation study was to evaluate the false

positive rate and the power to detect CNVs using IgC2N. A few

CNV characteristics were identified to be relevant for a CNV

detection study: a) CNV size, b) the frequency of the CNV (in the

population) and c) its type, namely deletion, gain or both. We

considered five different CNV sizes: very small (,,1 kb), small

(around 1 kb), medium (5 kb), large (50–100 kb) and very large

(.200 kb). For each size we considered different incidences of

each CNV namely- very rare (1%), rare (5%) and frequent (15%).

For each size and incident CNV we considered three types of

CNVs: del (deletion only), gain (gain only) and del-gain (both

deletion and gain). For each of these 45 (56363) types of CNVs,

we considered a duplicate having 90 total CNVs in each dataset.

Note that the size of a CNV is inherently related to the number of

markers covering the CNV which depends on the marker

distribution of the specific platform in question. We considered

four different sample sizes 200, 400, 800 and 2000. Since the goal

of our simulation study was to understand the CNV detection

capabilities of IgC2N, the third step (CNV genotyping) is omitted

to reduce computational burden. Since simulated data is less noisy
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compared to real data, the smoothing step (by segmenting) is

omitted. For each sample size, 100 datasets were generated and

analyzed by IgC2N. To investigate if 100 datasets are adequate for

the simulations, we generated 500 datasets for sample size of 200

and monitored the behavior of false positive rate and overall

power on increasing number of datasets. We noticed that both

false positive rate and overall power (data not shown) stabilize after

100 datasets. Hence we found it adequate to generate 100 datasets

for all sample sizes. For each iteration or each simulated dataset,

we compared the number of CNVs detected with the true CNV

list by 1 bp overlap criterion. The number of false positive rate

(FPR) for each dataset was calculated by counting the number of

CNV detected by IgC2N which do not overlap with the true CNV

list and dividing it by the total number of detected CNVs (by

IgC2N). The reported FPR is the average FPR across 100

datasets. On the other hand, the empirical power for detecting

each CNV was calculated on a CNV basis. The fraction of

datasets where a particular CNV is detected by IgC2N is

considered as the empirical power of that CNV. The 90 true

CNVs are categorized according to different characteristics and

the power of each category is the average power across those

CNVs.

The simulation study was restricted to chromosome 1 of the

human genome. The marker distribution on chromosome 1 was

based on the Affymetrix Genome-Wide Human SNP Array 6.0

marker distribution as we evaluate IgC2N on HapMap samples

run on the Affymetrix SNP Array 6.0 platform.

Independent Platform Validation
To validate the novel CNVs on the basis of the NimbleGen

dataset, we adopted the following criteria. A CNV is considered

validated if the correlation between the Affymetrix median signal

and a NimbleGen marker within the predicted genomic location is

0.5 or more. Ninety-seven CNVs were validated using this

criterion. When the correlation falls between [0.3, 0.5), we

adopted the following strategy: i) consider the outliers (observa-

tions falling outside 1.56 Inter-Quartile-Range) for the Nimble-

Gen marker data for each CNV and based upon the outlier sign,

we consider it as gains or deletions; ii) for each CNV we consider

the concordance in the existence of gain or deletion between the

Affymetrix and NimbleGen data. If concordant, the CNV is

considered validated. Finally, two independent observers (F.D and

S.B) visually inspected the validated and non-validated CNVs to

correct for uneven calls. This procedure was applied to all but 94

novel CNVs (no NimbleGen coverage).

Mechanism of formation of variants and gene-exon
overlap

In order to characterize CNV in terms of formation

mechanisms we applied classification methods similar to those

implemented in other studies [5,22]. The CNV formation

mechanisms are usually classified into 4 major groups: (1) non-

allelic homologous recombination (NAHR), which is homologous

recombination between homologous sequences in different

genomic positions; (2) non-homologous recombination (NHR)

that can proceed as one of the ways for DNA double-strand break

repair, and is implemented either through non-homologous end

joining or through microhomology-mediated end joining [40]; (3)

variable number of tandem repeats (VNTR), which result from

expansion or contraction of repeat elements; (4) transposable

elements insertion (TEI), which includes different classes of

transposable elements, mostly SINE, LINE, but also other smaller

transposon groups.

To infer the mechanisms of CNV formation, we extracted the

CNV coordinates applying 500 bp flanks, which we will call

extended CNV loci. The choice of flank size was based on the

estimation of breakpoint accuracy, which is to be estimated on

average 1 kb for Affymetrix Genome-Wide Human SNP Array

6.0. The parameter sensitivity analysis performed in [22] with

fixed size flanking regions showed that within an extended

parameter space and in the proximity of the chosen parameters

the mechanism formation results are relatively insensitive to

adjustment. To account for the lower breakpoint accuracy of the

platform used in our study, we extended the parameter sensitivity

analysis to include flanking regions ranging within 100–2,000 bp.

Our results demonstrated relative insensitivity to the size of

flanking regions for VNTR and NAHR events, however, for TEI

the maximum frequency was observed around 500 bp. Further

expansion of the area to 2000 bp decreased the frequency.

The extended CNV loci were further investigated for the

presence of characteristic features for each type of mechanisms. To

be classified as an VNTR-mediated event, we required .50% of

an extended CNV locus to be covered by short tandem repeats,

loci of low complexity or satellite DNA as it is defined by

RepeatMasker (http://www.repeatmasker.org, ver. 3.2.8, Re-

pBase library Release 20090604). NAHR-mediated events were

inferred from a search of homologous blocks in the areas around

the breakpoints (+/2500 bp) of minimum length of 30 bp and

minimum sequence identity of 85%. TEI events were identified by

the presence of transposable elements that must cover at least 50%

of the extended CNV locus. We allowed for 500 bp distance

between transposable elements. Transposable elements were

identified with the program RepeatMasker (http://www.repeat-

masker.org). Finally, all CNVs lacking classification features

described above were classified as NHR-mediated events.

Gene expression data analysis
CEU sequencing data were processed applying RSEQtools

[41]. We performed cis analysis applying 1 Mb flanks to each

variant accordingly to [8] and tested for dosage effect and allelic

effect of transcript levels versus the copy number states in a linear

model. In addition, we evaluated the correlation between the

transcript levels and the log2 values of the copy number intensity

ratios, and, for CNVs with two copy number states, the Wilcoxon’s

signed rank test was used. In the absence of normality of transcript

levels (evaluated by Shapiro-Wilk’s test), the last two tests were

taken into account for the evaluation of the functional impact of

the variants. In order to account for multiple hypotheses testing,

we computed the False Discovery Rates (Benjamini and Hoch-

berg, 1995). The analysis was independently performed for the two

datasets, CEU and YRI. The distance between variants and genes

was defined as the absolute difference between the midpoint of the

gene transcription starting and ending sites and the midpoint of

the variant genomic coordinates. Proportion test was applied to

asses for significant differences in functional variant proportions

with respect to size and type of polymorphism.

All coordinates are expressed using the hg18 assembly. IgC2N

code and test dataset is available at http://icb.med.cornell.edu/

faculty/demichelis/lab/,IgC2N.html or upon request to the

authors. IgC2N has been developed in R 2.9.0. The new CNVs

information is available from DGV (Database of Genomic Variants).

Supporting Information

File S1 File S1 contains nine supplemental figures, nine

supplemental tables and a supporting methods section.

(DOC)
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