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Abstract

The discovery of mirror neurons has suggested a potential neural basis for simulation and common coding theories of
action perception, theories which propose that we understand other people’s actions because perceiving their actions
activates some of our neurons in much the same way as when we perform the actions. We propose testing this model
directly in humans with functional magnetic resonance imaging (fMRI) by means of cross-modal classification. Cross-modal
classification evaluates whether a classifier that has learned to separate stimuli in the sensory domain can also separate the
stimuli in the motor domain. Successful classification provides support for simulation theories because it means that the
fMRI signal, and presumably brain activity, is similar when perceiving and performing actions. In this paper we demonstrate
the feasibility of the technique by showing that classifiers which have learned to discriminate whether a participant heard a
hand or a mouth action, based on the activity patterns in the premotor cortex, can also determine, without additional
training, whether the participant executed a hand or mouth action. This provides direct evidence that, while perceiving
others’ actions, (1) the pattern of activity in premotor voxels with sensory properties is a significant source of information
regarding the nature of these actions, and (2) that this information shares a common code with motor execution.
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Introduction

The process of understanding the actions of another person,

even an everyday action such as combing hair, can be performed

at several levels, and potentially involves multiple interrelated

systems [1]. We can understand how the person is performing the

action (such as holding the comb in the right hand), but also what

the person is doing (moving a comb through their hair), and why

they are performing the action (they are getting ready for work)

[1–3]. Simulation [4–8] and common coding [9,10] models of

action perception propose that we understand the how and what of

other people’s actions because viewing or hearing their actions

activates certain brain circuits in much the same way as if we were

executing the actions. While simulation and common coding

models differ in particulars, especially relating to sensory

perception, we will consider them as synonymous here, as they

agree in the realm of action processing. Finally, the why of an

action may be understood by theory of mind processes in an

‘‘inferential reasoning network’’ of cortical midline structures and

the temporo-parietal junction, which may build on, interact with,

or even substitute for the output of the simulation circuits [11,12].

The discovery of mirror neurons [13,14] has suggested a

potential neural basis for the simulation and common coding

models of action perception. For example, hearing someone gurgle

will evoke an inner ‘‘sense’’ of gurgling because the brain activates

some of the same mirror neurons that are active when we gurgle

ourselves [14–16]. Given that both perceiving and executing an

action is not linked to the activity of a single neuron but of a

widespread population of neurons, simulation and common

coding theories can be interpreted as stating that the pattern of

activity while performing an action should resemble the pattern

while observing or listening to a similar action. This resemblance

allows the brain to interpret an activity pattern similarly whether

executing or perceiving. If perception is restated as classification

(was that the sound of action A or action B?) simulation theory

makes a testable prediction: If the pattern of brain activity in a

relevant brain region (i.e. an area with mirror neurons) is similar

during action execution and perception (e.g. listening), a decision

rule which determines whether action A or B was heard on a

particular listening trial should also be able to determine whether

action A or B was performed on a particular execution trial.

Data from single cell recordings in the monkey have been used

to show that mirror neurons in the premotor cortex can indeed be

used to distinguish which of two actions was executed, observed, or

heard [16]. It is possible using fMRI data to compare the pattern

of activity in all voxels in the premotor cortex during the

perception and execution of various actions, and therefore test the

predictions of the simulation theory at the population level.

However, relatively few studies so far have actually measured

brain activity during both the execution and the perception of

multiple actions, and those that have [15,17] have not applied

methods to explicitly test whether the pattern of brain activity

discriminates between actions independently of modality.

Here, we therefore used multivariate classification methods to

directly test this formulation of simulation theory by determining

whether a pattern classifier (a) trained to discriminate two types of

actions (hand and mouth actions) using the pattern of brain

activity while subjects listened to the sounds of these actions, could
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(b) classify which of these two types of actions was executed by the

participants using the pattern of brain activity in action execution

trials, patterns not presented to the classifier during training. As a

proof-of-concept test to see whether cross-modal analysis is

possible, we performed the analysis on a suitable existing data

set [15], data previously analyzed with univariate analyses. Of the

evaluated brain regions, cross-modal classification was possible

only using voxels from the premotor cortex, a region thought to

contain mirror neurons in humans, suggesting that this method

may be valuable for testing simulation theory with fMRI data.

Materials and Methods

Data and Experiment
This analysis uses a portion of the data collected in an

experiment investigating the human mirror neuron system in the

auditory domain using univariate analyses [15]. This data set is

suitable for testing the cross-modal classification strategy because

two types of actions (hand and mouth) were presented in two

different modalities (auditory and execution) to the same subjects.

To summarize, the experiment included sixteen healthy volunteers

(14 right- and two left-handed; nine female and seven male; mean

age = 31 years, range = 25–45 years) with normal or corrected-to-

normal vision and normal hearing. The subjects participated in

several tasks, three of which are relevant here: auditory, mouth

movement, and bimanual hand movement.

In the auditory task the subjects listened to the sounds of hand

actions (e.g. ripping paper) and mouth actions (e.g. crunching food) as

well as control sounds (e.g. water dripping). The sound recordings

were four seconds long and were presented in the silent 4.1 second

interval between the acquisition of volumes (acquisition time

1.5 seconds), using a T2* weighted acquisition at 3T (TE = 30 ms,

TR = 5.6 s, TA = 1.5 s, 25 axial slices, 4.5 mm thick, 3.563.5 mm in

plane resolution). Each block consisted of three stimuli of the same

category, with three blocks of each type per acquisition run. Four runs

were collected for each subject. For each category of sounds a total of

12 blocks (3 blocks per run for 4 runs) were therefore collected. While

listening to the sounds the subjects performed an odd-ball detection

task; the odd-ball was the insertion of a different category sound into a

block (e.g. two mouth sound followed by a hand sound). Volumes

collected during odd-ball trials were not analyzed, resulting in at most

nine usable blocks for each stimulus category per subject. Only the

mouth and hand sound blocks will be considered here, to match the

available execution tasks.

The mouth and hand action execution tasks were performed

after the auditory task and without prior warning, to avoid subject

focus on performing movements while listening to the sounds. The

tasks are fully described in Gazzola et. al. [15], as ‘‘MouthExe’’

and ‘‘HandExe.’’ As an overview, the mouth execution task

consisted of manipulating a small plastic object (a garden-type

plastic dwarf 2 cm tall) with the lips while keeping the jaw closed,

while the hand execution task was to rip a piece of paper or break

a peanut with both hands. 16 repetitions of each action were

collected (eight each of peanut breaking and paper tearing), in

different runs for each effector. The mouth execution task lasted

4 seconds, while the hand actions lasted about 5 seconds, with the

duration of movement recorded and used as block length. In both

cases the individual actions were separated by rest periods of

1062 seconds, and cued visually in a single event design.

The data were temporally compressed by generating one

summary volume per block. Temporal compression reduces the

risk of confounding the classification with excessive block and time-

dependent factors (i.e. due to the hemodynamic response lag; see

also [18]). Summary volumes for each block were calculated using

SPM2 (Wellcome Department of Imaging Neuroscience, London,

UK; http://www.fil.ion.ucl.ac.uk/spm) by fitting a GLM with

separate parameter estimates for each block. These parameter

estimates were used as the measure of brain activity for each block,

creating ‘‘parameter estimate images’’ [19,20]. Prior to parameter

estimation the volumes were high-pass filtered, realigned, and

normalized (but not smoothed) as described in [15] using SPM2,

except that 4 mm voxels were used; this size was chosen to have

fewer voxels per ROI while maintaining the greatest possible spatial

resolution given the scanning parameters. For each subject this

results in 9 parameter estimate images for mouth sounds, 9 for hand

sounds, 16 for mouth execution, and 16 for hand execution.

Regions-of-Interest (ROIs)
This analysis was carried out with a region of interest (ROI)-

based methodology, using all of the voxels in each ROI. The ROIs

were chosen based on our simulation theory-derived hypotheses

prior to analysis; brain activity measured in the subjects did not

influence the choice of ROIs. Five ROIs were selected: the

premotor cortex (preM) because it is seen as central to the mirror

neuron system in monkeys [5,7,13,14,16] and humans [6,8,21–

26]; primary (S1) and secondary somatosensory cortices (S2)

[1,6,27–29], areas hypothesized to participate in somatosensory

aspects of simulation; and finally the primary auditory cortex (aud)

and primary motor cortex (M1), due to the nature of the tasks

(auditory and motor). Each ROI was chosen individually on the

left and right side. The probabilistic cytoarchitectonic maps from

the SPM Anatomy Toolbox [30] were used to create the ROIs.

Although the posterior parietal cortex has been implicated in the

mirror neuron system, this region is not included as a ROI because

of the lack of cytoarchitectonically-defined maps of the superior

parietal lobule. As an exploratory analysis we analyzed a portion of

the parietal lobe identified functionally, please see Text S1 for

details. A further area (other) was included as a negative control: a

comparison set of voxels which should not contain information

suitable for classification of action sounds or action execution. The

other area was made up of the early visual cortex and the amygdala,

and was of comparable size to the largest ROIs (Table 1).

The voxels in each ROI were further processed to exclude

voxels which had zero variance across parameter estimate images

in any subject because voxels with zero variance cannot contribute

classification information. Including only voxels with non-zero

variance in all subjects ensures that each ROI is the same size in all

subjects, facilitating the comparison of results across subjects, but

potentially eliminating voxels which contain classification infor-

mation in a subset of subjects. The ImCalc function in SPM2 was

used to transform the masks to the same shape and voxel size as

the parameter estimate images. The number of voxels and specific

SPM Anatomy Toolbox areas composing each ROI, as well as

other, are listed in Table 1. The ROIs are shown in Figure S1.

Classification Procedure
Support vector machines (svms) [31,32] were used as the

classifier for this analysis. All analyses were performed in R [33],

using the e1071 package’s svm command with a linear kernel,

cost = 1, and default scaling (to zero mean and unit variance).

These choices are similar to those previously used with fMRI data

[34–39]. The classification was done within-subjects, with the

results averaged across subjects. For cross-modal classification a

classifier was trained to distinguish mouth and hand sounds for

each subject and ROI separately, using the nine sound parameter

estimate images for each condition as the training set. The

classifiers were then presented with execution data to classify as the

test set; no execution task data were used during training. The

Cross-Modal Classification

PLoS ONE | www.plosone.org 2 November 2008 | Volume 3 | Issue 11 | e3690



proportion of correctly classified execution parameter estimate

images was used as the classification accuracy for the subject and

ROI. Stated another way, the classifiers determined whether an

execution trial was more similar to the hand or mouth sound

activation pattern.

Given that only ,10% of neurons in the premotor cortex

respond to the sound of actions [14,16] while virtually all respond

during the execution of actions, training a classifier on auditory data

and testing it on execution data is preferable to the reverse

procedure because it ensures that the classifiers focus on the subset

of voxels that do contain sensory information (and are therefore

likely to be mirror). The results, therefore, do not show that the

activity pattern of a cortex overall is similar during action execution

and perception, but that those voxels with sensory properties show

an activity pattern that is similar during perception and action.

The significance of the classification accuracy for each ROI was

determined by a permutation test which determines how likely it is

to get an accuracy as high as the one observed (similar to the

procedure described in [40]). This is done by testing the null

hypothesis that there is no relationship between the test data class

labels (mouth or hand) and the voxel activity pattern. A lack of

relationship is ensured by randomly permuting the test data labels.

There are too many possible permutations to do a complete

permutation test (32C16>108), so a random permutation test was

performed by calculating the accuracy of 1000 random data

relabelings (i.e. randomly reordering the ‘‘mouth’’ and ‘‘hand’’

execution labels, using the same ordering for each subject). The

classification accuracy of each relabeled data set is determined in the

same manner as for the actual data set, and the average across-

subjects accuracy computed. The p-value is then determined by

counting the proportion of relabeled data sets classified more

accurately than the true data set. As 1000 relabelings were

computed the maximum significance level possible is 1/

1001 = 0.001 [41,42]. Significance was evaluated by t-tests as well,

by evaluating the likelihood that the true overall mean accuracy of

the 16 subjects is greater than 0.5 (chance level). In our opinion the

permutation test is more appropriate for this data since it does not

require distributional assumptions and directly tests the hypothesis

of interest, so permutation test p-values will be used in the text,

although t-test p-values are also reported for interested readers.

In addition to the cross-modal classification, uni-modal classifica-

tion was performed by classifying the data from the sound trials alone.

Uni-modal classification indicates how accurately each ROI was able

to distinguish the sound data. In brief, this was carried out by making

training sets of all but one mouth and all but one hand action sound

block per subject, with the remaining two examples used as the test

set. Every example was used once in a test set (stratified nine-fold

cross-validation), pairing test samples collected closest together in

time. Performance was quantified as the test set accuracy, averaged

over the nine test sets for each subject. Significance was calculated by

a complete permutation test (performed pairwise in order to maintain

stratification) and a one-sided t-test (true mean greater than 0.5), as

for the cross-modal analysis.

Results

Of the ten ROIs, significant (p,0.005) cross-modal classification

was possible only using the left and right premotor cortex (Table 2).

Examining the classification performance of the ROIs using the

auditory data alone (Table 3) shows that the superior classification

accuracy of the premotor cortex was specific for cross-modal

classification: several ROIs, auditory in particular, classified sounds

more accurately than premotor, but their higher accuracy did not

carry across modalities. The highest uni-modal classification

accuracy was obtained in aud L; aud R, S2 L, S2R, preM L, preM

R, and S1 L, could also classify significantly above chance (Table 3).

The patterns in M1 L, M1 R, and S1 R could not be classified.

The other areas were included to serve as a comparison set of

voxels which should not contain information suitable for

classification of action sounds or action execution. Other serves as

a sort of negative control, to check that cross-modal classification

accuracy is not simply something that is possible in any group of

voxels from this data. It is possible that some stimulus-relevant

activity exists in these areas, due to cross-talk with other brain

regions. This does not diminish their value as a negative control if

the classification accuracy of these regions is indistinguishable from

Table 1. Naming scheme and number of 46464 mm voxels in each ROI and brain area.

ROI or Area Anatomy Toolbox areas side abbreviation number of voxels

total without somatotopic

premotor cortex BA 44, BA 6 left preM L 396 386

right preM R 385 376

auditory cortex TE 1.0, TE 1.1, TE 1.2 left aud L 55

right aud R 61

secondary somatosensory cortex OP1, OP2, OP3, OP4 left S2 L 159

right S2 R 162

primary motor cortex BA 4a, BA 4p left M1 L 183

right M1 R 147

primary somatosensory cortex BA 1, BA 2, BA 3a, BA 3b left S1 L 262

right S1 R 351

other CM/LB/SF; BA 17, BA 18, hOC5 left other L 391

right other R 348

The given voxel counts are the number of voxels used in the analyses (the number that remain after removing all voxels with zero variance across volumes in any
subject), both in each ROI and after removing somatotopic voxels; see text for details. The ‘‘Anatomy Toolbox areas’’ column lists the regions selected to make up each
ROI or area using the names in the probabilistic cytoarchitectonic maps from the SPM Anatomy Toolbox [30]. See Figure S1 and Figure S2 for an illustration of these
ROIs.
doi:10.1371/journal.pone.0003690.t001

Cross-Modal Classification
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chance, however, which is what resulted from both the uni-modal

and cross-modal analyses (Table 4).

The previous group analysis of the data from this experiment

[15] provided evidence for a somatotopic mirror neuron system,

portions of which overlap the ROIs considered here. If

classification accuracy remains significant when the voxels shown

to have somatotopic properties in the group analysis are excluded,

we have evidence that cross-modal multivariate pattern classifica-

tion relies upon additional sources of information: patterns present

in voxels previously not identified as containing significant

information. To investigate this possibility the voxels identified

as somatotopic in [15] (using mass-univariate analysis at the group

level) were removed from the premotor ROIs and the cross-modal

analysis was repeated. Specifically, the voxels shown in yellow and

red in Figure S4 frame D of [15] were removed (see Figure S2).

This is a larger group of voxels than that used in the primary

results of [15] since they meet a less stringent definition of

somatotopy, and so provide a more difficult classification

challenge. The number of voxels remaining in the left and right

premotor ROIs after removing these somatotopic voxels is listed in

Table 1. Removing these voxels had little effect on the cross-modal

classification accuracy (Table 2): significant (p,0.005) cross-modal

classification was still found in the left and right premotor cortex.

Discussion

The main result of this report is that cross-modal classification

was possible: pattern classifiers could determine whether an

executed action involved the hand or the mouth using the pattern

of brain activity in the premotor cortex after having been trained

to discriminate the activity pattern while subjects listened to the

sound of hand and mouth actions. Since the classifiers were

trained on the sound data this does not show that the activity

pattern of the premotor cortex as a whole is similar during action

execution and perception, but rather that those voxels with sensory

properties show an activity pattern that is similar during

perception and action. Of the ROIs tested, only the premotor

cortex had significant cross-modal classification, which informs the

debate of whether motor or somatosensory simulation dominates

social perception [14–16,43–45]. This shows that one of the core

predictions of simulation and common coding theories is correct: a

pattern classifier that has learnt to decode which action was heard

based on the pattern of brain activity in the premotor cortex

during action perception trials can successfully deduce which

action was executed in action execution trials. In particular, these

results show that multivariate pattern classifiers can be used to

study simulation and common coding theories. Whether areas

Table 2. Mean cross-modal classification accuracy and p-values of each ROI as determined by permutation and t-testing, both of
the entire ROI and after removing the voxels identified as somatotopic; see text for details.

ROI all voxels without somatotopic voxels

mean s.e.m. perm p-value t-test p-value mean s.e.m. perm p-value t-test p-value

preM L 0.5449 0.0232 0.005* 0.0358 0.543 0.023 0.0040* 0.0406

preM R 0.5664 0.0197 0.001* 0.0021* 0.5586 0.0215 0.0030* 0.0078

M1 L 0.4727 0.0299 0.9441 0.8125

M1 R 0.4863 0.0331 0.7343 0.6571

S1 L 0.5352 0.0224 0.043 0.069

S1 R 0.5059 0.0225 0.3866 0.3991

S2 L 0.5176 0.0213 0.1788 0.2115

S2 R 0.5156 0.0278 0.2517 0.2912

aud L 0.5508 0.0238 0.014 0.0251

aud R 0.5312 0.0278 0.0679 0.1394

*p,0.0050 (Bonferroni correction of 0.05 for 10 ROIs).
doi:10.1371/journal.pone.0003690.t002

Table 3. Mean uni-modal (train and test on listening data)
classification accuracy.

ROI mean s.e.m.
permutation p-
value t-test p-value

preM L 0.5729 0.0478 0.002* 0.0739

preM R 0.5729 0.0382 0.002* 0.0378

M1 L 0.5521 0.0364 0.0176 0.0864

M1 R 0.5069 0.0408 0.1037 0.4336

S1 L 0.6181 0.0464 0.002* 0.0113

S1 R 0.5174 0.0453 0.0607 0.3534

S2 L 0.5868 0.0336 0.002* 0.0104

S2 R 0.625 0.0435 0.002* 0.0058

aud L 0.6389 0.0296 0.002* 0.0001*

aud R 0.5938 0.0294 0.002* 0.0031*

*p,0.0050 (Bonferroni correction of 0.05 for 10 ROIs).
doi:10.1371/journal.pone.0003690.t003

Table 4. Mean uni-modal (train and test on listening data)
and cross-modal (train on listening, test on execution)
classification accuracy and p-values of the other areas.

area analysis mean s.e.m.
permutation
p-value

t-test
p-value

other L uni-modal 0.5382 0.0426 0.0254 0.1923

cross-modal 0.5332 0.0201 0.0549 0.0594

other R uni-modal 0.4618 0.0242 0.3366 0.9325

cross-modal 0.5332 0.0227 0.0559 0.0823

doi:10.1371/journal.pone.0003690.t004

Cross-Modal Classification
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outside of the ROIs tested here are capable of classifying actions

across modality, and might therefore also participate in simulation

and common coding, remains a question for future research, with

the parietal cortex being an obvious candidate (see Text S1).

However, we need to consider what it means to find a classification

accuracy of 57% correct with p,0.005 (threshold of 0.05, Bonferroni-

corrected for ten ROIs). Humans can discriminate hand and mouth

actions much more accurately than this, typically .90% correct [15].

Does that mean that the premotor cortex cannot be the neural basis

for such discrimination? In mass-univariate fMRI analysis the

absolute difference between two conditions is always minimal

(typically less than 1% of the BOLD signal), but if the difference is

unlikely to have occurred by chance (p,0.05 corrected for multiple

comparison) a brain region is considered to be involved in the task.

The fact that the difference is small in absolute terms is unsurprising

because fMRI is only a very indirect and noisy measure of neural

activity. Translated to multivariate analysis, significant above-chance

classification, independently of its absolute value, should therefore be

considered to provide similarly meaningful evidence that the region

has task-relevant information–but at the level of patterns of activity.

This is why recent reports [e.g. 20,46] consider the significance of

classification accuracies more important than their absolute values:

because BOLD is such an indirect measure of neural activity. The

fact that the absolute value of classification accuracy is lower than that

of humans simply reflects the degradation of the neural signal along

the causal chain of fMRI measurements. In this specific case, the

degradation is especially severe because cross-modal action classifi-

cation suffers from two additional problems. First, mirror neurons

preferring hand actions are sometimes recorded so closely to those

preferring mouth actions that their activity could cancel each other

out within the volume of our fMRI voxels [16]. Second, only about

10% of motor neurons are mirror [14,16] and classifiers, unlike the

brain, which may somehow focus on the activity in these mirror

neurons, therefore have to pick the 10% mirror ‘signal’ out of the

90% non-mirror ‘noise’. In light of these considerations, above-

chance classification across modality based on fMRI signals should be

seen as an experimental proxy to examine whether there is evidence

for patterns of activity at the neural level that would support even

more reliable classification. It is hoped that even greater significance,

and perhaps higher classification accuracy levels, may be possible

when analyzing data from experiments specifically designed to test

cross-modal classification. We are currently beginning such an

experiment.

This report describes an analysis technique which we believe can

provide the most direct support for simulation [4–8] and common

coding [9,10] theories possible with fMRI. Classical univariate

analysis using the same data [15] could only show that certain voxels

‘preferred’ the same type of actions (hand or mouth) both during

listening and execution. This finding leaves unanswered the

essential question of whether the brain could use this information

to perceive which action another individual is performing at a

particular point in time in terms of the listener’s own actions. One

reason is that, while differences are present at the group level,

activity in other voxels could obscure the information at the

individual level, for instance by responding more to hand actions

during listening and more to mouth actions during execution. An

additional limitation for interpretation is that for an individual to

perceive actions accurately requires that the activity pattern induced

by action perception is reliable from trial to trial, whereas traditional

group analyses focus on determining whether activity is similar from

person to person (averaging across trials at the first level of analysis).

Here, separate multivariate classifiers were trained for each

individual, thus identifying patterns which were similar across trials

for that individual. Cross-modal classification directly indicates that

the pattern of activity in the premotor cortices, with all its individual

peculiarities, is similar enough during the execution and perception

of actions–at least in voxels with sensory properties since the

classifiers were trained on the auditory data–to provide the listener

with a way to perceive the actions of others through his/her own

actions. The multivariate approach thus provides a fundamental

advantage over mass-univariate approaches for this purpose, and

we hope that the present paper, using pattern classification to

investigate simulation theories, will prove to be a powerful new tool

to investigate the idea of common coding at the level of neural

populations as measured using fMRI.

Supporting Information

Text S1 Cross-Modal Classification of a Parietal Region.

Found at: doi:10.1371/journal.pone.0003690.s001 (0.12 MB

DOC)

Figure S1 The ROIs in a glass brain representation, rendered

on the mean anatomy of the 16 subjects with maximum

transparency depth. The ROIs on each side are shown with the

same color for clarity, although always analyzed separately on the

left and right sides. See Table 1 for the derivation and size of each

ROI.

Found at: doi:10.1371/journal.pone.0003690.s002 (1.02 MB TIF)

Figure S2 Slices showing the voxels omitted from the premotor

cortex, superimposed on the mean anatomy; see the Results for a

description of the procedure. The slice numbers are given first as

analyzed (4 mm64 mm64 mm voxels), followed by the Talairach

coordinate slice numbers in parentheses. Starting at the upper left

and moving left to right, these are slices z = 14 (54 to 58), z = 17

(67 to 69), z = 24 (94 to 98), z = 25 (99 to 101), z = 29 (115 to 117),

and z = 30 (118 to 122).

Found at: doi:10.1371/journal.pone.0003690.s003 (2.03 MB TIF)
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