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Abstract

Loud hydroacoustic sources, such as naval mid-frequency sonars or airguns for marine geophysical prospecting, have been
increasingly criticized for their possible negative effects on marine mammals and were implicated in several whale stranding
events. Competent authorities now regularly request the implementation of mitigation measures, including the shut-down
of acoustic sources when marine mammals are sighted within a predefined exclusion zone. Commonly, ship-based marine
mammal observers (MMOs) are employed to visually monitor this zone. This approach is personnel-intensive and not
applicable during night time, even though most hydroacoustic activities run day and night. This study describes and
evaluates an automatic, ship-based, thermographic whale detection system that continuously scans the ship’s environs for
whale blows. Its performance is independent of daylight and exhibits an almost uniform, omnidirectional detection
probability within a radius of 5 km. It outperforms alerted observers in terms of number of detected blows and ship-whale
encounters. Our results demonstrate that thermal imaging can be used for reliable and continuous marine mammal
protection.

Citation: Zitterbart DP, Kindermann L, Burkhardt E, Boebel O (2013) Automatic Round-the-Clock Detection of Whales for Mitigation from Underwater Noise
Impacts. PLoS ONE 8(8): e71217. doi:10.1371/journal.pone.0071217

Editor: Athanassios C. Tsikliras, Aristotle University of Thessaloniki, Greece

Received October 30, 2012; Accepted June 29, 2013; Published August 2, 2013

Copyright: � 2013 Zitterbart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was funded by the German Federal Ministry of Education and Research (grant number BMBF 03F0479I) and the Federal Ministry for the
Environment, Nature Conservation and Nuclear Safety (grant number BMU 370891101-01). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors declare competing financial interests: 1) Pending patent application, AWI2011/09/01US, AWI2011/09/01DE: A method for
automatic real-time marine mammal detection. The patent describes the ideas basic to the automatic whale detection software as used to acquire and process
the data presented in this paper (http://www.freepatentsonline.com/y2013/0070079.html). 2) Licensing of the Tashtego automatic whale detection software to
the manufacturer of IR sensor. The authors confirm that these competing financial interests do not alter their adherence to all PLOS ONE policies on sharing data
and materials, as detailed online in the guide for authors.

* E-mail: daniel.zitterbart@awi.de

Introduction

Growing concerns that aquatic noise produced during naval

exercises and offshore seismic surveys by the oil and gas industry

may be harmful to marine mammals [1,2], have led an increasing

number of regulating agencies to request mitigation measures

when issuing permits for such surveys in their nations’ EEZ [3].

The most common measure is to implement a ‘‘marine mammal

watch’’, a team of observers that scans the ship’s environs for signs

of presence of marine mammals to trigger a shutdown of the

hydroacoustic source when marine mammals are entering a

predefined exclusion zone.

Marine mammal observers usually scan the ship’s environs for

whales using binoculars or the naked eye. Sightings mostly rely on

spotting a whale’s blow, which might rise to a height of several

meters but is visible for a few seconds only. Hence, in combination

with the whales’ prolonged dives, sighting opportunities are rare,

which, in addition to the limited field of view and finite attention

span of human observers, renders this method personnel-intensive

and difficult, even during fair weather and daytime. During

darkness it is not feasible.

Use of infrared (IR), i.e. thermal imaging, has been suggested

for night-time detection of whales [4]. In thermal imagery, a

whale’s blow stands out as a transient, warm feature, at least in

front of cold surface waters [5]. However, up to now ship-based IR

technology has been unsuitable for detecting whales beyond

distances of 150 m. Longer ranges required stable, land-based

platforms [6] with tele-optics for enhanced resolution while the

field of view was limited to angular segments of 45u or less. Most

importantly, detections relied on (retrospective) human screening

of the images, which is similarly tedious and error-prone as direct

visual observation. Moreover, for mitigation purposes, observa-

tions need to cover much of the horizon and to be conducted

continuously for weeks to months. Such a mode of operation

requires automatic detection capabilities, which are introduced

and validated in this paper. However, the system described herein

is not intended to operate in an unsupervised mode, but to reliably

alert a marine mammal observer about the likely occurrence of

any whale blow in the ship’s environs, while facilitating its

immediate verification and documentation.

Materials and Methods

The infrared detection system consists of a thermal imaging

device (FIRST-Navy) mounted on an actively stabilized gimbal

(both by Rheinmetall Defence Electronics, Germany) in combi-

nation with a custom data acquisition and processing software

(Tashtego, http://tashtego.org). The cryogenic sensor is cooled to

84 K using a Sterling cooler. It scans 360u horizontal618u vertical

at 5 revolutions per second, providing a 5-Hz video stream of the
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thermal field of the ship’s environs at horizontal and vertical

resolutions of 0.05u/pixel and 0.03u/pixel, respectively. The

sensor is installed 28.5 m above the sea surface on-board RV

Polarstern and was deployed for a total of 280 days during 7

expeditions to the Arctic and the Southern Ocean. All expeditions

to the Southern Ocean were conducted under Permits from the

German Environmental Agency with following identification

codes: I 3.5 - 94003-3/218; I 3.5 - 94003-3/238; I 3.5 - 94003-

3/247; I 3.5 - 94003-3/278; I 3.5 - 94003-3/273. Expeditions to

the Arctic and Atlantic did not require permitting from ethical

committees, since the technology used is strictly passive (i.e.

observational).

Ship-whale-distances are calculated by spherical triangulation

[7] using the angle below the horizon (resolved to 60.05u),
providing unbiased ranges better than 12% accuracy (at 5 km) of

the ship-blow distance, i.e. better than achievable by the use of

handheld binoculars (Figure S1). Detailed geo-referenced maps of

ship-whale encounters are derived in conjunction with bearing

information (available to within 0.1u) and the ship’s navigational

data, allowing for inferences on the whales’ behavioral response,

respiration rates, and dive cycles as exemplified in Figure 1.

To develop an automatic detection system for whale blows from

thermal images, we started with retrospective human screening of

thermographic video recordings from multiple expeditions to

extract a set of sample blows. On this basis, an automatic detection

algorithm was designed to detect temporal contrast changes

identified as whale blows (Figure 2) in a standard detector/classifier

approach, using multi-scale sliding windows [8–11]. The detector

identifies significant thermal anomalies using a modified short-

term-average/long-term-average algorithm (STA/LTA) [12] (Fig-

ure S2), the detector identifies significant thermal anomalies which

are then classified as a blow or a no-blow event. Computer

classification of pertinent video snippets is performed after

reduction of dimensionality through spatial and temporal center-

ing and clipping through an Eigenimage algorithm [13,14] before

applying a predetermined SVM-based (Support Vector Machine)

classification model [15]. Training of the SVM is conducted under

supervised learning from 120 manually validated blow and 1400

no-blow events selected from a period of 21 days from expedition

ANT-27.2 [16], covering different environmental conditions,

distances, and whale species.

Comparisons at the encounter level were based on visual

sighting data collected by MMOs conducting continuous transect

counts [17] during a 31-day long expedition, ANT-28.2 [18], from

Cape Town to Antarctica and back. Observers recorded sighting

time and, if possible, species, but not distance. Observations were

conducted from the ship’s bridge for a total on-effort time of 299

hours, with 34 ship-whale encounters logged. For 3 of these

encounters, the IR system was not operational, and for another 5

encounters, sighting records lacked time information of adequate

precision (i.e. to the minute), resulting in a total of 26 visual

sightings suitable for comparison with the automatic detection

system. Concurrent (within +/210 minutes) visual and IR

encounters were considered detected encounters, all other missed

encounters.

To study the impact of distance on the detection algorithm’s

performance, dedicated cue-based comparisons were conducted

on the basis of two periods of IR recordings of 50 and 60 min

duration collected on 13 and 16 January 2011 during expedition

ANT-27.2. Concurrent visual observations provided 303 to-the-

second recordings of whale blows, which allowed us to match

blows from visual observations with blows from IR recordings.

From the IR images, we also determined direction and distance of

each automatically detected blow.

An automatic thermal detection was considered a true positive if it

occurred 3 seconds prior or after a ‘‘concurrent’’ visual cue, or if it

was unambiguously validated by retrospective human screening of

the IR footage. The latter criterion is indispensable to properly

classify blows that were missed by the observer. False negatives

(events missed by the detection algorithm) were attributed to visual

sighting records that lacked matching automatic detections within

63 s of the sighting. Blows overlooked by both human observers

as well as the automatic detector are (unavoidably) left unconsid-

ered. When multiple blows occurred within 1 s, the observers

could only record one. Hence, in favor of doubt, all automatic

thermal detections within that single second were counted as

observed by the MMO.

Figure 1. Mapping of blows by a pod of humpback whales. A: Whale blow locations (triangles) relative to the (moving) ship (ship is at center
of concentric circles). B: Map of corresponding geo-referenced ship positions (dots) and blow locations (triangles). Color indicates time after first
detection.D.
doi:10.1371/journal.pone.0071217.g001
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Visual (including IR) detection of whales depends on them

being at the sea surface, a factor known as availability bias. A

simple numerical model was developed to estimate this bias for a

set of detection radii, average dive/surface times and ship speeds.

The model assumes randomly distributed, horizontally stationary

animats (animal agents, Figure S3) which are presumed to surface

and dive according to a binary dive function extracted from

surface and subsurface periods as published in the literature (Table

S1). The initial vertical position of each animat is based on its dive

state (at surface/subsurface) at a randomly chosen point in time t0
during its dive cycle. Model time progresses in 1-minute steps, Dt,

with each animat’s vertical position (at surface/subsurface) being

updated according to its dive function at t0+Dt.

Concurrently, the ship transects the model space diagonally at a

speed of 4.5 knots, a value typical for seismic surveys. The animat

is considered detectable from the moving ship if it is at the surface

and inside an assumed detection radius rdetection. It is considered

undetectable if it is diving or outside rdetection. To estimate, in the

context of marine mammal mitigation, the likelihood of detecting

an animal before it is within the exclusion zone, which is moving

with the seismic source (here rexclusion = 500 m, centered 500 m

behind the ship), the model algorithm applies the following

classification: An animat is considered

detected timeously, if it surfaced within the detection zone

before being within the exclusion zone;

missed, if it is within the (moving) exclusion zone before

having surfaced inside the detection zone.

The probability for detecting an animat timeously is then

calculated by dividing the number of animats detected timeously over

the total number of animats blanketed by the (moving) exclusion

zone.

Results

The automatic thermographic whale detection system intro-

duced in this study continuously scans for whale blows in the

environs of a ship operating offshore. By human screening, several

hundred whale blows were unambiguously identified within a

range of 8 km, with most of the blows originating from a distance

of less than 4 km range (Figure 2). Using the automatic detection

system on data from 7 expeditions, we identified more than 4500

whale blows at distances of up to 5500 m. These blows occurred

over the course of more than 300 ship-whale encounters, during

both night and day (defined as period between civil twilight), and

for a wide range of environmental conditions, with sea surface

temperatures ranging between 21.8 and +22.7uC and wind speeds

between 0 and 7 Bft.

A key component of the automatic detection system is the

classifier, which selects probable whale blows from a multitude of

thermal anomalies provided by the detector. The classifier’s efficiency

is described quantitatively by Receiver-Operator-Characteristic

(ROC) curves for false positive and false negative detection events

(Figure 3A, green and red curves curves). The resulting Area

Under the Curve (AUC) value, which is an integral measure of the

reliability of the classifier, was 0.99 for the training data set, and

0.98 for the test data set. These AUC values however likely

overestimate classifier performance; although the test data set and

the training data set do not overlap, both are drawn from the same

ship-whale encounters (collected during expedition ANT-27.2) and

therefore represent similar environmental conditions and encoun-

ter ranges. To avoid this bias, we compiled an independent

validation data set of 1074 manually classified thermal recordings,

including data from a different expedition (ANT-28.4) [19], and

evaluated recordings separately for day and night. Classifier

performance was better at night (AUC = 0.98) than during day

(AUC = 0.90), probably due to the lack of glare in the night-time

images (Figure 3A, black and blue curves).

Figure 2. Night-time thermographic video snippets (at 0.2 s resolution) of whale blows: A) 24.03.2012 00:07; 61.11uS 56.36uW;
Twater = 1.3uC; Tair = 21.7uC; r = 3608 m; B) 28.03.2012 03:27; 61.88uS 60.29uW; Twater = 1.4uC; Tair = 2.3uC; r = 3608 m; C) 29.12.2011 01:06; 56.49uS
00.00uE; Twater = 20.8uC; Tair = 20.5uC; r = 1116 m; D) 01.01.2012 02:38; 43.96uS 07.44uE; Twater = 8.8uC; Tair = 8.7uC; r = 879 m; Figure 2E: Day-time
thermographic (top) and visual (bottom) video snippets of an automatically detected whale blow: 28.12.2011 14:41; 58.65uS 0.02uE; Twater = 21.5uC;
Tair = 20.6uC; r = 1072 m;
doi:10.1371/journal.pone.0071217.g002
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To evaluate the overall performance of the automatic detection

system, comparisons with the ‘‘industry standard’’ of dedicated,

trained visual observers were performed. Analyses were conducted

using independent data sets at two different levels: a) at the

encounter level (using ANT-28.2 data) and b) at the cue (i.e. blow)

level, using ANT-27.2 data.

Of 26 visually recorded encounters during ANT-28.2, the IR

system automatically detected 24. One of the two missed encounters

occurred during high wind speed (11.5 ms21) and presence of an

unusually high number of growlers (floating blocks of ice), which

generated intense changes in contrast throughout the image. This

probably led to a high STA/LTA threshold, leaving the blow

undetected. Alternatively, the blow might have been distant, as

indicated by the visual observers being unable to identify the

animal’s species. The second missed encounter was that of a blue

whale which surfaced right in front of the ship (pers. comm. D.

Verbelen) and probably was too close (,110 m) to be within the

field of view of the IR camera.

During the same expedition, the total number of infrared based

encounters amounts to 85. Of these, 45 IR-based encounters

occurred when the MMOs were on-effort, logging a total of 24

concurrent sightings (53%). The remaining 40 IR-based encoun-

ters occurred when the visual observers were off-effort. For 45% of

(virtual) 2-hour watches, no false positives occurred; for more than

90% of the 2-hour watches less than 30 false positives occurred.

To determine range dependent detector efficiency, cue-based

comparisons were performed. Each analysis period commenced

with the first visual spotting of a blow, ensuring that the MMOs

were alerted. Within the 0–5 km range, the algorithm detected

82% of all blows (303) sighted by the alerted observers, exhibiting

a rather range-unspecific detection efficiency between 75 and 95%

(Figure 3B, black data). The remaining blows were discernible in

the thermographic recordings, but were too faint or unspecific to

be picked up by the automatic detection algorithm. Conversely,

the observers spotted about 63% of all events that were detected

automatically within a 5 km range (Figure 3B, grey data). The

average false positive (false alert) rate of the IR system was about 6

per hour, with false alerts frequently being caused by nearby birds.

Discussion

This study introduces a ship-based implementation of thermal

imaging for automated marine mammal detection, consisting of a

spinning IR camera and an algorithm that detects whale blows on

the basis of their thermal signature. The system detected 92% of

all visually logged ship-whale encounters during expedition ANT-

28.2 and 82% of cues recorded by a team of visual observers

during ANT-27.2 (Figure 3). During these expeditions, the system

detected about twice (2.5- and 2.1-fold) as many encounters and

cues, respectively, as recorded by the MMOs, with false positive

rates of less than 1 per 4 minutes occurring for the majority

(.90%) of virtual 2-hour watches. On occasion, false positive rates

exceeded 1 per minute, due to flocks of birds or presence of

growlers during high sea states. However, the system per se is

conceived as a ‘‘bell-ringer’’ rather than to operate completely

unsupervised, alerting the MMO to likely whale blows in the ship’s

environs while providing instant playback and documentation of

the thermographic recordings. This allows the operator to easily

verify the event and quickly determine whether a shut-down

request should be issued or not.

Night and day detections rates are comparable. On expedition

ANT-28.2 during 76 hours of nighttime observations, 7 encoun-

ters were detected by the IR system, resulting in a detection rate of

0.09 encounters/hour while the daytime encounter rate was 0.13

encounters/hour, based on 583 daytime hours. Generally,

nighttime performance exceeds daytime performance due to the

lack of glare and diffuse reflections, as indicated in the increased

nighttime AUC values of Figure 3A (black vs. blue curve).

As with any optical detection system, its performance varies

with environmental conditions such as fog, precipitation, sea state,

glare, water- and air-temperatures and ambient brightness

(insolation). Due to the currently available limited number of

visual (i.e. reference) sightings, a statistically significant analysis of

system performance in relation to these parameters cannot yet be

performed. However, some general trends are already discernible.

During ANT-28.2, the number of detections did not degrade up to

wind speeds of 7 Bft (corresponding to sea state 6); Wind speeds

higher than 7 Bft occurred for only a brief period (,12 h) during

which no ship-whale encounter was detected. Detections also

occurred at water temperatures of up to 23uC, yet sampling effort

was heavily biased towards polar water temperatures with only 5

encounters having occurred in waters warmer than 15uC. Air

temperatures are irrelevant to system performance as (dry) air is

quasi-transparent in the LWIR (8–12 mm) band used. Contrast-

ingly, fog may significantly compromise system performance.

Figure 3. Detection performance and efficiency. A: Cue-based classifier ROC curves for training, testing and two (day and night) validation
datasets. AUC values: Training: 0.99; Testing: 0.98; Validation day: 0.90; Validation night: 0.98. B: Lines with error bars: Proportion of successful
automatic detections of all visually detected blows (black), and proportion of visually detected blows of all automatic detections (grey) versus
distance (bin width of 1 km). Errorbars give the standard error. Bar plot: Number of automatic (black) and visual (grey) detections versus distance.
doi:10.1371/journal.pone.0071217.g003
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Depending on droplet size, visibility in the LWIR band has been

noted to be equal or better than in the visual (0.3–0.7 mm) band.

Fog, rain and snow occurred rarely (visibility was less than 500 and

1000 m for only 0.5 and 2% of the expedition, respectively),

representative of typical Southern Ocean conditions during austral

summer. Glare resembles a clutter of warm anomalies in

thermographic images, resulting in high local contrasts. This

raises the STA/LTA threshold, rendering the detection of blows

less likely. However, the field of glare in the IR image is

significantly narrower than for visual observers, as the detector

only considers the local contrast of each analyzed tile (between 1

and 3u horizontal field of view, FOV), rather than that of the

human (i.e. binocular’s) field of view (8uFOV).

As yet, the upper limit of sea surface temperatures and the lower

limit of mammal sizes allowing reliable blow detection remain

unknown. Our results were obtained for a limited range of

environmental conditions and species, with sea surface tempera-

tures predominantly between 21.8 to +10uC, wind speeds below 7

Bft, and species consisting mainly of humpback (Megaptera

novaeangliae), minke (Balaenoptera bonaerensis) and fin whales (Balae-

noptera physalus). A comprehensive evaluation of the algorithm’s

efficiency for other whale species and pinnipeds, and for higher sea

surface temperature and wind speeds, including their cross-

dependencies, requires further studies which are in planning.

Meanwhile, our results demonstrate that the IR systems works well

for large whales in the subpolar and polar oceans, and provides a

major breakthrough for night time detection.

The reliability of visual or thermographic observations for

cetacean mitigation is strongly dependent on the ratio of a whale’s

surface versus dive times, a factor known as availability bias.

Modeled availability biases range from 99% for whales exhibiting

dive times of 10 min (baleen whales), over 65% for dive times of

40 min (sperm whale), to 45% for dive times of 60 min (beaked

whales). The degree to which availability bias impedes a timeous

detection, that is, a whale’s detection before it enters the exclusion

zone, depends further on the radius and relative position of the

detection and exclusion zone and the ship’s speed. Longer dive

times in combination with a detection radius below 3 km lead to a

dramatic decrease in the probability that a whale can be detected

timeously (Figure 4, Figure S3). Baleen whales, for example, are very

likely (.90%) to have surfaced within the IR system’s detection

range before entering the exclusion zone, whereas whales with

long dive times (odontocetes in particularly) stand a reduced

chance for being detected timeously (40–70%). The modeled values

likely represent conservative (low) estimates, as the possibility of

avoidance responses of the animals to loud sounds [20–23] was

disregarded in the model. In addition, whale pods with asynchro-

nous diving patterns present multiple detection opportunities,

increasing the likelihood and of being detected before entering the

exclusion zone.

Further protection might be achieved by concurrent passive

acoustic monitoring of animal sounds [24]. However, quantitative

and comprehensive studies of the detection probability of passive

acoustic monitoring are largely lacking. With the exception of

odontocetes, which emit clicks during foraging dives, the

vocalization behavior of most species at the gender and contextual

level is insufficiently understood for quantitative estimates of

acoustic detectability. By contrast, whales need to respire

regularly, rendering visual or thermographic detection methods

reliable once the detection bias is minimized, as achieved by the

system described herein. Further progress in sensor technology,

such as the availability of multiple band (far and mid wavelength

IR and visual) sensors and higher image resolution can be

expected to further increase detection reliability and therefore

whale protection.

The IR system presented here has additional benefits. It

provides precise and reproducible distance and bearing informa-

tion which can be used to study the response of whales to acoustic

exposure with regard to locomotive behavior, respiration rates,

and dive cycles (Figure 1). Automated blow detection can be

coupled with acquisition of additional visual imagery for species

identification and morphometric analyses, an approach currently

under development. The increased use of such systems will

eventually result in a large number of well documented

encounters, providing urgently needed, statistically robust data

resolved at the species and contextual levels [23]. With regard to

marine mammal mitigation applications, the real-time detection

and tracking capability of thermal imaging methods allows for fast

and correct decisions, day and night, throughout seismic surveys

or naval activities. In particular, the IR system’s ability to

concurrently detect multiple whales allows for full situation

awareness, even in the presence of many whales.

Supporting Information

Figure S1 Absolute (A) and relative (B) error estimation
of image and binocular based distance calculation. It is

assumed that the vertical position of a whale in the thermal image

is determined with an accuracy of 61 pixel and with J reticule

Figure 4. Timeous availability. Probability of a whale being at the
surface within a detection radius r before it is within the exclusion zone
(radius 500 m, acoustic source towed 500 m behind the ship, see Figure
S3) as a function of diving time. Ship speed is assumed to be 4.5 knots.
Colored areas indicate different maximum radii over which whales can
be reliably detected (1, 3 and 5 km). Upper limits of filled areas
correspond to the maximum, lower limits to the minimum known
surface times. Mean values for various whale species are indicated by
letters: A = Arnoux’s beaked whale, B = Blainville’s beaked whale,
b = blue whale, C = Cuvier’s beaked whale, f = fin whale, h = humpback
whale, k = killer whale, m = minke whale, n = northern bottlenose whale,
p = pilot whale, r = right whale, s = sei whale, sp = sperm whale. Letters
are only displayed for a detection radius of 1 km. Within in the blue
(3 km) area, circles and dots vertically aligned with letters indicate
whether the underlying data represents single measurements (dots) or
group averages (circles). Light grey symbols represent odontocetes,
black symbols mysticetes.
doi:10.1371/journal.pone.0071217.g004
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accuracy using binoculars. Due to the spherical triangulation used to

calculate the distance, this results in a distance dependent error. Red

color indicates upper, blue color indicates lower error boundaries.

For distances less than 5 km, relative errors are within 12%.

(TIF)

Figure S2 Schematic of the STA/LTA algorithm. The

example shows the V-shaped blow of a humpback whale. The

black curve shows the short term contrast average (STA), the red

curve the long term contrast average (LTA) computed from the

sequence of snippets above. Blue and pink windows indicate the

number of images used to calculate STA and LTA respectively.

The blue curve indicates the adaptive threshold (AT) as computed

from the right hand side of equation (1).

(TIF)

Figure S3 Schematic of ship position, exclusion zone
and detection zone. For the animat simulation model (see

Figure 4), the sound source was assumed to trail 500 m behind the

ship.

(TIF)

Table S1 Surface and dive times used for animat
model, as taken from the literature.
(DOC)

Text S1 Detailed description of detection and classifi-
cation algorithms.

(DOC)
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