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Abstract

Summary: Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However,
considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of
microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally
undemanding graphical user interface program that enables identification of bacterial species and gene content from
datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on
two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false
positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic
algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e.
including all strains of that species) and demonstrate similar or better accuracy than the other programs. Lastly, speed was
demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate
if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the
reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly
analysing millions of short reads on a personal computer.

Availability: The Genometa program, a step by step tutorial and Java source code are freely available from http://
genomics1.mh-hannover.de/genometa/ and on http://code.google.com/p/genometa/. This program has been tested on
Ubuntu Linux and Windows XP/7.
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Introduction

Metagenomics, the analysis of microbial communities directly

within their natural environments, continues to gain traction in

both the environment and in the clinic. In metagenomics,

sequence reads can be used to predict both the abundance and

functional capacity of the microbes present by molecular means.

Sequence read data from high throughput sequencing platforms

like Illumina and SOLiD are by far the most cost-effective per base

pair sequenced [1], yet downstream analysis remains challenging,

with algorithmic speed an issue. Despite this, extensive short read

datasets are beginning to accumulate [2,3,4].

Sequence reads in bacterial metagenomic analyses can be

derived by whole genome shotgun sequencing, or targeted

sequencing of 16S rRNA amplicons. These alternative techniques

do lead to significant taxonomic differences in results, based upon

the evaluation of 33 metagenomes [5]. In other words, the decision

to select targeted 16S amplicon sequencing or untargeted whole

genome sequencing will lead to different predictions of the

taxonomy of a metagenome. Sequencing of 16S rRNA remains

a popular approach [6] in metagenomics despite its well known

limitations [7,8]. Estimates of taxon abundances can be biased by

large differences in rRNA copy number between even closely

related species [9], and the fact that not all rRNA genes amplify

with PCR primers [10]. In fact, the number of copies of the rRNA

gene in bacteria range from 1–15 [9], rendering rRNA-based

approaches more suitable for qualitative than quantitative

metagenomics. Because of these reasons, we anticipate whole

genome shotgun metagenomes will be preferable to sequencing of

rRNA amplicons in the future.

Ideally, researchers require programs which can perfectly assign

reads to individual microbial strains. This goal is not realistically

possible due to the very high sequence similarity between strains,

the reads errors inherent to sequencing, and the lack of reference

genome sequences for some phyla. However, the optimal result for

a metagenome dataset must remain species level read assignments,

and not unspecific matches to phyla such as Firmicutes or

Proteobacteria. Attributions to higher taxonomic levels, while
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indicative of the presence of unsequenced phyla in the metage-

nomic sample, are not a satisfactory solution because taxonomy

becomes increasingly arbitrary with distance from the species unit

[11]. Hence, algorithms which can generate more precise

taxonomic assignments are necessary.

A key strength of using reads from the whole genome is the

ability to probe the gene content of the organisms present. With

this method predictions can be made to establish the pangenome

of the community under investigation, and even discover new

genes. For example, Hess and coworkers [4] found over 27,000

putative genes putatively involved in carbohydrate metabolism

and could assemble 15 uncultured microbial genomes from a cow

rumen metagenome dataset, and could even express novel proteins

active against cellulose substrates. Qin and colleagues [3]

discovered a core microbial gene set around 150 times larger

than the human gene complement after sequencing the micro-

biomes of 124 European individuals.

As monitoring approaches and reference sequences continue to

expand, algorithms which are able to rapidly detect species in large

metagenomic datasets will become essential. Furthermore, quick

assessment of large datasets is important to facilitate rapid

detection of pathogens in the clinic. Existing algorithms of the

same speed as the BLAST algorithm are not sufficiently scalable to

large datasets [12], and webservers typically provide restrictive

limitations or allow others access to sensitive data [13].

We here present Genometa, a robust, fast and accurate system

for assignment of short reads from prokaryotic metagenomes

which can be run as a Java application on a personal computer or

via our webserver. This system allows rapid analysis of the vast

datasets generated by next generation sequencers and thus

facilitates investigation of complex microbial communities at a

greater level of detail. We demonstrate the utility of the approach

in assessment of taxonomic origin of millions of reads from a

human gut dataset and validate predictions on artificial metagen-

ome datasets of known composition. Genometa achieves a high

proportion of read assignments, with few false assignments to

species not included in the dataset.

Methods

Genometa
The program is an extensive modification of the established

Integrated Genome Browser (IGB) genome browser [14]. IGB was

selected because of its functionality, clear user interface and

extensible, well-documented Java source code. The IGB codebase

was forked in order to develop Genometa in a separated

subversion repository. SAM to BAM conversion is implemented

using the Picard Java library (http://picard.sourceforge.net/), and

reads from BAM files are counted, mapped to metadata and

subsequently displayed in a histogram and in the genome browser.

Initially, support for the Bowtie algorithm [15] has been included

in the graphical interface and BWA [16] will be included in the

future.

Reference sequences for metagenomics
1190 prokaryotic chromosomes from various sources were

concatenated and used to build a metagenomic reference

sequence. These include the August 2010 versions of the NCBI

RefSeq collection, the Human Microbiome project [17], the

Genomic Encyclopedia for Bacteria and Archaea [18], the

Metahit programme [3], and the Moore Foundation Marine

Microbial Genome Sequencing Project (http://www.moore.org/

marine-micro.aspx). The earliest sequenced strain genome from

each species was included using an in-house script. The included

genomes are listed within the Genometa program itself. Short

reads can then be mapped onto this reference in a similar fashion

to that routinely used in genome resequencing. This reference

sequence was used to derive the results mentioned in this paper.

Reference sequences will be updated regularly using complete and

draft genomes from these resources as well as novel resources

arising in the future. We have designed a Java program named

RefSelector, downloadable from the Genometa website, which

allows customisation of the reference sequence. Users modify the

taxa in the included list, run RefSelector, and receive a new

reference sequence containing only those genomes included in the

modified list.

Accuracy on simulated metagenomes
The advantage of using simulated data to assess a program is

that the true origin and method of production of the datasets are

known, and hence positive predictions can indeed be verified.

Because short reads offer the lowest cost per bp and have been

underutilised by metagenome researchers to date, 50 bp (starting

from the first base) of sequence were filtered from metagenomic

projects with longer reads using an in-house PERL script. As an

exception, short reads were extracted from Sanger reads at

position 100 to avoid ambiguous bases present at read starts.

Default bowtie settings were used for analyses of the SimLC [19]

and simulated ocean metagenome datasets. SimLC is a dataset

constructed by other researchers to allow objective assessments of

metagenome analysis programs. The simulated ocean metagen-

ome was created with Metasim [20] using 100000 reads from ten

marine strains: 17391 reads from Marinomonas sp. MWYL1, 15665

from Shewanella loihica PV-4, 12473 reads from Oceanobacillus

iheyensis HTE831, 11890 reads from Nitrosococcus oceani

ATCC19707, 10509 reads from Alcanivorax borkumensis SK2,

9252 reads from Synechococcus elongatus PCC6301, 6911 reads from

Halobacterium salinarum R1, 5946 reads from Prochlorococcus marinus

CCMP1375, 5619 reads from Nitrosopumilus maritimus SCM1 and

4344 reads from Candidatus Pelagibacter ubique HTCC1062.

Alignment speed comparison of BLAST and Bowtie
In order to test the alignment speed of BLAST and Bowtie on

the same datasets reads were collected from a human gut study

[21], a human stool diarrhea study [22], a vineyard study [2] and a

cystic fibrosis lung dataset [23]. Bowtie was run within Genometa

using default settings with the exception of -p (number of threads)

being raised to achieve optimal resource usage. BLAST v2.2.13

was run with the following settings: (blastall -p blastn -d

allSpecies_august2010.fa -i $input -e 1e-10 -a 7 -b 30 -v 30 -F F

-o $output1). Analyses were run on the same machine, and results

were normalised to ensure comparability. Extrapolation of BLAST

results was considered only after 24 hours had elapsed in order to

save power.

Benchmarking algorithms on an Illumina human gut
microbiome dataset

The first 100,000 Illumina 100 bp reads were extracted from an

Illumina human gut dataset derived from stool samples

(SRR042027, Human Microbiome Project, [17]). Only 100,000

reads were taken as this represents the upper limit which could (in

late 2011) be submitted to one of the metagenome webservers

tested. Only the first reads of each read pair were used to ensure

comparability between the programs under test, since most lack

functionality to deal with paired end reads. The exact bowtie

command used for the Genometa assessment was: (bowtie -t

allSpecies_august2010 –sam -p 15 -f gut.fa gut.sam). Megan [24],

An Accurate Classifier for Short Metagenomic Reads
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MG-RAST [25], and Carma3 [26] were all run with default

settings. The Blast command for Megan was: (blastall -p blastn

-d allSpecies_august2010.fa -i $input -e 1e-10 -a 7 -b 30 -v 30 -F F

-o $output1).

Results

Genometa
The open source genome browser IGB [14] was extended and

extensive functionality for a metagenomic scenario was added.

New features include integration of SAM/BAM format conversion

and reading functionality via the Picard library (http://picard.

sourceforge.net/), integration of the Bowtie and bwa aligners

[15,16], summarisation and graphical summaries of results, new

visualisations and novel export functions (Figure 1). Bowtie was

selected since it is sufficiently fast, accurate and available on all

major desktop operating systems. Advanced users can set any

Bowtie parameters using a text box, use other alignment programs

and read in their own alignments from SAM or BAM files. In

other words, Genometa is flexible enough to allow complete access

to the changing functions of the integrated aligner. Complex

sequence data files can thus be easily created, converted, read in

and explored via sorted drop down lists in a user-friendly manner.

These features are completely distinct from the functionality that

the main IGB developers have been focussing on, such as

enhanced performance, improved visualisation tracks, insertions

and deletions, plugins and web-based data access. Many of our

modifications and improvements will flow back into the main IGB

project managed by the Loraine lab (Ann Loraine, pers. comm.).

Speed comparison to BLAST
Many existing metagenome analysis approaches are based on

the BLAST algorithm [27] or others which run at similar speeds

[28]. We have previously observed BLAST to be a thorough but

slow algorithm for next-generation sequence data, and thus tested

the speedup by Bowtie with metagenomic datasets. BLAST was

observed to map about 0.25 reads per thread per second in all four

datasets (Table 1), whereas Bowtie managed to map between 525

and 1967 reads per thread per second. While the reads from the

454 and Sanger sequenced metagenomes were trimmed to allow

alignment by Bowtie, this is a dramatic difference in speed.

Testing on artificial metagenomes of known composition
Genometa was first tested on a composition of simulated, error

containing reads derived from ten oceanic bacterial strains. The

results clearly reflected the bacteria included in the metagenome,

with an average of 75% of reads inserted being correctly assigned

to each species (Figure 2). Halobacterium sp NRC-1 was also

detected, but this strain is colinear and practically identical to the

included strain Halobacterium salinarum R1 [29]. Because identical

strains are included in the reference naturally about half the reads

are attributed to each strain. As such this is a taxonomic oversight

as to why NRC-1 has not been assigned to the species H. salinarum

rather than an algorithmic error. Next, a published simulated low

complexity dataset comprising 113 strains with introduced

simulated errors (SimLC, [19]) was used to validate Genometa

performance. A detection threshold of 100 reads was utilised

because 100 aligned short reads are sufficient to estimate sequence

Figure 1. A screenshot displaying key new features with a glacier ice metagenome dataset loaded [39]. An aligner can be run with the
graphical dialogue (top right) against a reference sequence. Thereafter the resulting file format is converted to the standard BAM format and read in,
revealing the number of reads mapped to each species in a sortable list which can be exported for further analysis (left). A bar graph graphically
displays the number of reads attributed to each taxon. Clicking on a blue bar takes the user to a genome level view of the distribution of reads
mapped against a taxon. Large datasets can thus be easily aligned, analysed and tested for plausibility from a graphical user interface.
doi:10.1371/journal.pone.0041224.g001

An Accurate Classifier for Short Metagenomic Reads
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length and abundance of a taxon, operon or genomic island in a

metagenomic dataset (see equations 3–5 in Materials S1). 106 of

113 strains (94%) were detected (Figure 3). Nine species were not

detected (false negatives), of which two were not in the reference

dataset. For the seven remaining taxa, one was completely

undetected, while the genus (but not species) for four taxa was

correctly predicted and two species were falsely predicted to be

present (false positives).

A number of strains in the SimLC dataset were not included in

the Genometa reference, which only includes one strain from each

species. The species Crocosphaera watsonii WH 8501 and five further

strains in Figure 3 were not included (marked by asterisks). Where

related strains are not included in the Genometa reference, Bowtie

maps some dataset reads to homologous regions of the included

strain, but leaves others unmapped. This explains why the strains

missing from the Genometa reference, such as Pseudomonas

Table 1. Comparative duration of alignment by BLAST and Bowtie versus the same metagenomic reference for four metagenome
datasets.

Dataset Alignment tool Number of reads
Alignment duration
7 threads (s)

Normalised alignment
duration 1 thread (s)

Reads per thread
per second Dataset reference

Human gut BLAST 1501409 885898* 6201286 0.24 Kurokawa et al. 2007 [21]

Human gut Bowtie 1501409 109 763 1967.77 Kurokawa et al. 2007 [21]

Human stool
Diarrhea

BLAST 96941 54180 379260 0.26 Nakamura et al. 2008 [22]

Human stool
Diarrhea

Bowtie 96941 14 98 989.19 Nakamura et al. 2008 [22]

Vineyard BLAST 9623513 5854784* 40983488 0.23 Coetzee et al. 2010 [2]

Vineyard Bowtie 9623513 2617 18319 525.33 Coetzee et al. 2010 [2]

CF lung BLAST 772097 432374* 3026618 0.26 Willner et al. 2009 [23]

CF lung Bowtie 772097 69 483 1598.54 Willner et al. 2009 [23]

*duration was extrapolated after ,24 hours.
doi:10.1371/journal.pone.0041224.t001

Figure 2. Number of reads per species present in an in-house simulated ocean metagenome compared to the number of reads
assigned to a reference containing all known strains by Genometa. All bacterial species present were detected. Reads were retrieved in the
same stoichiometric proportions in which they were inserted. Halobacterium sp NRC-1 was also detected, but this strain is colinear and practically
identical to the included strain Halobacterium salinarum R1 [29].
doi:10.1371/journal.pone.0041224.g002
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fluorescens PfO-1, are present in the results, but have a lower

proportion of mapped reads.

On a different note, R. palustris BisB18 is assigned more reads

than were present from this strain in the SimLC dataset. This can

be explained by the presence of reads from four R. palustris strains

in the entire SimLC dataset. In other words, reads from R. palustris

strains HaA2, BisB18 and others were only partially assigned to

common regions of strain R. palustris CGA009, a considerably

divergent strain (just 64% query coverage using NCBI Megablast

Blast2Seq to strain HaA2) which is included in the Genometa

reference. The attributed reads are then presented for both R.

palustris strains shown, since Genometa only attempts attributions

at the species (not strain) level. Where reads from multiple strains

are present in the SimLC dataset, summation of the reads would

actually be fairer to Genometa, but we prefer to strictly retain the

ordering of the SimLC dataset to allow meaningful future

comparisons with other metagenome analysers. These examples

demonstrate the taxonomic fidelity of short reads, since very few

reads from the missing strain are simply mapped to the closest

strain.

Analysis of a human gut metagenome sample
Finally, a comparative performance analysis of four metagen-

ome analysers on 100,000 100 bp human gut Illumina reads was

carried out (Figure 4, SRR042027, Human Microbiome Project,

[17]). The leading programs Webcarma3 (webserver), MEGAN

(standalone program), and MG-RAST (webserver) were compared

against Genometa. Processing times were difficult to measure for

the webserver approaches, while Genometa was distinctly faster

than the BLASTn analysis used in MEGAN (BLAST: ,40 hours,

Bowtie: ,1 minute; see also Table 1 for performance on other

datasets).

Genometa was able to attribute the most reads (64%).

Thereafter followed MG-RAST (62%), while Webcarma3 (11%)

and MEGAN (10%) were more conservative. In general, the

number of reads attributed by Genometa to these bacterial species

correlates with those from Webcarma and MEGAN, although

Genometa does place significantly more reads. Two taxa were

detected by all four approaches, while twelve taxa were found by

three programs. Ten taxa were implicated by Genometa and

Webcarma3 only. All programs detected taxa not found by any

other, such as Bacteroides sp. 3_2_5 (Genometa), Bacteroides vulgatus

(Webcarma3), Ruminococcus lactaris (MEGAN) and Marinomonas sp.

MWYL1 (MG-RAST). In general, results were as expected for all

programs for a human gut dataset, with a high proportion of

bacteria from the genera Bacteroides and Alistipes discovered.

Figure 3. Number of reads from an artifical metagenome of known composition (SimLC dataset; [19]) which were included in the
metagenome (black bars) and assigned to the correct bacterial species by Genometa (blue bars). Only the top 21 species of the 113
bacteria included in the dataset are shown. Genometa achieves a high accuracy on this dataset. Asterisks indicate strains which are included in the
SimLC dataset but not in the Genometa reference sequence. Inter strain differences generally mean less reads are attributed to these taxa. The cross
denotes a species which is not present in the Genometa reference sequence.
doi:10.1371/journal.pone.0041224.g003
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Discussion

Metagenome sequence analysis has been an area of active

research since next-generation sequencers became available

[13,27,28]. In this study, we introduce a novel standalone

metagenomic program specifically designed for the challenges of

whole genome short read analysis. We also evaluated the key issues

of run time and accuracy against simulated datasets of known

composition and an Illumina human gut dataset with benchmark-

ing against three other metagenome analysers.

On the human gut dataset, Genometa and MG-RAST could

assign the most 100 bp reads to the listed bacterial species

(Figure 4). MEGAN and Webcarma3 were only able to make

significantly less assignments, but all approaches predicted a

taxonomic composition close to that observed by numerous other

human gut studies [3,21]. While there was considerable overlap

between results from the four programs on the human gut dataset,

there were also significant differences. These differences are for

most part probably due to the difference in reference sequences

between Genometa on the one hand and Webcarma and MG-

RAST on the other, the latter of which are both webservers and

hence cannot be fed the exact same reference sequence. For

example, MG-RAST assigned 43215 reads to Bacteroides caccae,

which was not found by the other programs except for Megan (104

reads). We speculate that this species was found, and many other

apparently common Bacteroides species were not found, because

only B. caccae represents the genus Bacteroides in the MG-RAST

reference database. The BLAST algorithm behind MEGAN did

use the same reference as Genometa, but uses an additional

Lowest Common Ancestor (LCA) algorithm, which then appar-

ently leads to marked differences in numbers of reads attributed.

Use of the LCA algorithm reduces false positives, but has the

undesirable effect of assigning many reads to high taxonomic ranks

and discarding many others [30]. Genometa has the added

advantage that users are able to check the distributions of reads

across the genomes of each discovered species, in order to remove

those with multiple hits to restricted genomic loci. These are likely

to be false positives, for example due to the presence of

homologous regions such as common genomic islands, or low

quality reads aligning to low complexity genomic regions. As a

consequence of observations made during the testing phase, we

provide some recommendations for metagenome analysis algo-

rithms on reads of different lengths (Table 2).

While Genometa was accurate on these datasets, it must be

noted that the human associated microflora has been extremely

well characterised by complete or draft genome sequences.

Genometa can only attribute reads to those species with genomes

contained within the reference sequence used. For this reason the

program will do a good job on any habitats which have a

thoroughly characterised microbiota in terms of reference

genomes, but not perform well on samples from environments,

such as soil, with a sparse coverage of fully sequenced or

permanent draft genomes. However, this limitation is likely to

become less prominent given that the current costs of whole

genome draft bacterial sequencing are in the order of a few

hundred euros. Complementary approaches such as de novo

assembly can be used to discover truly novel genes or DNA

Figure 4. The number of 100,000 Illumina human gut 100 bp reads (SRR042027, Human Microbiome Project, [17]) assigned to
bacterial species by four metagenomic programs. Note the general agreement between the different programs but higher number of read
assignments achieved by Genometa and MG-RAST. All programs found bacterial species typical of a human gut metagenome.
doi:10.1371/journal.pone.0041224.g004
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fragments in environments where reference sequences are still

lacking.

A further goal was to test the practicality of using current

programs to assess the sizeable datasets generated by modern

sequencing techniques. Genometa’s run time is shorter than that

of other approaches, with the Bowtie algorithm employed being

orders of magnitude faster than BLAST (Table 1), and has no

limits on the quantity of data which can be processed. Some web

server based approaches, such as Webcarma3, restrict the amount

of sequence data that can be uploaded in order to reduce run

times, and other webservers use a queue system which may require

some time before analyses actually run. For this reason only

100,000 reads from the Illumina human gut dataset were used,

and not the millions of reads from the full dataset. This speed

limitation is particularly relevant in a clinical environment, where

rapid analysis is crucial [31]. On the other hand, webserver-based

analyses frequently allow more comprehensive analyses than most

standalone programs to date.

A key advantage of using data from whole genome sequencing

metagenomic studies is to gain information on the gene content of

the microbial community. That is, the coverage of genes by

sequencing reads can infer the presence or absence of a gene or

genomic island in the community (Materials S1, Table S1, Figures

S1, S2). This approach potentially offers much more significant

information than targeting the 16S rRNA gene alone [32]. The

gene content of a taxon may have changed even though the rRNA

sequence has not, especially through the integration of significant

drivers of variation such as phages and genomic islands [33,34].

Lastly, functional information can be used independently of

taxonomy. Taxonomy can be arbitrary in some cases, but gene

content is not.

As sequence datasets become ever more ubiquitous, we suggest

a use case for programs like Genometa might be to easily check for

contaminants in sequence datasets. Confounding sequences can be

easily excluded following the alignment step. This could be human

sequences in bacterial datasets, or eukaryotic sequences in

bacterial datasets, or cloning vectors in both. We have already

demonstrated the utility of this approach on several datasets which

had acquired a minor amount of human contamination.

Furthermore, alternative reference datasets can be rapidly built

by our program RefSelector or concatenating genome sequences

and used for custom alignments, for example when screening for

rare virus subpopulations in a clinical metagenome.

Conclusion

We here present a new graphical and user-friendly tool for

analysis of short metagenomic sequence reads. Results obtained

are similar to those from current metagenomic tools for existing

datasets. By utilising algorithms orders of magnitude faster than

Blast we aim to facilitate analysis of metagenomic short read data

by workgroups which lack embedded bioinformaticians and

computational infrastructure. We anticipate short reads will soon

become more widely adopted in metagenomics, particularly for

assessing functional information such as gene content.

Supporting Information

Figure S1 Distribution of Pseudomonas aeruginosa CHA reads

mapped to the Herminiimonas arsenicoxydans genome. Mapped reads

correspond to ORFs from the RGP27 island in P. aeruginosa

PACS2.

(TIF)

Figure S2 Distribution of human gut metagenome reads

mapped to the Bifidobacterium longum NCC2705 genome. The

widespread hits indicate the strain is present in the metagenome.

Figures were produced with the statistical language R.

(TIF)

Materials S1 Supplementary results and statistical algorithms

for short reads.

(DOC)

Table S1 P-values (i.e. probability) that not one single overlap is

observed for any possible pair of reads among a particular number

of mapped reads for a sequence of length L bp. This table was

calculated from equation 5 above. Underlined p-values are those

where at least one pair of overlapping reads are expected (p=0.5)

for the given sequence length and number of reads.

(DOC)
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Metagenome dataset type Read length Recommended algorithms Reference

16S rDNA 400 QIIME, Mothur, RDP classifier [35], [36], [37]

Whole genome shotgun 454/Ion torrent 200–400 MEGAN/MG-RAST WebMGA/EBI/FR-HIT [24], [25], [13], unpublished, [38]

Whole genome shotgun SOLiD/Illumina 50–120 Genometa/MG-RAST This study, [25]

doi:10.1371/journal.pone.0041224.t002
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