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Abstract

Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an
increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life.
Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation
of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens
from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1
methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation
levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal
age at delivery, and maternal smoking during pregnancy (p=0.007 and p =0.036, respectively), but the magnitude of the
difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term
infants, and this difference, though small, was statistically significant (p=0.004). We did not find important associations
between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental
tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high
birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or
other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with
these characteristics.
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Introduction

The Developmental Origins of Health and Disease (DOHaD)
suggest lifelong health implications of fetal and maternal growth
trajectories. Low birthweight, premature birth, maternal under-
weight and/or malnutrition, and intrauterine growth retardation
(IUGR) have been related to an increased risk of hypertension,
cardiovascular disease, type 2 diabetes mellitus, obesity and
neuropsychiatric disorders later in life [1-6]. Conversely, high
birthweight, maternal obesity, high weight gain during pregnancy,
and gestational diabetes have been linked to future risk of cancer,
obesity, and type 2 diabetes in the offspring [7,8]. The
mechanisms underlying these associations are poorly understood.
Fetal “programming” may reset the growth hormone/insulin-like
growth factor axis but longitudinal studies connecting early life
hormonal parameters to adult disease outcomes are lacking. It has
recently been suggested that epigenetic mechanisms may be
important contributors to fetal programming [9,10].

DNA methylation is an important component of the cells
machinery to regulate gene expression and occurs primarily on
cytosine residues in CpG dinucleotides [11]. About half of human
genes contain CpG-rich regions termed CpG islands in their
promoter regions. Most lone CpG dinucleotides are in the introns
of repetitive elements [12]. While most CpG islands are

@ PLoS ONE | www.plosone.org

unmethylated, permitting transcription, the lone CpGs in the
repetitive elements are mostly methylated.

About 50% of the human genome is composed of repetitive
sequences such as LINE (Long Interspersed Nuclear Elements)
and SINEs (Short Interspersed Nuclear Elements), including Alu
[13]. These largely non-coding regions have been highly
conserved throughout evolution but have lost their ability to move
or make copies of themselves. The retrotransposition process
involves recombination and two DNA single-strand breaks in close
proximity, increasing the risk for chromosomal breaks, transloca-
tions, recombinations, and deletions [14]. The evolutionary
younger subfamilies such as LINE-1 can still transcribe when
activated. LINE-1 methylation decreases with age and hypo-
methylation of LINE-1 has been linked to various cancer types,
possibly by contributing to chromosomal instability, and may be
an early marker or a prognostic indicator of disease [15,16].

DNA methylation marks are established i utero and the resulting
methylation pattern is largely preserved through subsequent cell
divisions through maintenance methylation [17]. Initial epigenetic
reprogramming occurs during gametogenesis, allowing primordial
germ cells to differentiate into mature oocyte and sperm [18].
After fertilization, male pronucleus and zygote undergo another
round of demethylation which restores totipotency, followed by a
genome-wide de novo methylation which contributes to cell fate
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commitment of the first cell lineages in preimplantation develop-
ment [17,19-21]. These reprogramming sequences makes the
intrauterine period a target for environmental and metabolic
factors that may affect the establishment of cytosine methylation.

The epigenetic signatures of the cord blood and the placenta
need to be interpreted in the context of their different embryonic
origins. The placenta is composed of extraembryonic tissue and
develops upon implantation of the blastocyst the maternal
endometrium. The outer layer of the blastocyst becomes the
trophoblast which forms the outer layer of the placenta. The inner
blastomeres form the embryonic tissue. Disruption of the
epigenetic profile in the gametes may affect inner and outer
blastomeres to the same degree, and hence be reflected in both
cord blood and placenta tissue. Disruption after fertilization may
affect the outer blastomeres of the preimplantation embryo and be
reflected only in the placental tissue. The placenta has metabolic
and endocrine activity. It produces hormones which maintain the
pregnancy, stimulate growth of the fetus, and increase transfer of
these nutrients to the fetus. The perfusion of the intervillous spaces
of the placenta with maternal blood allows the transfer of nutrients
and oxygen from the mother to the fetus and the transfer of waste
products and carbon dioxide back from the fetus to the mother.
Altered regulation of these physiologic processes due to differences
in gene expression may affect fetal growth.

Aberrant DNA methylation, including global hypomethylation
of DNA from peripheral blood leukocytes, has been linked to
various chronic diseases including cancer and cardiovascular
disease [22,23]. The distribution of global methylation and
frequency of hypomethylation at birth has not been studied.
Whether changes in DNA methylation occur prenatally and
predispose to disease, hence provide a mechanistic explanation for

Birthweight and LINE-1 Methylation

birthweight is the best studied perinatal non-genetic marker of
adult disease susceptibility we explored the association between
birthweight and its predictors such as maternal prepregnancy BMI
and maternal weight gain during pregnancy and LINE-1
methylation. We used data and biospecimens from the Epigenetic
Birth Cohort at Brigham and Women’s Hospital, Harvard
Medical School, in Boston to explore the association between
trajectories of fetal and maternal weight and LINE-1 methylation
in 319 mother-child dyads.

Results

Cord blood samples were available from all 319 newborns
included in this study and placenta samples were available from
316 of them. Maternal and infant characteristics of the study
population are provided in Table 1. Median LINE-1 methylation
was 80% (range 75.8-84.3%) in cord blood and 51% (range 41.3—
70.0%) in placental tissue. The infant with the highest LINE-1
methylation in placental tissue of 70% was characterized by a low
birthweight of 2300 grams; when excluding this outlier the range
of LINE-1 methylation in placenta was 41.3-59.9%.

Newborns with low or high birthweight had significantly lower
LINE-1 methylation levels of their cord blood DNA compared to
normal weight infants after adjusting for gestational age, maternal
age at delivery, maternal smoking prior to or during pregnancy,
ethnicity of the mother, and sex of the child, but the magnitude of
the difference was small (Table 2). Infants born prematurely also
had lower LINE-1 methylation levels of cord blood DNA
compared to term infant, and this difference, though small, was
statistically significant (p = 0.004). LINE-1 methylation level in the
cord blood DNA decreased by about 3 percent per unit increase in

the DOHaD observations remains to be determined. Since the birthweight/placenta ratio (p=0.058). Neither maternal
Table 1. Characteristics of the 319 mother-infant dyads of the Epigenetic Birth Cohort included in this study.
Characteristic Median/Percent Range (minimum - maximum)
Percent LINE-1 methylation
Cord blood (n=319) 80 75.8-84.3
Placenta (n=316) 51 41.3-70.0
Maternal characteristics
Age at delivery (yrs) 32 18-45
Smoking (prior to or during pregnancy) [%] 6.9/7.0%
Gestational diabetes [%] 9.7/9.8*
Race/ethnicity [%]
Non-Hispanic White 63.0/63.0*
Hispanic 15.1/15.2%
Asian/Pacific Islander 8.5/8.5%
Black 12.2/12.0%
Other 1.3/1.3*
Pre-pregnancy BMI (kg/m?) 23.5% 17.5-40.8
Weight gain (lbs) 33 2-82
Infant characteristics
Female [%] 48.0/48.1*
Preterm (<37 weeks) [%] 11.9/11.7*
Birthweight (g) 3433.5/3430* 1460-5395
Placenta weight/birthweight ratio 0.2 0.1-0.8
“First value: percent among study population with cord blood samples, second value: among study population with placenta samples.
doi:10.1371/journal.pone.0025254.t001
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prepregnancy BMI nor gestational weight change was significantly
associated with LINE-1 methylation in the cord blood (Table 2).
Gestational diabetes and maternal smoking prior to or during
pregnancy, both of which affect fetal growth, were not associated
with LINE-1 methylation (p=0.63 and p=0.58, respectively).
Ethnicity of the mother (p for interaction=0.31) or sex of the
infant (p for interaction=0.37) did not modify the associations
observed.

Weight trajectories were less correlated with LINE-1 methyla-
tion in fetal placental tissue (Table 2). The only statistically
significant association emerged for low birthweight which was
positively related to LINE-1 methylation in the placenta relative to
normal birthweight (p = 0.025).

When we repeated the analyses among term infants the results
did not appreciably change. However, the association between low
birthweight and LINE-1 methylation in placental tissue became
stronger with a difference of 2.6% methylation (p=0.0014)
compared to infants with normal birthweight.

Discussion

In this largest study to date on birthweight and global
methylation we found low and high birthweight and preterm
birth to be significantly associated with a reduced LINE-1
methylation level in cord blood. We did not find important
associations between maternal weight trajectories and global
methylation of the cord blood or fetal placental tissue.

To our knowledge only two prior studies have considered the
association between fetal growth trajectories and LINE-1 meth-
ylation. Bourque and colleagues found no difference in LINE-1
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Table 2. Maternal and fetal weight trajectories and LINE-1 global methylation among the 319 mother-infant dyads of the
Epigenetic Birth Cohort included in this study.
Weight Trajectory Cord Blood Placenta
95% ClI for
Number Difference in % 95% ClI for Difference Difference in Difference in
of Dyads Methylation® in Methylation® p-value® % Methylation® Methylation® p-value*
Birthweight (g)b

<2500 29 —0.82 —1.42 to —0.23 0.007 1.41 0.18 to 2.63 0.025

2500-3999 227 0 (Ref) 0 (Ref)

4000+ 62 —0.43 —0.84 to —0.03 0.036 —0.14 —0.97 to 0.69 0.74
Preterm birth

No 281 0 (Ref) 0 (Ref)

Yes 38 -0.73 —1.22 to —0.24 0.004 —0.03 —1.03 to 0.98 0.96
Birthweight/placenta weight 319 —2.88 —5.86 to —0.10 0.058 —3.14 —9.14 to 2.87 0.30
ratio (per increase in 1 unit)

Prepregnancy BMI (kg/m?)

<20 43 0.09 —0.35 to 0.53 0.68 —0.25 —1.14 to 0.64 0.58

20-29.9 221 0 (Ref) 0 (Ref)

30+ 52 0.42 0.01 to 0.84 0.05 0.38 —0.47 to 1.22 0.38
Gestational weight change®

<Recommended® 46 0.03 —0.48 to 0.54 0.90 0.07 —0.95 to 1.09 0.89

Recommended® 99 0 (Ref) 0 (Ref)

>Recommended® 171 —0.03 —0.39 to 0.34 0.88 0.11 —0.63 to 0.85 0.77
“Linear regression models were adjusted for maternal age at delivery, maternal ethnicity, maternal smoking prior to or during pregnancy, and for the sex of the child.
PAdditionally adjusted for preterm birth.

“Additionally adjusted for prepregnancy BMI.
dBased on the Institute of Medicine 2009 guidelines for gestational weight gain.
doi:10.1371/journal.pone.0025254.t002

methylation in placenta samples from 13 IUGR pregnancies
(50.0%) compared with 22 normal pregnancies (49.6%) [24]. In 12
fetal cord blood samples, Iryer, ¢t al. found higher LINE-1
methylation levels among samples from higher birthweight infants
but comparison groups were generated indirectly by hierarchical
clustering [25].

Other studies on fetal growth trajectories and DNA methylation
have employed a genome-wide approach or focused on imprinted
genes, but all were afflicted by limited samples sizes. Using a
microarray approach, Einstein and colleagues compared cord
blood samples from five IUGR and five normal pregnancies and
identified methylation differences at a limited number of loci [26].
Other authors identified differences in methylation and expression
of selected imprinted genes in placenta and cord blood of IUGR
or low birthweight compared to normal weight infants [27-30].
High birthweight has also been associated with increased promoter
methylation of the glucocorticoid receptor gene in human placenta
[31].

A decrease in LINE-1 methylation may contribute to the retro-
transposition of the functional forms of this repetitive element.
This may lead to mutagenesis by insertion, with consequences for
gene regulation or even alteration of gene coding sequences.
Hypomethylation of non- functional forms of this repetitive
element may also affect chromatin condensation and increase
the risk for chromosomal breaks, chromosomal instability, and
chronically aberrant immune responses [32,33]. These mecha-
nisms may underlie the observed associations between global
hypomethylation and cancer [22,34].

The fetus is equipped with developmental plasticity, allowing
adjustment to a range of intrauterine conditions. Adverse
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conditions beyond this range such as intrauterine starvation may
result in reprogramming: stable alterations in epigenetic or other
states that optimize chances for survival in the short term but may
create suboptimal conditions for long-term health decades later.
We found that low and high birthweight and premature birth were
associated with reduced methylation in repetitive elements.
Whether the modest changes observed have any functional
relevance remains unclear but they may be a piece in the
mechanistic puzzle of the well established association of these fetal
growth markers with long-term health. Even small differences in
LINE-1 methylation have been associated with the prevalence of
disease [35].

No study has directly explored epigenetic changes as causal link
between birthweight as a marker of intrauterine events and
chronic disease outcomes in adulthood in humans. This void is
likely due to the logistic difficulties in obtaining relevant blood or
tissue samples at birth and at disease diagnosis from the same
person which would be necessary to connect the perinatal marker
and adult disease outcome to demonstrate a permanent perinatally
induced epigenetic alteration. Epigenetic alterations in adulthood
were found among individuals periconcentionally exposed to the
Dutch Famine but whether these modifications were present at
birth and whether they alter disease risk has not been examined
[36].

The temporal relation between fetal growth and epigenetic
variation at birth remains unclear. Birthweight and placental
weight are influenced by factors operating throughout pregnancy
[37]. While the DNA methylation pattern is initially set at the
blastocyst state [21], it is possible that the intrauterine environ-
ment thereafter impacts upon the methylation profile. Birthweight
and placental weight may be markers of the intrauterine
environment that could affect the epigenetic profile present at
birth. In the context of DOHaD, adverse intrauterine conditions
may lead to permanent changes in the epigenome. We considered
global methylation the dependent variable in our regression
analyses which allowed us to simultaneously adjust for potential
confounding variables.

The observed median LINE-1 methylation in placental tissue of
51% in our population is consistent with previous studies [24].
Cytosine methylation levels in normal tissues have been reported
to be lowest in the placenta [38]. The low LINE-1 methylation in
placental tissue and the observed fairly large interindividual
variation in our study population may reflect greater plasticity of
this organ in accommodating a variety of intrauterine conditions
than blood and other tissues. Heterogeneity in cell types in
placental tissue may also contribute to interindividual variation.
Conversely, placental samples obtained at the end of this organ’s
life cycle, may reflect its decreasing activity. We observed higher
LINE-1 methylation in the placenta of low birthweight infants.
This may reflect the task of the placenta to maximize nutrition to
the fetus. For a less well-nourished fetus the placenta may maintain
a higher metabolic rate until birth.

Our study is the largest to date on the association between
birthweight and repetitive element methylation. It is also the first
to consider the association with placental weight and with
maternal pregnancy weight trajectories. Given the global increase
in pre-pregnancy body mass index, any effects on the infant would
be of interest.

In conclusion, we found significant differences in cord blood
global methylation among newborns with low and high birth-
weight as well as among prematurely born infants. Future studies
may elucidate whether instabilities or other functional conse-
quences of these changes contribute to the increased risk of
chronic diseases among individuals with these characteristics.
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Materials and Methods

Ethics Statement

The study protocol was approved by the Institutional Review
Board of the Brigham and Women’s Hospital, Boston, Massachu-
setts.

Study Population

The Epigenetic Birth Cohort comprises 1941 mother-child
dyads. Data and biospecimens were collected between June 2007
and June 2009 on the labor and delivery floor of the Department
of Obstetrics, Gynecology and Reproductive Biology at Brigham
and Women’s Hospital in Boston. Pregnant women were
requested to complete a 2-page questionnaire and asked for
permission to abstract information from their pregnancy charts
and to collect samples from umbilical cord and placenta after
detachment for research purposes. From this cohort we sampled
319 mother-infant dyads from the base population oversampling
pairs with low (<20 kg/m?) and high (30+ kg/m?) pre-pregnancy
body mass index (BMI), low (<=20 lbs) and high (50+ Ibs)
gestational weight gain, and low (<2500 g) and high (4000+ g)
birthweight. Participants were frequency matched on maternal age
(+/—2 years) and folic acid supplement use (pre- and post-
conception intake/post-conception intake only).

Maternal and Fetal Characteristics

Data on maternal date of birth, height, prepregnancy weight,
gestational weight gain, gestational age, birthweight, and sex of the
newborn were abstracted from the pregnancy charts. Prior to
delivery, women were asked to complete a questionnaire and
provide information about their race and ethnicity, height, weight
prior to pregnancy, weight gain at each trimester and in total at
the end of pregnancy, vitamin supplementation prior to concep-
tion and during pregnancy, and smoking habits and alcohol
consumption. If medical record information was missing for
height, prepregnancy weight, or gestational weight gain, question-
naire data were supplemented. Placental weight was directly
measured.

Biospecimen Collection

After umbilical cord and placenta were detached from mother
and child, cord blood was collected from the base of the cord and
divided into a PaxGene RNA tube (Qiagen, Valencia, CA) and an
EDTA tube. Placental weight was assessed at this time. Blood in
EDTA tubes was processed immediately and the bufty coat and
red blood cell fractions were stored at —80°C until further
processing. Plasma has been stored in liquid nitrogen. Blood in the
PaxGene tube was stored at —20°C until further processing.
Placental tissue samples were harvested from the upper side of the
placenta near the umbilical cord (consisting of predominantly fetal
cells), near the cord from the lower layer, at the placenta perimeter
from the upper layer, and at the placenta perimeter from the lower
layer, for DNA and RNA isolation, respectively. Collected
placenta tissues for DNA extraction were snap-frozen and stored
in liquid nitrogen. Tissues for RNA extraction were stored in
RNAlater (Ambion, Carlsbad, CA) at —20°C until further
processing. For the present study placental tissue from the upper
side of the placenta near the umbilical cord was used.

DNA lIsolation

DNA was isolated from the buffy coat using the QIAamp DNA
Blood Mini Kit by Qiagen. DNA was isolated from snap-frozen
placenta tissues using the QIAamp DNA Mini Kit from Qiagen.
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Global Methylation Assay

Global methylation was assessed using a LINE-1 bisulfite
pyrosequencing assay. A total of 200 ng of DNA was bisulfite
converted using the EZ DNA Methylation-Gold Kit according to
the manufacturer’s alternative protocol 2 (Zymo Research,
Orange, CA, USA). LINE-1 was amplified using the Qiagen
HotstarTaq plus MasterMix and the Pyromark 24 LINE-1 assay
(Qiagen). Pyrosequencing was performed on a Pyromark Q24
(Qiagen). The LINE-1 assay of the Pyromark Q24 tests 3 CG
dinucleotides, and verifies the completion of the bisulfite treatment
by testing a cytosine outside a CG dinucleotide. The global
methylation ratio was calculated using the mean of the three
dinucleotides. All assays (starting with the bisulfite conversion)
were done in duplicate. To optimize the precision of the
experiments, the difference between the two replicates were
compared to the standard deviation calculated from all samples of
the same tissue. If the difference between the two replicates was
larger than two standard deviations, bisulfite treatment, PCR, and
pyrosequencing were performed a third time for the respective
samples. The quantitative performance of the pyrosequencing
assays was verified by including methylation standards comprised
of known proportions of unmethylated and fully methylated DNA.
Average reproducibility (absolute difference between the means of
replicates) of bisulfite pyrosequencing for LINE-1 assays in our
laboratory was within 3% variability.

Statistical Analysis

Percent methylation was averaged across the 3 CpG sites
(calculating the mean of the replicate means) for cord blood and
placenta, respectively. Percent methylation was used as a
continuous variable. Linear regression was used to model the
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