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Abstract

A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called
bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and
formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks.
Our two previous studies [26,27] have shown that random recurrent network activity models generate intra- and inter-
bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal
elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included).
However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the
development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the
random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first
time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in
more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting
patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages
of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size,
wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of
elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and
growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.
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Introduction

Studies on developmental changes in biological neuronal

networks may advance our understanding of brain development,

activity patterns associated to different stages, or the relationship

between connectivity and activity. Long-term cultured networks of

dissociated rat cortical neurons provide a useful experimental

platform for this study [1,2,3,4,5,6,7]. On a relatively long time

scale, from several weeks to months in vitro, neuronal cultures

undergo major morphological changes in neurite outgrowth and

connectivity/topology, with a corresponding impact on activity.

Particularly in the first 3 weeks growth is probably a major factor

to determine connectivity, whereas at later stages long term

plasticity mechanisms may become dominant. A profound feature

of activity in cultured cortical networks is bursting; i.e. synchro-

nized firing at an elevated frequency in a large part of the network.

This paper is the third in a series of three on simulation models

of cultured networks. Our two previous studies [26,27] have

shown that random recurrent network activity models generate

intra- and inter- bursting patterns similar to experimental data.

The networks were noise or pacemaker-driven and had Izikevitch-

neuronal elements with only short-term plastic (STP) synapses (so,

no long-term plasticity, LTP or LTD, included). However,

elevated pre-phases (burst leaders) and after-phases of burst main

shapes were not yet explained in sufficient detail. This lack of

detail may be due to the fact that the random models completely

missed network topology and also lacked a growth model, which is

essential to study how activity develops with time. The present

study adds topology and growth and thereby combines neurite

growth models and electrical activity models to predict synchro-

nous bursting behavior, their spatial spread (burst waves) as well as

their longitudinal development.

Of course, LTP and LTD mechanisms are widely accepted as

essential mechanisms in developing and learning neuronal systems

and have been studied experimentally also in cultured networks, as

pioneered by Jimbo and co-workers (see [7] for an review],

although with limited success. Long term plasticity mechanisms

may also largely determine the development of activity patterns, in

particular at later developmental stages. However, it remains

unclear to what extend the factor growth contributes to the

development of network connectivity, in young cultures.

Experimental studies give us a variety of observations ranging

from the basic morphological structures of typical cortical neurons

like interneurons and pyramidal cells [6,8,9] to more specific

structures like those of large GABA-ergic interneurons [10].
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Analysis of basic cell structures and their growth led to the design

of models of neuronal morphogenesis [11,12] which can be used to

build a simulation framework for generating realistic wiring

topologies [13,14]; cell numbers are usually rather limited (for

example, N = 62 in [15]). Meanwhile, investigation of more

specific neurons underlined their key role in network electrophys-

iological activity. For example, Voigt et al. [10] showed that large

GABA-ergic cells with characteristic extensive neurite arborization

and high synaptic density around their somas can drive

synchronous oscillatory activity in immature cultured networks

(it is to be noted that young GABA-ergic cells start their life as

excitatory cells). On the other hand, network topology directly

influences network firing. For example, Kitano et al. [16] showed

that a network’s small-world topology can generate clustered

spiking (bursting), where random networks cannot, when using the

same electrophysiological parameters. These results suggest that

realistic topologies should be implemented into simulations of

spiking activity.

A variety of models exist to generate neurite structures (for

review see [17]). The focus can be on neurite guidance [18,19] or

on structure formation of the neuritic trees [11,12]. So far, these

aspects have not yet been combined. For example, the generic

model of chemotactic based network self-wiring in [19] did not

include neurite branching, whereas the model of dendritic

outgrowth by Van Pelt and Uylings [12] did not take into account

neurite bundling and neurite steering by guidance cues. All these

features are critical for the proper formation of synaptic

connections in the network, thereby affecting network electrical

activity.

In this report we will build a wiring topology for networks of up

to 50,000 neurons, using the model of neuronal morphogenesis by

Van Pelt and Uylings [12]. Subsequently, this wiring layout is used

as the connectivity matrix in a network model to generate spiking

activity. As an extension, we will add the neurite guidance model

by Segev and Ben-Jacob [19] to mimic axono-somatic targeting.

Finally, to both models we will add a set of fast growing

interneurons to mimic large GABA-ergic neurons. Together, this

leads to four model variants. Simulation results will be character-

ized as much as possible by the same intra- & inter- burst

parameters as used before in our experimental studies, for

comparison and evaluation of models with experimental data.

Networks will be followed until 22 days in vitro (DIV). The

automatic adjustment of various mutually interdependent network

parameters is one of the major advantages of our current

approach.

The purpose of the model is to show how axono-somatic

targeted-growth networks develop into consistently repetitive burst

producing systems, as observed in experiment. With burst

characterization both in time (burst shapes; burst rhythms) and

in space (burst propagation, burst ‘‘waves’’), with variable network

size. The model also will enable to investigate propagation of

bursts along the network boundaries (reverberation effects), in the

spatial domain as well in its temporal utterance in the pre- and

after-phases of burst shapes. As such, it will also contribute to

answer the important general question to what extend growth may

explain recorded activity patterns during the first 3 weeks in

sufficient detail.

Methods

Simulation of network morphology
In the present study we proceeded on the research by Van Pelt

and Uylings [12] who developed a stochastic approach for neurite

outgrowth models. In further research Koene et al. [13] used their

ideas to simulate network topologies and observe network

development. Their modeled structures for cell types containing

both cortical pyramidal neurons and interneurons as well as their

development in time, were successfully compared with experi-

mental data, e.g. [12,20]. We used their validated functions of

neurite elongation and branching rates as well as their model

parameter values, so that all simulated neurites grew at the same

rates as in cultured cortical neurons. For the time development of

the network topology we used a time step of 1 day, as from

experiment it is known that neurites do branch not more than

once a day [12].

We designed circular networks, incorporating 10,000–50,000

neurons with homogeneous (uniform) density of about 2500

neurons per mm2. The average radius of these virtual cultures

varied from about 1.1 to 2.5 mm. We assumed that somas adhere

firmly to the substrate. The neurites grew planarly and were

allowed to cross each other. We used a triangular lattice (of 85,000

to 433,000 lattice cells) in a circular area to randomly arrange

neurons. Every soma was represented by a stationary (not moving)

unit occupying one of the lattice cells. Circular shaped somas, with

radius 6.25 mm, were placed in the center of a lattice cells with

random shifts of 65 mm. We took m = 20 mm for the edge length

of the lattice, yielding only small overlap for excentrically placed

cells with a neighbor (if present, see inset of figure 1). Neurite

outgrowth always remained within the predefined circular space

(unless mentioned otherwise).

We employed two models of growth, random and chemotaxis-

guided. The random modele (Koene et al. [13]) identified the

direction vector of the neurite outgrowth as the sum of vectors

preceding it plus a random perturbation (ra) which was drawn from

a uniform distribution over the interval [amin, amax]. The guided

one applied a chemotactic neurite navigation approach presented

by Segev and Ben-Jacob [19] to calculate the final direction of

axonal outgrowth. From the first day in vitro (DIV) plated neurons

(somas) release chemo-attractive cues guiding axonal outgrowth.

Growth cones sense a gradient of guidance cues and alter their

direction in the next simulation step. Instead of random

perturbation (ra) we calculated the directional derivative +g(yr)j j
of the soma concentration over all the local neurons yr within a

circular searching area with radius dx,y, set equal to the axonal

elongation Dl. Here g satisfied the following diffusion equa-

tion:
Lg

Lt
~+2g{g. Taking into account the cytoskeleton rigidity

and membrane tension structure in a consolidated axon we also

defined the same bounds [amin, amax] for +g(yr)j j. If there were no

neurons within the local searching area (g(yr) = 0), axons did not

change direction but continued growing in the same direction.

The two approaches described above will be referred to as

randomly growing and field -guided networks, respectively. On the first

virtual day in vitro (vDIV) axons elongated with random

perturbations in both approaches. Starting from the second vDIV,

axons extended towards higher spatial somatic concentrations in

field-guided networks Then from the 3rd vDIV, growing axons

coming across dendrites defined the set of ‘candidate synaptic

connections’. The successful synapses were randomly chosen from

all the temporal candidates at every subsequent vDIV with a

probability of 0.05. This probability was chosen to adjust the

number of generated synapses per neuron to the experimental

range [21].

For transmission delays we adopted the results from a modeling

study by Manor et al. [22]. They considered simple cases where

the geometrical ratio of neurites (i.e. axons) was always equal (set

to 1), meaning that the sum of the diameters of the daughter

branches was the same as the diameter of the parent branch.

Self-Wiring Network Model of Cortical Cultures
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Action potentials traveled with a constant velocity of 540 mm/ms

in the root branch. With this propagation speed, the axonal delay

for an axonal length of about 3.5 mm on vDIV 21 corresponded

to an average propagation delay of 6.5 ms. According to [22],

these axonal delays make up about 72% of the total delay. The

remaining 28% was added to account for the synaptic and

dendritic delays (fixed at 2.5 ms). These values were confirmed in

two other experimental studies using cultured cortical networks

[23,24].

To obtain initial values for absolute synaptic weights we

followed a study by Williams and Stuart [25] who investigated

how post-synaptic potentials depended on the distance from the

soma to the location of the synapse on the dendrites. They found

that the amplitude of somatic post-synaptic potentials decreased

with the distance to the soma. We implemented their finding by

defining synaptic strengths with an initial PSP height of 1 mV, that

linearly decreased with the distance to the soma by a factor

0.0025/mm. As most network parameters now directly depended

on the topology structure, we did not have to set them manually,

like we did in previous models [26,27]. Thus, axons contributed to

transmission delays only, whereas dendrites also contributed to

somatic post-synaptic potential attenuation.

Characterization of the network topology
To analyze structural properties of the simulated network

topology we calculated the characteristic path length (L) and the

clustering coefficient (C) introduced by Watts and Strogatz [28]. lij
between two neurons is defined as a minimum number of synapses

through which the action potential has to travel to get from one

neuron to another. ci indicates the number of connections between

all neurons connected to chosen neuron i as a fraction of the

maximum possible number of such connections. It is defined as:

ci~
2Ei

ki(ki{1)
, ð1Þ

where ki is the degree of neuron i (i.e. number of synaptic

connections with different neurons) and Ei is the number of

connections of neuron i. L and C are calculated as the averages of

lij and ci, respectively. (This was possible only for networks of

10,000 neurons because of computational limitations.). To acquire

statistical description of the generated topological structures we

employed a quantitative measure of ‘small-world-ness’ (S) intro-

duced by Humphries and Gurney [29]: First, using the analytical

approximation by Newman et al. [30] we estimated the average

Lrand and Crand for (Poisson) random graphs with the same number

of neurons (nodes, n) and average number of connections per

neuron (average degree, ,k.) as in simulated networks.

Crand~vkw=(n{1), ð2Þ

Lrand!ln(n)=ln(vkw) ð3Þ

Then S was calculated as following:

S~
C=Crand

L=Lrand

ð4Þ

At the end of each vDIV (corresponding to realistic neurite

outgrowth observed on one day in neuronal culture [12,20]) the

connectivity matrix was built out of all successful synapses. This

matrix entered the spiking model which then simulated 1 hour of

spiking activity.

Simulation of spiking activity
To simulate the firing activity we employed the (pulse-coupled)

spiking neural network model as described in [26,27]. The system

of equations that networks generate can be presented in the

following way:

xi(tzdt)~
1, if fi(vi,wij ,xj)§30 mV, otherwise

0

�
, ð5Þ

where

fi(vi,wij ,xj)~vi(t)zJiz
Xn

j~1

wij
:eij
:xj(t{dij) ð6Þ

Here, xi is the firing pattern of a receiving neuron i, dt is the

simulation step and xj(t -dij) represents the state of a transmitting

neuron j (i,j = 1, 2,… n, where n is the total number of neurons).

Synaptic noise, independent for different i’s is presented by Ji. In

our simulations each neuron received a Poissonian spike train (J)

of rectangular 1 ms pulses, with a mean rate of 80 Hz and with an

amplitude normally distributed between 0 and 8 mV, as described

in [26,27]. The variable vi(t) characterizes the dynamics of the

neuronal membrane potential, as described by Izhikevich [31];

eij = 21 for inhibitory neurons and +1 for excitatory neurons. dij is

the total transmission delay that incorporates axonal synaptic and

dendritic propagation latencies as described before. wij is the

momentary synaptic weight obtained from the phenomenological

model for short-term plasticity [32]. Parameter values for the

Izhikevich neuronal models were set randomly (using a normal

distribution, see [26]) in ranges taken from [31], such that our

networks contained 3 types of excitatory neurons (80% of total,

including regular spiking, intrinsically bursting and chattering

neurons) and two inhibitory types (including fast spiking and low-

threshold spiking interneurons). We applied parameter values

obtained by Gupta, Markram et al [32,33] to describe the

Figure 1. Simulation of neurite morphology in the field-guided network of 10,000 neurons. A: The neuronal somas are indicated in
green. For 0.5% of these neurons, marked with a large black dot, the neurite structures are shown: axons (black) and dendrites (red). B: Close-up of A,
showing bundles of axons that occur in field-guided growth models. C: Axon (black line) and dendritic tree (red lines) of a pyramidal neuron (large
black dot). Neurons that receive input from this pyramidal neuron are indicated by blue dots. D: Illustration of parallelism of neurites, observed in
G.Gross’lab. A neuronal culture _right_ over a microelectrode array. The uniform grid of points shows electrodes where neuronal activity is measured.
Left panels show individual neurons. White bars are 50 _mm _center-to-center distances between electrodes is 40 _mm_. Taken from [46]. E: Some
parallel tracks (e.g. the red fibers running under 45 degrees at the right half of the photo) can be observed in this graph. Immunostaining micrograph
of neuronal network cultured at 12 DIV on MEAs. Neurons were stained with antibodies to MAP2 (green) and Neurofilament 200 (NFH,red),
respectively. Cell nuclei were stained with Hoechst 33342 (blue). Bar = 40 um. Courtesy T. Ugniwenko, University of Kaiserslautern. F: Massive
parallelism in a culture at 14 DIV, University of Twente, prepared as described in methods.
doi:10.1371/journal.pone.0043352.g001
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phenomenological synaptic model of short-term plasticity. These

were the same as used before (for a summary see Appendix S1).

In this study, we focused on the effect of network topology and

its development on the resulting activity patterns. We used a set of

neuronal parameters that adequately reproduced the dynamics of

cortical neurons [31]. This set contained a mixture of all neuronal

cell types that exist in the cortex, which gave our simulations a

certain degree of robustness against variations of cell properties.

However, it should be noted that our results might be affected by

changes in cell properties. Simulations of network spiking activity

were implemented in C, using Euler’s forward method for

numerical integration of differential equations with a simulation

time step of 1 ms.

Characterization of bursting activity
To validate the simulated data against experiment, the layout of

60 micro-electrode arrays (MEAs, see under Cultured networks) was

mapped onto the network topological space to pick up spiking

activity around their virtual electrodes. To obtain a robust set of

data, we used 100 of such mappings for each simulation. Network

bursts were calculated as the total firing rate (firings at all virtual

electrodes summed) from the mapped array as is also done for

experimental recordings [2]. We also used their burst definition i.e.

a burst was detected when two or more spikes were detected for

each active virtual electrode (with spike rate .0.1 Hz) within

10 ms bins. Burst profiles were smoothed using a Gaussian filter

with 5 ms. Maximal Firing Rate (mFr) is the firing rate at the peak

of the burst profile. Inter-burst intervals (IBIs) were calculated as

the time intervals between peaks of neighboring bursts. A

superburst was defined as a series of bursts with IBIs #1 s.

In addition, we will present spike raster plots showing all

simulated neurons. We applied a (counter-clockwise) spiral order

for neuronal indexing, such that low index neurons were at the

center of the network.

Cultured networks
Experimental techniques such as culturing and recording are

explained in detail in [2]. In short, MEAs had 60 Titanium-Nitride

electrodes (with 30 mm diameter) in an 8 by 8 square grid with

200 mm electrode spacing. MEAs were coated with poly-ethylene-

imine to increase adhesion. Cortical cells (taken from the entire

cortex) were obtained from newborn Wistar rats. The dissociated

cells were plated at a concentration of 106 cells/ml, and allowed to

adhere for 2 hours. Then the non-adhering cells were removed by

refreshing the medium which was changed twice a week. The

resulting monolayer had an initial density of about 5000 cells/

mm2, gradually decreasing to ,2500 cells/mm2 after 2 weeks The

total plated area is about 100 mm2, so with 250000 cells, at last.

The MEA’s electrode area of approximately 2.5 mm2 comprises

about 12500 to 6250 cells. The cultures were stored in an

incubator at 37uC, 5% CO2 and near 100% humidity. Custom

made LabView (National Instruments, Austin, Tx) programs were

used to control data acquisition.

Results

Neuronal morphology and network topology
Both field-guided growing networks (Figure 1 A, B, C) and randomly

growing networks (Figure S1) generated quite complex neurite

topologies for our large scale networks of 10,000–50,000 neurons.

In the guided models, axons grow towards locations with relatively

high somatic density. We observed that axons tended to grow ‘‘in

parallel’’, which became more recognizable in longer simulations.

Figure 1A shows the neurite structures of 0.5% (randomly chosen)

of the neurons (note some bundles of axonal trunks in close up,

fig. 1B). While neurite trees grew with the course of time, axons

encountered dendrites of other neurons and generated local

connections. Figure 1C shows the neurite structure of a typical

pyramidal neuron (black), its axon (black) and dendrites (red) and

the somas of its postsynaptic neurons (red) after 21 vDIV.

Figures 1D, E, F show parallel growth features in experimental

cultures from three different labs, older than the1st week in vitro.

While the number of synapses per neuron, referred to as

connectivity, increased (Fig. 2A, blue dashed line), the neurons

connected to more neurons, at longer metric distances. This

resulted in shortening of the characteristic path length (L) (Fig. 2A,

red and green curves, each averaged over 5 network realizations),

and less unreachable neurons.

Voigt et al. [10] showed that cultured cortical networks may

contain about 5% fast-growing neurons (large GABA-ergic

neurons) which play an excitatory role in early developmental

stages. To mimic those neurons, we doubled the neurite elongation

rate in 5% of the randomly chosen neurons and inverted the

negative weights of their synapses. Their longer neurites created

connection shortcuts between neurons at relatively large metric

distance, which further increased the percentage of reachable

neurons and decreased the characteristic path length L (see eq. 3;

Fig. 2A, green curve), compared to networks without such neurons

at corresponding age (Fig. 2A, red curve). Larger networks had

higher values of L, as shown in the inset of Figure 2 A

Figure 2B shows developmental curves (each averaged over 5

network realizations) of the clustering coefficient (C) and ‘‘small-

world-ness’’ (S), see equations (2) and (4). In all models C slowly

increased with time. Figure 2B shows 2 typical examples of the

development of C (dashed lines) and S (solid lines) in field-guided

networks with (red) and without large GABA-ergic neurons

(green). Randomly growing networks showed very similar values

of L, C and S (not shown here). Compared with other neurons,

large GABA-ergic neurons had more extensive neurite arboriza-

tions, so they were superior in interconnecting nearby neurons. A

relatively higher C as the result of more interconnected neighbor-

hoods also suggests that large GABA-ergic neurons may facilitate

effective generation of a small-world topology.

When ,k. ,1, the estimated average path length Lrand

converges to ‘. Therefore, S shows relatively high values shortly

after the onset of network formation. When first connections were

formed, S had high values (peak around 170 at vDIV 4). At this

early stage of topology development networks usually had small

sets of chain-linked neurons with L = 10 (without large GABA-

ergic neurons) or L = 30 (with large GABA-ergic neurons). After its

peak, S decreased exponentially with time as shown in Figure 2 B.

As S was always higher than 1, all generated topologies were

classified as small-world according to definition in [29]. As

expected, S was always higher in networks with large GABA-ergic

neurons than without. Larger networks had higher values of C and

S as shown in inset of Figure 2B.

Development of bursting activity
We examined four different models: randomly growing and field-

guided network models, both with and without large GABA-ergic

neurons. For each type we generated up to 3 different realizations

of growing networks. In this paragraph we show results from one

of the network realizations for each model type. Other realizations

showed similar development of intra- and inter- burst parameters.

Different realizations of the networks had slightly different

numbers of the various neuronal types, but that did not influence

the final outcome. Spiking activity was simulated for 1 hour per

virtual day for 3 virtual weeks. At every vDIV we applied a burst

Self-Wiring Network Model of Cortical Cultures
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detection algorithm on spike sequences, acquired at 100 differently

mapped virtual micro-electrode array (MEA) layouts (each with 60

electrodes, see methods). The starting point of bursting activity was

identified whenever the algorithm detected the first burst. As soon

as bursting started, of the maximum firing rate mFr could be

calculated. In field-guided networks, the presence of large GABA-

ergic neurons resulted in a 3 vDIVs earlier onset of bursting

(green: vDIV 10 vs. blue: vDIV 13), whereas it did not affect the

Figure 2. Evaluation of the network topology development during the first 3 virtual weeks. A: The dashed line depicts how the number
of synapses per neuron (i.e. the connectivity) increased during aging (mean 6SD; right axis) The number of synapses did not depend on the network
size. Solid lines show how the characteristic path length (L) (left axis) decreased during aging in field-guided networks with large GABA-ergic neurons
(green e) and networks without such neurons (red #). The inset shows L versus time for field-guided networks with sizes n = 10,000 (green e, as
shown in the main panel); 30,000 (cyan %) and 50,000 (magenta D) neurons. Error bars represent the standard deviation of 5 network realizations. B:
Development of the clustering coefficient (C: dashed lines; right axis) and ‘‘Small-world-ness’’ (S: solid lines; left axis) in field-guided networks with
(green e) and without (red #) large GABA-ergic neurons. The inset shows C and S for field-guided networks with n = 10,000 (green e); 30,000 (cyan
%) and 50,000 (magenta D) neurons. S is a relative measure of the topological similarity between given and random (Poisson-distributed) network
graphs. Random network graphs have S,1, whereas higher S values indicate small-world networks. Both network types gradually developed from
small-world to almost random. At early stages of development large GABA-ergic neurons had more influence on ‘‘small-world-ness’’ than at later
stages where both network types approached the graph structures of random networks.
doi:10.1371/journal.pone.0043352.g002
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first day of bursting in randomly growing networks (magenta and

red: vDIV 12). Figure 3 shows the average development of mFr

during bursts in the 4 model types (dashed lines), as well as an

experimentally determined average (solid line) of 5 cortical

networks presented in [18]. Figure 3 shows a common trend in

experimental data of increasing mFr during the 2nd and at the

beginning of the 3rd week and decreasing or stabilizing mFr

thereafter. A similar trend was only observed in networks with

large GABA-ergic neurons (green and magenta).

At later stages of development (2nd half of 3rd virtual week) in

the models with large GABA-ergic neurons, bursting activity was

dominated by superbursts giving the network relatively shorter

time (less than 100 ms) to recover (i.e. elevation of the neuronal

membrane potential from reset to resting membrane potential).

Therefore during superbursts networks could recruit fewer

neurons which resulted in stabilizing mFr during the subsequent

bursts.

For every vDIV we calculated inter burst intervals (IBIs). Both

in experimental and simulated data IBIs had characteristic skewed

distributions. Figures 4A and B show typical examples based on

1 h samples at 18 DIV from recorded data (4A) and simulated

data with a field-guided network with large GABA-ergic neurons

(4B). Figure 4C shows IBI median curves acquired from 5 cultures

(solid lines) and 4 simulations of different network types (dashed

lines). The majority of experiments and simulations share a

common tendency of shortening IBIs over time.

Spatial activity propagation (burst waves) and boundary
reverberation

In this section we describe the spatiotemporal spiking patterns

generated by the network models. In all simulations we observed a

wave-like propagation with ‘‘reverberating’’ activity (along the

circular network borders) as shown in Figure 5.

We noticed that bursts started spontaneously at random places

or local areas and then slowly recruited neighboring regions. This

relatively slow recruitment appeared as pre-burst phases in

network burst shapes (spike rate versus time). Upon sufficient

recruitment the bursts quickly propagated as waves through the

whole network leaving behind a pool of ‘‘depressed neurons’’

which were characterized by a membrane potential value below

the resting potential. During bursts, spiking activity was usually

higher at the network borders, creating a notable reverberating

wave along the network boundary. With given speed of the

propagating wave and neuronal recovery, in larger networks,

where the traveling wave has to cross a longer distance, the pool of

depressed neurons should have more time to recover before the

wave fades out. We tested this assumption in one realization of a

network model with 50,000 neurons. Simulations of larger

networks indeed showed numerous local after-waves raising and

fading for brief periods (of 10 ms). The pool of recovered neurons

in larger networks frequently showed activity after the main wave.

Local after-waves left a print on burst profiles as low-firing post-

burst phases. Pre- and post-burst phases were highly variable, as

Figure 3. Development of the maximal firing rate (mFr) during bursts. mFr’s (means 6 SD) are displayed for the 4 model types (dashed
lines), and for experimental data, averaged over 5 cortical cultures (black solid line). Randomly growing networks with (magenta #) and without
large GABA-ergic neurons (red e), as well as field-guided networks with (green %) and without large GABA-ergic neurons (blue N) are presented. In
the presence of large GABA-ergic neurons field-guided networks started bursting 3 vDIVs earlier. For clarity, mean values and error bars representing
standard deviations at a certain day were slightly shifted to avoid overlap. Typical examples of simulated and experimental burst profiles are shown in
Figure 6.
doi:10.1371/journal.pone.0043352.g003
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also observed in experimental data [16]. In contrast, smaller

networks (of 10,000 neurons) very rarely generated post-burst

phases, or highly variable pre-burst phases. Only 2 out of 6 smaller

networks showed post-burst phases at the end of the 3rd virtual

week (around 19 vDIV) whereas larger networks showed similar

results 7 vDIVs earlier. Figure 6 shows typical examples of burst

profiles from network models with 10,000 neurons at 12 and 19

vDIVs (A and B respectively), and 50,000 neurons at 12 vDIV (C),

as well as an example of experimental bursts at 19 DIV (D) taken

from a previous study [16].

We also found that networks with large GABA-ergic neurons

could produce series of bursts with IBIs shorter than 1 s, referred

to as superbursts. These networks showed firing between the bursts

in chain-like series of events, providing more time (and additional

synaptic input) for neuronal recovery. When feedbacks along the

network border were activated, these networks produced the next

burst shortly after the previous one (1 sec or less). Figure 7 shows a

raster plot of a super burst generated by a field-guided network of

50,000 cells with large GABA-ergic neurons. To verify that

feedback along the border around the network facilitates super-

bursts, we ran several simulations without an outgrowth restricting

circular border, i.e. nothing confined neurite outgrowth beyond

the network area. Such networks did not generate IBIs #1 s, while

the intra- and inter- burst parameters were similar to those in

networks with border restricted outgrowth as described above.

However, the shortest IBIs were about 2 sec.

Discussion

We employed large scale networks of 10,000–50,000 neurons to

analyze bursting activity generated by two sequentially combined

models. In the first model growing neurons formed a self-wired

topology which yielded network parameters that were entered into

the second model to generate spiking activity. This approach can

be used for studying network behavior at different levels ranging

from spiking activity patterns of individual neurons or local circuits

to more global assemblies showing synchronous bursting. In the

present study we focused on network bursting as perceived

experimentally by mapping the 60-electrodes MEA layout onto

the network space. To our knowledge, such a combination of

models has never been reported before. In a recent study by

Tetzlaff et al. neuronal avalanche development was simulated with

Figure 4. Comparison of inter-burst intervals in simulations and experiments. Typical examples of experimental (A) and simulated (B) IBI
histograms constructed from 1 h samples with 355 and 373 bursts respectively, both acquired at 18 DIV. The simulated IBI histogram was generated
with a field-guided network of 10,000 neurons with large GABA-ergic neurons. The three other model types had very similar IBI distributions. Bin size
was calculated according to [43]. (C): Development of IBI median for experiments, acquired from 5 cortical cultures (thin solid lines) and simulated
data (thick dashed lines). Randomly growing networks with (magenta #) and without large GABA-ergic neurons (red e) as well as field-guided
networks with (green %) and without large GABA-ergic neurons (blue N) are shown.
doi:10.1371/journal.pone.0043352.g004
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an alternative network model where neurites are represented as

probability zones and connectivity is derived from the overlap of

these zones [34]. Their model demonstrates the interplay between

activity and connectivity which our model is not capable of.

However, the topology of the network is not produced by

Tetzlaff’s model; for that, a more detailed description of the

neurite outgrowth would be necessary.

The automatic adjustment of various mutually interdependent

network parameters is one of the major advantages of our current

approach. In fact, connectivity, axonal delays and synaptic

strengths are linked together by the neurite maps of individual

neurons. The connectivity parameter (number of synapses per

neuron) depends on the spatial distance between axons and

dendrites of pre- and post-synaptic neurons, respectively. Delays

and synaptic strengths depend on axonal length and the distance

from the synapse to the soma, respectively. These relationships

exist only in networks where connectivity is an emergent property

of neuronal morphology. Therefore, given realistic parameters for

generating neurite maps, a network presumably acquires a more

realistic connective topology. This differs completely from

commonly employed methods such as random wiring of synaptic

connections [16,26,27]. Moreover, the growth model introduces

the ‘‘dynamic’’ developmental time dimension into network

modeling, allowing also comparison to development of activity

during long-term culturing. As stated above (see Methods,

development of network morphology) we used a 1–day time step

in the growth development. As an extra check, this 1-day step was

compared against smaller steps of 6 and 12 hours; these steps gave

the same results as the 1-day step.

Morphology and activity development
During axonal outgrowth neurons connected to an exponen-

tially increasing number of other neurons. This led to an increased

connection probability between two random neurons, and resulted

on average in a lower number of intermediate neurons between

two not directly connected neurons, thus decreasing the average

Figure 5. Spatio-temporal propagation of a network burst. Example of a propagating burst in a field-guided model with large GABA-ergic
neurons, presented as a snapshot sequence. The time difference between two consecutive snapshots is 3 ms. Each snapshot shows the spatial
locations that produced at least one action potential in the last 3 ms (yellow dots). Particularly ‘‘reverberating’’ activity against the network borders
was observed in the time window from 63 to 102 ms. N = 10,000 neurons.
doi:10.1371/journal.pone.0043352.g005
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graph distance. Furthermore, at each subsequent vDIV network

graphs acquired more interconnected neighborhoods as indicated

by an increased C. All created topological structures were

characterized as small-world graphs, and S showed values

comparable to other network examples (e.g. in neural network of

C.elegans S = 4.51) [29]. The small-world-ness (S) scales up with

increasing network size as indicated by Humphries and Gurney

[29] and confirmed by our simulations (Fig. 2B inset). Following

the definition of Humphries and Gurney, the topology of networks

with connectivity equivalent to mature cultures (3 weeks and older)

is close to random as S approaches 1. In the first virtual week,

groups of nearby neurons formed local circuits of around 10 to 30

neurons. By the middle of the second week these growing circuits

started to connect, allowing the whole network to synchronize.

Analysis of (synchronized) network activity was performed using

intra- and inter-burst parameters. On average, network bursts

grew in size (mFr) and burst rates increased, thus reducing IBIs.

Wagenaar et al. [5] showed similar trends in the majority of

cultured networks. In their experiments the median of array-wide

spike rate and bursting index increased during the first 3 weeks of

culture development. In all models network synchronization mFr

tended to rise at later stages (10–13th vDIV) than in cultured

networks (usually 7–10th DIV), e.g. [5,35,36]. However, Wagenaar

et al. showed that smaller cultures usually develop bursting activity

at later stages than larger cultures [17]. In this work we did not

attempt to analyze spiking activity between the bursts as it largely

varies at different levels (e.g. from neuron to neuron, culture to

culture) and would require much more experiments.

By increasing the elongation rate in a subset of neurons, thereby

generating extensive neuritic structures like in large GABA-ergic

cells, young networks also gained shorter graph distances. With

such a set of fast growing neurons, network models produced a

lower path length L and a higher clustering coefficient C, resulting

in a more effective small-world structure (higher S). Effectively,

these neurons acted as small hubs as supported by the results of a

recent experimental study by Bonifazi et al. [37]. These reduced

distances promoted the development of bursts only in field-guided

networks. This effect may be explained in the following way. At

Figure 6. Typical network burst profiles. Networks consisted of 10,000 (A and B) or 50,000 neurons (C) and were wired using the field-guided
approach with large GABA-ergic neurons. D: example of experimental bursts taken from previous study (culture # 4) [14].Bursts were detected in the
recorded or simulated activity acquired from the networks of the same (virtual) age (12th vDIV for A and C, and 19th (v)DIV for B and D), and aligned
by their peaks.
doi:10.1371/journal.pone.0043352.g006

Self-Wiring Network Model of Cortical Cultures

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e43352



early developmental stages of simulated networks, neurons have

relatively small and sparse neurite arborizations. This reduces the

probability of any growing axon to encounter other neurons unless

axons are guided in their direction. Therefore, in randomly

growing models, the presence of large GABA-ergic neurons has

little effect on network connectivity and, thus, bursting started

around the same virtual day as in models without large GABA-

ergic structures. However, in field-guided models the axons of

large GABA-ergic neurons did facilitate connection of local

circuits, promoting earlier network burst development. A calcium

imaging study by Voigt et al. [10] showed that chemically

manipulated cultured networks without large GABA-ergic neurons

usually did not develop synchronous activity, which supports the

hypothesis that the GABA system promotes the early development

of synchronized firing in cultured networks. It is generally assumed

that GABA-ergic neurons maintain their excitatory function only

during the first two weeks, and then develop into inhibitory

neurons. This change of role was not incorporated in our models

(large GABA-ergic neurons kept their positive synaptic weights

during 3 virtual weeks), which might lead to discrepancies between

simulated and experimental data. However, other in vitro studies

suggested that the GABA-ergic system may also have an excitatory

role even in mature neural networks and may regulate neurite

outgrowth (e.g. for review see [,9,38,39]). This implies that

differences in the development of firing patterns might also be

caused by GABA-mediated outgrowth [10]. However, our models

did not cover the mechanisms behind neurite outgrowth in

chemically manipulated cultured networks. Rather, we used fixed

parameters found in studies on normally developing cortical cells

[12] and assigned positive weights to their synapses as suggested by

Robertson and Menne [38]. Our results showed that even without

GABA-mediated outgrowth, large GABA-ergic neurons have a

significant effect on the development of firing patterns in field-

guided networks. Compared to the other models these networks

generated several properties closely resembling experimental data,

i.e. earlier start of bursting, moderate increase of mFr and similar

development of IBIs.

The essential role of GABA-ergic neurons in synchronization of

neuronal activity in cortical cultures was described by Voigt et al.

(2001). Our simulation results support their findings and shed light

on the excitatory role of large GABA-ergic neurons in the

developmental process of cultured cortical networks. Maybe this is

as well applicable to in vivo networks. In particular, our results

suggest that large GABA-ergic neurons may play a crucial role in

triggering early cortical activity (and thus enhance prenatal brain

development).

We concluded that simulated networks with large GABA-ergic

neurons and axonal guidance showed better agreement to cultured

networks than the other models. Therefore we further focused on

these models. It is however important to note that the IBI range

can also depend on the (mean Poissonian) rate of synaptic noise. In

particular, increasing this rate results in reduction of the IBI range

(Gritsun et al. 2011). In this study we used constant mean rates of

synaptic noise in all the simulations.

Bundles of neurites growing in parallel were formed in the field-

guided networks, as seen in experimental networks. The bundles

resulted from axons growing along common paths towards spots

with higher somatic density. Randomly growing simulation models

showed no bundles; neurites grew independently. In contrast,

Zubler and Douglas [14] presented a model where neurite bundles

were formed due to mechanical processes that modulated

neuronal migration. In their study, bundle formation was

influenced directly by increasing the attraction strength between

growing neurites, whereas our study assumes an alternative

(indirect) mechanism based on chemotactic guidance.

For clarity, it is important to note that our approach was based

on the assumption of a rather stationary position of grown neurites

which, in experimental reality, requires efficiently strong neuronal

adhesion to the surface. Insufficient adhesion to the surface usually

leads to clustering in experimental preparations. The above

described weak bundling should not be confused with the

Figure 7. Spiking activity of all the neurons. Spike raster generated by a field-guided network of 50,000 neurons with large GABA-ergic neurons.
Note that a spiral order for neuronal indexing has been used, such that low index neurons are at the center of the network. This figure shows that
bursts start in neurons with high indices, i.e. neurons located on the edge of the network.
doi:10.1371/journal.pone.0043352.g007
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aggregation that occurs when adhesion degrades and the networks

subdivides into well defined clusters ‘‘islands’’, connected by

massive thick axonal bundles [40,41,42]. Understanding of

bundling mechanisms may also be very helpful in the design of

central and peripheral highly selective neural prostheses [43,44].

Spatio-temporal propagation of network bursts
Even though the majority of the bursts had their own unique

distribution of spiking activity, in all network simulations we

observed wave-like propagating patterns with several phases. First,

a set of easily excitable neurons with strong interconnections in a

local area was activated in a chain-like reaction. Their firing

increased background activity to connected neurons, thus facili-

tating activation of those neurons. This prepared the network for

the next phase (see Fig. 7, at about 50 ms after the first activity),

the fast propagating main-wave of the network burst. This main

wave left behind a large pool of depressed neurons which could

not be activated shortly after the burst, which usually led to burst

cessation, as shown in a previous study [16]. Part of the neurons in

that pool, those with relatively fast recovery, occasionally

participated in the following ‘‘after-wave’’ spike chains. These

spatio-temporal phases reflected on burst shapes as pre-, main-

and post phases, as illustrated in Video S1. After-waves usually

occurred near the border of the circular network as a result of

stronger local connectivity in this area. Since the neurites of

frontier neurons could not grow beyond the space of the network,

they were ‘‘forced’’ to grow further along the circular boundary.

This resulted in a relatively high neurite density and therefore a

higher synaptic density in the network border region. This yielded

a relatively high synaptic input to the frontier neurons, giving

networks a major feedback pathway along their border. When the

‘‘after-wave’’ phase lasted long enough for the other neurons to

recover, a subsequent burst could be generated shortly afterwards,

with similar phases. This may explain the mechanism behind the

generation of superbursts as in experiments, e.g. [5]. This view is

supported by the observation that networks without outgrowth

restricted boundary did not generate superbursts.

Boundary conditions and population size
We analyzed the activity of networks with different population

sizes. For all network sizes the higher neurite density at the borders

provided stronger connectivity and more possible feedback

pathways than in the middle of the network. In larger network

propagating burst waves had more freedom to travel through the

pools of recovered neurons, particularly in these feedback

pathways. This may explain the observations that larger network

generated highly variable bursting patterns which incorporated

both pre- and post-burst phases whereas small networks of 10,000

neurons showed less variable pre-phases only. The development of

a prolonged after-wave phase reached its maximum at earlier

developmental stages in larger networks. This effect was charac-

terized by earlier occurrence of bursts as well as super bursts in

larger network than in small ones, similar to experimental

observations by Wagenaar et al. [5].

It is important to note that developing activity patterns can be

influenced by several other factors such as long-term synaptic

plasticity [45] and apoptosis, incorporation of which may further

improve our simulation model. We have shown that up to three

weeks LTP does not yet need to be incorporated to explain burt

properties in detail. At later times, it will probably have to. The

model described here is a good basis for further explorations in

those directions.

Supporting Information

Appendix S1 S1-1. Growth model parameters. S1-2a. Activity

model parameters. S1-2b. Synapse model and parameters.

(DOCX)

Figure S1 Simulation of neurite morphology in a
randomly growing network of 10,000 neurons. The

neuronal somas are indicated in green. For 0.5% of these neurons

the neurite structures are shown: axons (black) and dendrites (red).

The close-up shows only the somas (marked with green and red

dots) and axons sprouting from the red marked neurons.

(TIF)

Video S1 Visualization of spiking activity in a large
network of 50,000 neurons with morphological structure
at 12 virtual DIV. Example of a burst series generated by the

field-guided model with large GABA-ergic neurons. Top left:

Demonstration of the spatio-temporal propagation of spiking

waves. The dots show the spatial location of the firing neurons.

The circle illustrates the network boundary. Bottom: Shape of the

network bursts, as acquired by the virtual MEA (60 electrodes).

(AVI)

Acknowledgments

We thank Dr. Jan Stegenga for sharing the experimental data and prof.

Stefan Luding for sharing computational resources with us.

Author Contributions

Conceived and designed the experiments: TAG JF WLCR. Performed the

experiments: TAG. Analyzed the data: TAG. Contributed reagents/

materials/analysis tools: TAG JF WLCR. Wrote the paper: TAG JF

WLCR.

References

1. Le Feber J, Rutten WLC, Stegenga J, Wolters PS, Ramakers GJA, et al. (2007)

Conditional firing probabilities in cultured neuronal networks: A stable

underlying structure in widely varying spontaneous activity patterns. Journal

of Neural Engineering 4: 54–67.

2. Stegenga J, le Feber J, Marani E, Rutten WLC (2008) Analysis of cultured

neuronal networks using intra-burst firing characteristics. IEEE Trans Biomed

Eng.

3. Stegenga J, Le Feber J, Marani E, Rutten WLC (2009) The effect of learning on

bursting. IEEE Transactions on Biomedical Engineering 56: 1220–1227.

4. Van Pelt J, Corner MA, Wolters PS, Rutten WLC, Ramakers GJA (2004)

Longterm stability and developmental changes in spontaneous network burst

firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode

arrays. Neuroscience Letters 361: 86–89.

5. Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting

patterns during the development of cortical cultures. BMC Neuroscience 7.

6. Yavin E, Menkes JH (1973) The culture of dissociated cells from rat cerebral

cortex. Journal of Cell Biology 57: 232–237.

7. Marom S. Shahaf G. (2002) Development, learning and memory in large

random networks of cortical neurons: lessons beyond anatomy. Quarterly

Reviews of Biophysics 35, 1, pp. 63–87.

8. Parnavelas JG, Uylings HBM (1980) The growth of non-pyramidal neurons in

the visual cortex of the rat: A morphometric study. Brain Research 193: 373–

382.

9. Ramakers GJA, Avci B, Van Hulten P, Van Ooyen A, Van Pelt J, et al. (2001)

The role of calcium signaling in early axonal and dendritic morphogenesis of rat

cerebral cortex neurons under non-stimulated growth conditions. Developmen-

tal Brain Research 126: 163–172.

10. Voigt T, Opitz T, De Lima AD (2001) Synchronous oscillatory activity in

immature cortical network is driven by GABAergic preplate neurons. Journal of

Neuroscience 21: 8895–8905.

11. Samsonovich AV, Ascoli GA (2003) Statistical morphological analysis of

hippocampal principal neurons indicates cell-specific repulsion of dendrites

from their own cell. Journal of Neuroscience Research 71: 173–187.

Self-Wiring Network Model of Cortical Cultures

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e43352



12. Van Pelt J, Uylings HBM (2003) Growth functions in dendritic outgrowth. Brain

and Mind 4: 51–65.
13. Koene RA, Tijms B, van Hees P, Postma F, de Ridder A, et al. (2009)

NETMORPH: a framework for the stochastic generation of large scale neuronal

networks with realistic neuron morphologies. Neuroinformatics 7: 195–210.
14. Zubler F, Douglas R (2009) A framework for modeling the growth and

development of neurons and networks. Frontiers in Computational Neurosci-
ence 3.

15. Bettencourt LM, Stephens GJ, Ham MI, Gross GW (2007) Functional structure

of cortical neuronal networks grown in vitro. Phys Rev E 75, 021915.
16. Kitano K, Fukai T (2007) Variability v.s. synchronicity of neuronal activity in

local cortical network models with different wiring topologies. Journal of
Computational Neuroscience 23: 237–250.

17. Graham BP, van Ooyen A (2006) Mathematical modelling and numerical
simulation of the morphological development of neurons. BMC Neuroscience 7.

18. van Ooyen A (2011) Using theoretical models to analyse neural development.

Nature Reviews Neuroscience 12, 311–326.
19. Segev R, Ben-Jacob E (2000) Generic modeling of chemotactic based self-wiring

of neural networks. Neural Networks 13: 185–199.
20. Van Pelt J, Uylings HB (2002) Branching rates and growth functions in the

outgrowth of dendritic branching patterns. Network (Bristol, England) 13: 261–

281.
21. Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda Y (1993)

Formation and maturation of synapses in primary cultures of rat cerebral
cortical cells: An electron microscopic study. Neuroscience Research 16: 95–103.

22. Manor Y, Koch C, Segev I (1991) Effect of geometrical irregularities on
propagation delay in axonal trees. Biophysical Journal 60: 1424–1437.

23. Muller TH, Swandulla D, Zeilhofer HU (1997) Synaptic connectivity in cultured

hypothalamic neuronal networks. Journal of Neurophysiology 77: 3218–3225.
24. Voigt T, Opitz T, De Lima AD (2005) Activation of early silent synapses by

spontaneous synchronous network activity limits the range of neocortical
connections. Journal of Neuroscience 25: 4605–4615.

25. Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location

in neocortical pyramidal neurons. Science 295: 1907–1910.
26. Gritsun TA, Le Feber J, Stegenga J, Rutten WLC (2010) Network bursts in

cortical cultures are best simulated using pacemaker neurons and adaptive
synapses. Biological Cybernetics 102: 1–18.

27. Gritsun TA, Le Feber J, Stegenga J, Rutten WLC (2011) Experimental analysis
and computational modeling of interburst intervals in spontaneous activity of

cortical neuronal culture. Biological Cybernetics 105: 197–210.

28. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.
Nature 393: 440–442.

29. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: A quantitative
method for determining canonical network equivalence. PLoS ONE 3.

30. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary

degree distributions and their applications. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics 64: 261181–261187.

31. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Transactions on

Neural Networks 14: 1569–1572.

32. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of

GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.

33. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same

axon of neocortical pyramidal neurons. Proceedings of the National Academy of

Sciences of the United States of America 95: 5323–5328.

34. Tetzlaff C, Okujeni S, Egert U, Wörgötter F, Butz M (2010) Self-organized

criticality in developing neuronal networks. PLoS computational biology 6.

35. Gritsun TA, Stegenga J, le Feber J, Rutten WLC. Explaining burst profiles using

models with realistic parameters and plastic synapses. In: A. S, editor; 2008 8–11

jul 2008; Reutlingen, Germany. BIOPRO Baden-Wuerttemberg GmbH. pp.

26–28.

36. Van Pelt J, Wolters PS, Corner MA, Rutten WLC, Ramakers GJA (2004) Long-

term characterization of firing dynamics of spontaneous bursts in cultured neural

networks. IEEE Transactions on Biomedical Engineering 51: 2051–2062.

37. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, et al. (2009)

GABAergic hub neurons orchestrate synchrony in developing hippocampal

networks. Science 326: 1419–1424.

38. Robertson R, Menne KML (2007) Depolarizing, GABA-mediated synaptic

responses and their possible role in epileptiform events; Simulation studies.

Neurocomputing 70: 1619–1625.

39. Sernagor E, Chabrol F, Bony G, Cancedda L (2010) GABAergic control of

neurite outgrowth and remodeling during development and adult neurogenesis:

general rules and differences in diverse systems. Frontiers in Cellular

Neuroscience 4.

40. Ruardij TG, Goedbloed MH, Rutten WLC (2000) Adhesion and patterning of

cortical neurons on polyethylenimine- and fluorocarbon-coated surfaces. IEEE

Transactions on Biomedical Engineering 47: 1593–1599.

41. Ruardij TG, Goedbloed MH, Rutten WLC (2003) Long-term adhesion and

survival of dissociated cortical neurons on miniaturised chemical patterns.

Medical and Biological Engineering and Computing 41: 227–232.

42. Wiertz RWF, Marani E, Rutten WLC (2010) Inhibition of neuronal cell-cell

adhesion measured by the microscopic aggregation assay and impedance

sensing. Journal of Neural Engineering 7, 056003 (9pp)

43. Meier JH, Rutten WLC, Zoutman AE, Boom HBK, Bergveld P (1992)

Simulation of multipolar fiber selective neural stimulation using intrafascicular

electrodes. IEEE Transactions on Biomedical Engineering 39: 122–134.

44. Wieringa PA, Wiertz RWF, De Weerd E, Rutten WLC (2010) Bifurcating

microchannels as a scaffold to induce separation of regenerating neurites.

Journal of Neural Engineering 7.

45. Le Feber J, Van Pelt J, Rutten WLC (2009) Latency-related development of

functional connections in cultured cortical networks. Biophysical Journal 96:

3443–3450.

46. Scott DW (1979) On optimal and data-based histograms. Biometrika 66: 605–

610.

Self-Wiring Network Model of Cortical Cultures

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e43352


