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Abstract

Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was
quantified via two series of monthly surveys, conducted thirty years apart (1978–1981 and 2008–2010) in one small
embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have
increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial
fisheries. During the same time interval the abundance of mollusk shells along the shoreline decreased by a comparable
factor (2.62) and was significantly and negatively correlated with tourist arrivals (r = 20.52). The strength of the correlation
increased when data were restricted to months with high tourist arrivals (r = 20.72). In contrast, the maximum monthly
wave energy (an indirect proxy for changes in rate of onshore shell transport) was not significantly correlated with shell
abundance (r = 0.10). Similarly, rank dominance of common species, drilling predation intensity, and body size-frequency
distribution patterns have all remained stable over recent decades. A four-fold increase in global tourist arrivals over the last
30 years may have induced a comparable worldwide acceleration in shell removal from marine shorelines, resulting in
multiple, currently unquantifiable, habitat changes such as increased beach erosion, changes in calcium carbonate
recycling, and declines in diversity and abundance of organisms, which are dependent on shell availability.
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Introduction

Local and global environmental impacts of tourism [1,2,3,4] are

intensifying due to rapidly expanding human populations [5].

Marine shorelines are particularly vulnerable because of the

massive residential shift toward coastlines [6] and the fact that

seashores remain among the most alluring tourist destinations

[7,8]. Tourists and single-day visitors sensu [9] affect beaches in

diverse direct ways, including trampling, vehicle use, camping,

shellfish harvesting, beach grooming, and many other factors

[10,11,12]. However, long-term studies measuring human impacts

on shoreline habitats are scant and fragmentary [10,13]. In

particular, the removal of dead shell remains by tourists represents

one of the most understudied and least understood processes

associated with human activities along marine shorelines.

Rigorous assessments of shell removal by tourists are needed

because skeletal materials left behind by dead organisms perform

many important environmental and ecosystem services. In pristine

coastal habitats shells can occur in great abundance [14,15] and

serve multiple functions, from beach stabilization [16] to building

materials for bird nests [17]. Also, shells may be intermittently

submerged or transported into subtidal settings where they can

provide various ecosystem services, including shelter for diverse

endobiolithic algae [18], substrate for seagrass meadows [19],

colonization sites for encrusting organisms [20], or armored

protection for hermit crabs and fish [21,22,23]. Shell material is

also continuously dissolved [24] in most coastal areas resulting in

elemental recycling back into the global marine reservoir. The

tourism-related removal of shell material from shorelines may thus

have diverse environmental consequences.

Diverse processes can induce seasonal or decadal changes in

shell abundance along shorelines and multiple hypotheses can be

postulated a priori to explain variation in shell abundance through

time. First, changes in local hydrodynamics may alter the

magnitude of onshore transport of shell material [25,26]. This

model predicts a significant correlation between proxy measures of

onshore transport (e.g., wave energy) and shell abundance.

Second, changes in ecosystem structure and population dynamics

(especially spawning and mortality patterns) may induce variation

in local shell accumulation rates, which may be partly controlled

by input of newly dead specimens [27]. This model predicts

seasonal or decadal-scale correlations between temporal ecosystem

changes and trends in shell abundance and also implies possible

changes in rank abundance of dominant species or other

ecological proxies (e.g., frequency of predation events and per-

species size-frequency distributions). Finally, as postulated here,

changes in tourism activities and tourism-related beach manage-

ment practices may be responsible for changes in shell abundance.
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This last model predicts an inverse seasonal (or decadal)

correlation between shell abundance and tourist arrivals.

In this study, local changes in shell abundance observed over the

last 30 years were evaluated for one Mediterranean beach using

two quantitative datasets from the same embayment, one collected

more than 30 years ago and one collected in recent years. During

a time interval of three years (7/1978 - 7/1981), quantitative

surveys of shell material were conducted monthly along Llarga

Beach Salou, Catalonia [28]. The same shoreline transects were

resurveyed 30 years later (2008–2010). Because the sampled beach

has not been altered considerably over the last 30 years, the

resulting comparative data should be particularly suitable for

testing the hypothesis that an increase in local tourism leads to the

accelerated shell removal. Specifically, we evaluated the three

models outlined above regarding changes in shell abundance in a

local shoreline habitat. We tested for correlatives between the

intensity of local tourism and shell abundance at two temporal

scales: intra-annual/seasonal and multi-decadal. Within the same

reference timeframe, we evaluated putative roles of other causative

processes unrelated to tourism that could have led to shifts in shell

abundance, either seasonally or through time, and explored global

implications of the tourism-related removal of shells from coastal

environments.

Our focus on removal of empty shells due to tourism in an area

that has remained relatively unchanged differs in goals from

studies targeting regions that experienced substantial ecosystem

degradation through time [29]. Also, previous projects aimed at

assessing the impact of human activities on live shellfish, including

subsistence and recreational harvesting [30,31], collecting for

curio trade [32], bait collecting [33], or inadvertent trampling of

live organisms [33]. Instead, we focused here on activities that may

be intuitively perceived as least harmful: the impact of beach-

combing (leisurely collecting, inadvertent trampling, use of

recreational vehicles, etc.) on empty seashells scattered along

marine shorelines.

Materials and Methods

Ethics Statement
The Llarga Beach is not included on the list of sites of natural

interest protected by law and the endangered mollusk taxa

(Lithophaga lithophaga (Linnaeus 1758) and Pinna nobilis Linnaeus

1758) have not been reported at the sampled locality. Conse-

quently, the field study did not involve endangered or protected

species. Live specimens were not collected in this study and

permits were not required to collect modern shell material for

scientific research in the study area [34]. Shell data used in this

study have been archived as a PLoS One online-access appendix

(Table S1).

Study Area
Llarga Beach (Platja Llarga) is a sandy beach ,600 m in length

and ,25 m in width. It is bounded by a Jurassic limestone to the

west and delineated by Pleistocene eolian sandstone outcrops in

the central and eastern part of the beach (Fig. 1). None of those

rock units contribute shells that could be confused with modern

shell material. The fossil record of the Jurassic limestone in the

area is represented by scarce belemnite guards, ammonites molds,

and fragments of oyster shells. The Pleistocene sandstone contains

small gastropods and bivalves readily distinguishable from modern

materials based both on taxonomic and taphonomic (i.e.,

alterations due to fossilization processes) criteria [28].

The satellite images indicated that beach topography, its aerial

extent, and vegetation have remained virtually unchanged (Fig. 1)

over the 30 years that separated the two intervals of monthly

surveys reported here. Also, the embayment has not been altered

by direct urban encroachment, commercial activities, fisheries,

and shellfish harvesting, which all concentrate in other areas of the

Mediterranean coast of Spain. Shellfish fishery that could affect

locally common bivalves such as Chamelea gallina (Linnaeus, 1758)

and Donax trunculus (Linnaeus, 1758) has been intermittent and

mostly concentrated in other areas located much farther south

(90 km) or much further north (260 km) from the study area

(Castelló, F., 2012, pers. comm).

Llarga Beach has not changed notably in terms of local weather

and hydrodynamics (Fig. 2): neither average monthly temperature

(Fig. 2A) nor wave height (Fig. 2B) changed substantially over

those 30 years. In contrast, the area has seen a nearly three-fold

increase in tourist arrivals across all months (see below for data

sources). A median number of local tourist arrivals increased by a

factor of 2.74 over the last 30 years, while relative monthly

changes in tourist arrivals have remained virtually identical

(Fig. 2C).

Figure 1. The study area. (a) A location map of the Catalonia
Province; (b) A physiographic map of the Catalonia Province (non-
copyrighted map, courtesy of Marine Geosciences Group, University of
Barcelona); (c) A close-up map of the Llarga Beach (indicated with a
blue arrow) and adjacent areas (image generated from an open access
website: http://www.openstreetmap.org/); (d) an aerial photograph of
Llarga Beach (flight # 10173, March 1, 1976; �Cartographic Institute of
Catalonia; reproduced with permission of the Cartographic Institute of
Catalonia); (e) an aerial photograph of Llarga Beach (flight #
2011072000290012, February 18, 2011; �Cartographic Institute of
Catalonia; reproduced with permission of the Cartographic Institute of
Catalonia).
doi:10.1371/journal.pone.0083615.g001
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In summary, over the last three decades, a small coastal area

represented by Llarga Beach has experienced a considerable

increase in tourist arrivals, but has remained relatively static

otherwise and should provide a useful model system for assessing

the localized impact of tourists on abundance of shells in coastal

environments.

Shell assemblages
Primary data were derived by systematic transect sampling of

mollusk material present on the surface of shoreface zone.

Qualitative visual surveys of faunal composition were performed

continuously throughout the field work. These qualitative assess-

ments indicated consistently that three species of bivalves (Chamelea

gallina, Donax trunculus, and Donax semistriatus Poli, 1795) dominated

local beach assemblages throughout the sampled time interval.

Consequently, their combined abundance should represent a

robust proxy for abundance of all shell material along the

shoreline. Only those three species have been targeted in

quantitative analyses reported here. All other species observed

during sampling were present intermittently, and only three were

present occasionally in notable quantities: Spisula subtruncata (da

Costa, 1778), Mactra stultorum (Linnaeus, 1758), and Acanthocardia

tuberculata (Linnaeus, 1758). Other bivalve species observed

occasionally included Glycymeris insubrica (Brocchi, 1714), Chlamys

varia (Linnaeus, 1758), Tellina planata Linnaeus, 1758, Scrobicularia

plana (Da Costa, 1778) and Ensis ensis (Linnaeus, 1758).

The three dominant species included C. gallina, which is

restricted to the Mediterranean and Black Seas, D. semistriatus,

which also appears on Atlantic coasts of the Iberian peninsula, and

D. trunculus, which is known from littoral habitats from the Great

Britain to Senegal. In the Mediterranean, all three species occur in

shoreface sand communities (SFC sensu [35]). Both donacid species

occur together exclusively in this habitat, whereas C. gallina is also

present in subtidal sands down to 20 m depth (SFBC community

sensu [35]). C. gallina is a mobile suspension feeder and the

reproductive cycle of this commercially important species has been

studied extensively in the Mediterranean [36,37]. C. gallina appears

to reproduce primarily in the summer (or both spring and

summer), with one or two peaks of gamete emission [36]. D.

trunculus and D. semistriatus are detritivorous species. D. trunculus, the

larger and more abundant of the two species, spawns from March-

April to October in unpolluted areas of the southern Mediterra-

nean littoral [38,39].

Both C. gallina and D. trunculus are a food source for carnivorous

gastropods, especially naticid gastropods, as demonstrated by the

ubiquitous presence of valves with drillholes characterized by a

countersunk shelf (Oichnus paraboloides Bromley, 1981). Shells of the

common drilling predator (Natica hebraea Martyn, (1784)) have

been collected sporadically on Llarga Beach.

Sampling Methods
Monthly surveys were conducted during two time intervals: (1)

1978–1981 and (2) 2008–2010. During the first time interval the

surveys were conducted every month from July 1978 through July

1981 (37 monthly transects total). Due to time and funding

constraints, surveys conducted during the second time interval

were more limited and included transects conducted monthly from

August 2008 through October 2008 and from July 2009 through

June 2010 (15 monthly transects total). For both time intervals,

every calendar month was represented by at least one transect.

Samples collected during those surveys were retained and are

currently housed at the University of Barcelona.

Figure 2. Local temperature, wave height and tourist arrival data for the studied time intervals. (a) Median monthly air temperature
recorded at the Meteorological Station of Reus Airport (data provided by Servei Meteoròlogic de Catalunya); (b) Median maximum monthly wave
height measured at a buoy (Simar-44 [2057048]) located proximally to the study area (publicly available data obtained from http://www.puertos.es;
Puertos del Estado, Ministerio de Fomento); (c) A log-linear plot of monthly tourist arrivals for the 1978–1981 and 2008–2010 time intervals (see text
for data sources).
doi:10.1371/journal.pone.0083615.g002
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In both time intervals, monthly surveys were carried early in the

morning on weekdays near the end of each month along the

300610 m (3000 m2) shoreline transect with its endpoints defined

by a carbonate cliff at the west end of the beach and a sandstone

outcrop located centrally (Fig. 1). All transects were conducted

along a 10 m wide swath most proximal to the waterline. Because

of microtidal regime, daily tidal oscillations in the region do not

exceed 10 cm and show a minimal annual variation [40]. Thus,

tidal variation resulted in minimal lateral shifts from one survey to

another, when using water line as a reference system.

Quantitative surveys focused on the three dominant species used

as a proxy for the overall quantity of coarse biogenic material

present on the beach (see above). The surveys were carried out by

exhaustive sampling of all specimens found on the surface within

the transect area. No subsurface material was counted or collected.

Species identity and evidence of predation (i.e., presence/absence

of drill holes) were recorded for each specimen. In addition, shell

length was measured using digital calipers for specimens of C.

gallina for each August transect available for each time interval.

The resulting variables (relative abundance of dominant species,

drilling frequency, and body size-frequency distributions) provided

proxies of ecological processes for local benthic communities. This

approach is justified here by growing evidence that shell

assemblages can approximate local benthic ecosystems with high

fidelity [41,42]. Even intertidal shell assemblages, including beach

materials, can effectively capture information on local biodiversity

[43,44].

Tourist arrivals were estimated using data available from town

hall publications and unpublished counts (S. Antón 2013,

University of Barcelona, pers. comm.) for lodging facilities directly

adjacent to Llarga Beach. The arrival estimates were compiled to

assess seasonal changes in tourism, including monthly estimates,

seasonal estimates (‘‘high season’’ represented by summer months

and ‘‘low season’’ represented by non-summer months), and

annual estimates. All local facilities existed throughout both of the

studied time intervals. The only exception was the campground,

which was active in 1978–1981 time interval but closed

permanently before the second sampling time interval. The

campground has been replaced by a private recreational area

with a low density of occupation. The number of arrivals is likely

an underestimate of the actual number of tourists visiting Llarga

Beach because same-day visitors were not accounted for by the

metric used here. However, estimates of tourist arrivals were used

here only as a relative metric of changes in intensity of tourism

across seasons and through time.

Analytical Methods
To test the three models postulated above, repeated sampling

surveys of the same transect were conducted monthly across

seasons for two time intervals ,30 years apart. This approach

generated a series of shell abundance estimates that can be

assessed for correlatives against parallel datasets representing

potential controlling factors, including corresponding trends in

tourist activities, local physical characteristics, and indirect

ecological proxies. Whereas additional spatial control for the

same time interval (ideally derived from comparable habitats

inaccessible to tourists) would have strengthened the research

design, such data were not available. Consequently, all causal

interpretations proposed below are tentative and should be viewed

as initial hypotheses that require further testing in other settings.

The data (Table S1) resulting from the repeated surveys were

analyzed by time interval and seasonally within each time interval.

Seasonal changes were estimated by averaging monthly or

bimonthly data within each time interval (e.g., a bimonthly

January-February estimate for the 2008–2010 time interval was

computed as an arithmetic mean based on all available 2008–2010

January and February transects). Data were also grouped into

non-tourist (September-May) and tourist (June-August) months.

Bimonthly averages were used in some analyses to increase sample

size because, for certain months, only one transect was available in

a given time-interval (e.g., only one February transect for 2008–

2010 time interval). The resulting time series were analyzed using

raw values. In addition, first differencing was applied in order to

detrend time series.

Non-parametric rank-based methods (Spearman rank correla-

tion) and permutation tests were used as a primary tool in

statistical testing. These methods were selected because some of

the analyzed variables (e.g., wave energy, tourist arrivals)

represented notably skewed distributions, sample sizes were small

in some cases, and groups varied in sample size. The parametric

approach (2-Way Unbalanced ANOVA) was applied in one case

to evaluate differences in mean shell size for monthly and decadal

data groups. This approach was deemed appropriate because

groups had comparable dispersions (standard deviation ranged

from 2.45 to 5.07 mm), all distributions were unimodal and did

not display pronounced departures from normality (absolute

values of skewness and kurtosis were ,2 in all cases), and sample

sizes were relatively large (see Results section below) further

minimizing the effect of slight non-normality that may have

affected the data. However, because of notable variation in sample

size across groups, an unbalanced ANOVA was employed (GLM

procedure, SAS).

A significance level of alpha = 0.05 was used for hypothesis

testing and Bonferroni correction for multiple tests was applied

when appropriate. As used here, significance values (p) denote

probability of Type I Error and should not be misconstrued as

indicating likelihood estimates in support of a given null

hypotheses. SAS software, PAST freeware, and SAS/IML

programming language were used in all statistical analyses.

Results

A comparison of 1978–1981 and 2008–2010 surveys indicated

that shells at the shoreline of Llarga Beach (Fig. 3) were almost

three times more abundant three decades ago: on average, 1506.5

specimens were recovered per transect in 1978–1981 compared to

only 578.3 specimens in 2008–2010. The decline in shell

abundance was comparable in magnitude for the tourist season

(July–August) (70.1%) and for other months (60.0%). When 1978–

1981 and 2008–2010 transect estimates were binned bimonthly

(due to small number of transects for some of the winter months,

monthly bins were inadequate), there was a remarkable congru-

ence in seasonal changes in shell abundance with notable declines

in shell quantity observed in the late spring, summer, and the late

fall (Fig. 3B). One notable difference between the two time-

intervals was a much steeper decline in average specimen

abundance, which was observed only for the July-August months

for the 2008–2010 sampling interval (Fig. 3B).

The maximum monthly wave energy [MMWE] for 1978–1981

and 2008–2010 was not correlated significantly with shell

abundance [SA] (Spearman r = 0.10, p = 0.46) and the pattern

persisted for first differences (month-to-month changes) [DSA]

(r = 20.18, p = 0.21). When MMWE values were downweighted

by the length of a time lag between the last day in which wave

height was at monthly maximum and the day of sampling

[MMWE* = MMWE/#days], correlations remained non-signifi-

cant: (SA: r = 0.26, p = 0.06 and DSA: r = 20.23, p = 0.10,

respectively). All correlation coefficients were low (r,0.3), the first

Accelerating Loss of Shells to Tourism
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differences [DSA] yielded correlation coefficients with an opposite

sign relative to the raw correlations [SA], and none of the tests was

significant. When data were subdivided by season, time-interval,

or both, correlation coefficients either remained low or were non-

interpretable due to excessively small sample sizes.

No dramatic changes in indirect ecological proxies measurable

from shell assemblages could be demonstrated across seasons or

through time. Whereas the absolute abundance of specimens per

transect decreased notably over the last 30 years (Fig. 4), the rank

abundance of the three dominant species remained unchanged

regardless of the season, with C. gallina being the dominant species

and D. semistriatus the least abundant species (Fig. 4). Similarly,

drilling frequency, a proxy for predator-prey interactions between

carnivorous gastropods and bivalves, showed consistent patterns

through time. C. gallina was drilled frequently in both time intervals

(48.3% of drilled valves in 1978–1981 and 41.7% of drilled valves

in 2008–2010, respectively), D. semistriatus was drilled infrequently

(8.2% for 1978–1981 and 8.9% for 2008–2010), and D. trunculus

was drilled rarely (1.3% for 1978–1981 and 4.3% for 2008–2010).

Seasonal changes in drilling frequency also persisted through time.

For both time intervals and for each species, drilling frequencies

were notably lower during summer months. Finally, comparison of

size frequency distributions for specimens of C. gallina obtained for

August transects did not suggest any dramatic shifts in body size

between the two time intervals (Fig. 5). The monthly median

values for valve length varied in a comparable range for 1978–

1980 August transects (n = 826, M1978 = 8.11, n = 205,

M1979 = 12.48, n = 452, M1980 = 12.30) and 2008–2010 transects

(n = 259, M2008 = 10.69, n = 46, M2008 = 9.99). Moreover, the

variation in median shell size was more variable between the

transects within the 1978–1980 time interval than across the two

time intervals. The maximum difference in medians for 1978–

1980 was 3.19 mm (M1980 vs. M1979), whereas the maximum

difference in medians observed between the two time intervals was

2.58 mm (M1978 vs. M2008). When data were grouped by both,

time interval and month, the two time intervals did not differ

significantly from one another, once among-transect variation

within time intervals was considered explicitly (Unbalanced 2-Way

Anova, df = 1, MS = 40.27, F = 2.85, p = 0.09).

When shell abundance estimates for each transect was

compared with corresponding local tourist arrivals, significant

negative correlations were observed for monthly data (n = 51,

r = 20.52, p,0.0001) and for data averaged by month within

each time interval (n = 24, r = 20.49, p = 0.015). Absolute values

of correlation coefficients were relatively modest and the bivariate

interrelation was not strong when examined visually for data

averaged by month (Fig. 6A). However, the tourist arrivals were

distinctly bimodal (note a gap along x-axis of Fig. 6A). When data

were restricted to months when tourist arrivals had been high

(.5000), a strong negative correlation was observed (Fig. 6B),

whether analyzed for monthly data (n = 32, r = 20.72, p,0.0001)

or averaged by month within each time interval (n = 15, r = 20.84,

p = 0.0001). For restricted data, tourist arrivals were a reasonable

predictor of shell abundance (r2 = 0.64, Reduced Major Axis

Regression, p = 0.0008, Permutation Test). When data were

analyzed separately for each time interval, correlation coefficients

remained negative, although not always significant (as may be

expected given a loss of statistical power associated with reduced

sample size). Correlations between first differences (month-to-

month change in shell abundance versus month-to-month change

in tourist arrivals) were also negative, but less pronounced and

non-significant in most cases. Because adjacent transect estimates

were separated on average by 30 days, they did not represent

directly adjacent time series datapoints with high potential for

strong co-dependences. Consequently, detrending may be an

overly conservative and potentially misleading corrective strategy.

Figure 3. Seasonal changes in abundance of common bivalve species based on transects conducted along the shoreline of the
Llarga Beach. (a) A bivariate log-linear plot of monthly changes in abundance of common bivalve species based on transects conducted along the
shoreline of the Llarga Beach during 1978–1981 and 2008–2010 sampling intervals. Each point represents a single monthly transect; (b) A comparison
of bimonthly changes in average abundance for 1978–1981 versus 2008–2010 sampling intervals.
doi:10.1371/journal.pone.0083615.g003
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When data were grouped by tourist arrivals, the strength of

correlation increased as a function of tourist arrivals (Fig. 7). The

Spearman correlation coefficient reached the most negative value

for data restricted to 28 months with the highest tourist arrivals

and fluctuated around 0 for months with the lowest tourist arrivals

(Fig. 7).

Discussion

Causes of Decline in Shell Abundance
The three models of shell decline evaluated in this study include

trends in hydrodynamics resulting in changes in rates of onshore

transport of shell material; ecological shifts in population dynamics

and ecosystem characteristics resulting in time-variant shell input;

and changes in tourism activities and tourism-related beach

management practices resulting in varying rates of shell removal

from shoreline areas. Whereas these models do not represent an

exhaustive list of causal explanations, many other obvious factors

such as changes in beach geomorphology, urban encroachment, or

an increase in commercial fisheries are unlikely to apply. Other

possible causal drivers are expected to be reflected in patterns

evaluated by the three postulated models (e.g., an invasive species

could alter rank order of dominant species, thus supporting

ecological changes through time).

Seasonal changes in wave energy may result in differential

delivery of shell material to the beach [25,45] and decadal-scale

changes may consequently produce similar changes over longer

time scales. Because wave energy has remained relatively

unchanged over the last 30 years and shell abundance did not

show any significant correlations with wave height regardless of

data groupings and tests, it is unlikely that changes in local

hydrodynamic played a notable role in the observed decline in

shell abundance.

Population dynamics of the three studied species may have

varied seasonally or through time, resulting in a variable input of

new shell material to the beach. Because the initial shell input into

death assemblages is expected to be primarily controlled by

biological productivity [46,47], including spawning patterns,

mortality rates, and related locally-controlled processes, seasonal

and multi-decadal changes in shell input at Llarga Beach cannot

be evaluated directly (bivalve population data for the study area

were not available). However, over the last 30 years the same three

species have dominated the local shell assemblages and have

shown comparable seasonal trends. It is, thus, unlikely that the

observed decline in shell abundance in the last three decades was

driven by changes in population dynamics. Moreover, for each of

the three species size frequency distributions remained comparable

through time, suggesting temporal stability in mortality and

recruitment patterns. Finally, patterns of drilling attacks by

predatory snails (within and across prey species) did not change

notably between the two time intervals. Thus, all indirect

ecological proxies measurable from the sampled shell assemblages

consistently suggested that no major changes took place in local

ecosystems over the last 30 years.

A significant negative correlation was found between tourism

and shell abundance consistently at several levels: (1) over the last

30 years, shell abundance declined almost three-fold (2.62), a value

which is remarkably close to the concurrent increase in local

tourist arrivals (2.74); (2) seasonally, the substantial increase in

summer tourism was congruent with concurrent decline in shell

abundance; and (3) monthly, negative correlation between shells

and tourist arrivals was observed, especially for months for which

local tourist arrivals are high. The increase in strength of the

correlation with increase in tourist arrivals is particularly

compelling because it suggests that when tourist activity was high

shell abundance decreased. Conversely, when local tourist arrivals

were low, the tourism-associated shell loss was less important than

Figure 4. Rank abundance of shells of the three dominant species grouped by tourist seasons for the 1978–1981 and 2008–2010
sampling intervals. Values averaged across all transects conducted during a given time interval and season. (a) Data for 1978–1981 transects; (b)
Data for 2008–2010 transects.
doi:10.1371/journal.pone.0083615.g004
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other processes that may have contributed to variation in rates of

shell accumulation and shell removal.

Active collecting versus other shell removal processes
The tourism-related processes that contribute to shell removal

are certainly not limited to shell collecting, although collecting is

an important activity along marine shorelines [48], as also

demonstrated by hundreds of published shell guides aimed at

leisurely and avocational shell collectors. However, other processes

may be also important, including trampling [10,33], recreational

clam harvesting [49], use of recreational vehicles [12], sand

dredging for beach recovery [10], and other similar activities. In

addition, beach maintenance, which can be expected to correlate

with tourism intensity, often involves extensive cleaning and

grooming of beach areas with heavy equipment [10,29,50,51].

This is the case for Llarga Beach, where maintenance activities,

using tractors with rakes, occurred daily during summer months of

2008–2010, but not during the 1978–1981 sampling interval.

These maintenance activities may also explain the anomalously

high decline observed for the 2008–2010 July-August months

when comparing with the 1978–1981 time interval (Fig. 3B).

The relative importance of these various tourism-related

processes is impossible to evaluate for Llarga Beach due to lack

of relevant data. In fact, we are not aware of any published

assessments addressing this issue for dead shell material (there exist

numerous studies on subtidal harvesting of live mollusks for curio

trading [32,52] or impact of other tourism-related processes on

beach and intertidal communities [10,11,12,50,51]). The results

reported here suggest that an increase in tourism can trigger a

major decrease in shell abundance along shorelines thus providing

justification for future studies exploring specific processes that

contribute to removal of shells from beaches by tourists.

As mentioned above, other human-related activities such as

commercial fisheries are unlikely to have played a significant role

in the study area. Although C. gallina and D. trunculus are

commercial species, fisheries along this coast have been operating

Figure 5. Size-frequency distributions of shells of Chamelea gallina from August transects. Drilled and undrilled specimens are
differentiated. (a) Data for 1978–1981 time interval; (b) Data for 2008–2010 time interval.
doi:10.1371/journal.pone.0083615.g005
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over the last three decades in areas located far away from Llarga

Beach (Castelló, F., 2012, pers. comm).

Local Shell Removal as a Proxy for Global Trends
Over the last 30 years, global tourism has grown four-fold, from

,250 million tourist arrivals in 1980 to ,billion arrivals in 2010

(UNWTO Tourism Highlights 2010 by the World Tourism

Organization). The nearly three-fold increase in tourist arrivals at

Llarga Beach is thus not unusual. Given this increase in intensity

and diversity of tourism-related processes in coastal habitats

[10,11,12], it is likely that shell abundance has decreased on many

marine shorelines, paralleling shell losses due to curio trading

[52,53]. In fact, some shell-rich countries that experience intense

tourism have already recognized the severity of this problem and

explicitly regulate not only the type, but also the quantity, of shell

material that visitors are allowed to export out of the country (e.g.,

Figure 6. Log-log bivariate plots of tourist arrivals and shell abundance. Each data point represent average for the same months sampled in
a given time interval (e.g., all July transects obtained in the 1978–1981 sampling period will be represented by one mean value. (a) All data; (b) Data
restricted to months with tourist activity .5000 (a solid line represents a Reduced Major Axis Regression model).
doi:10.1371/journal.pone.0083615.g006

Figure 7. Changes in strength of rank correlation as a function of tourist activity. Monthly estimates are binned into 25-transect groups
based on their rank in terms of tourist arrivals. The left endpoint along the x axis (ranks ‘‘1–25’’) represents the dataset restricted to 25 monthly
transects with the highest tourist arrivals. The right endpoint (ranks ‘‘29–55’’) represent the 25 months with the smallest numbers of tourists. All
restricted datasets are comparable in sample size (n = ,25 transects) although due to tied ranks, some rank ranges represent 24 or 26 monthly
transects. Red symbols are significant at p,0.001 and blue symbols at p,0.01.
doi:10.1371/journal.pone.0083615.g007
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the Commonwealth of Bahamas). However, we lack assessments of

impact of tourism on shelly organisms over multi-decadal time

scales [10] largely because of the absence of methodologically

comparative samples from past decades [29]. Estimates reported

here may serve as a starting point toward developing empirical

estimates for shell loss due to tourism.

It is likely that the nearly three-fold decline in shell abundance

observed at Llarga beach is a conservative estimate compared to

other beaches visited by tourists. While a popular tourist area,

Llarga Beach is not a highest-tier tourist destination and, as noted

above, the increase in tourist arrivals observed for Llarga Beach

was well below global estimates for the same time interval. Llarga

Beach provides shell material dominated by small, common

bivalves that are neither attractive to professional shell collectors

nor spectacular enough to attract attention of every casual

beachcomber. Compared to other beaches, which may harbor

esthetically appealing specimens, Llarga Beach is unlikely to

trigger enthusiastic collecting by tourists or motivate intense

subtidal harvesting of live fauna for curio trading. Finally, the

negative effects of collecting live specimens for subsistence and

recreational shellfish harvesting [10,31,54] have been minimal in

the study area compared to many other marine shorelines.

Eco-Environmental Consequences
Removal of shell material from shorelines may trigger negative

eco-environmental changes. Among others, such changes may

include physical, chemical, and biological alterations.

For example, shell material scattered along the shorelines may

stabilize sediments by forming pavements that hamper sediment

movement [55], although eolian transport of fine fraction may be

enhanced locally around coarse objects such as shells [56].

Selective removal of macroscopic shells may change the rates

and patterns of sediment erosion along the shoreline.

Similarly, removal of shells potentially changes calcium

carbonate budget. The carbonate skeletons of marine macro-

organisms such as echinoderms and mollusks tend to be

overlooked in modeling the global CaCO3 cycles in the oceans

[57], although their role may be significant [58,59]. The

importance of mollusks in carbon cycle has been also acknowl-

edged by listing them as a potentially important target for carbon

sequestration [59]. As our understanding of the role of mollusks in

the global elemental cycling continues to improve, we will also

need to account for the removal of large quantities of mollusk

shells from the natural cycle by tourism. If the removal of shells

due to tourism along shorelines increased three-fold over the last

three decades, as this study potentially implies, the tourists may be

significantly altering the CaCO3 cycling on our planet.

Removal or destruction of shells, which serve variety of

ecosystem functions, may also negatively affect a broad spectrum

of organisms. The obvious examples include use of shells for

anchoring by seagrass [19], settling for diverse encrusting

organisms [20,60,61], and dwelling and mining by endobiolithic

algae [18] and bioeroding sponges [62,63]. Hermit crabs and fish

also rely heavily on mollusk shells (mostly gastropods) and are

often limited by lack of suitable shells [21,22,23]. Shells also serve

as building materials for variety of coastal organisms, both

terrestrial [17] and marine [64], and perform many other

ecosystem services to a diverse array of organisms. It is fair to

note here that the increase in shell abundance can also have

negative effects. For example, beetles of the genus Bledius do not

live in sand too rich in shells because of their digging behavior

[65,66] and sediments with a high fraction of shell fragments may

negatively affect intertidal clams [66,67].

Conclusions

By exploiting a unique opportunity for developing comparative

data on shell abundance for one specific coastal area on the

Iberian Peninsula, the study demonstrated that shell abundance

declined substantially over the last three decades. Moreover, the

shell abundance patterns showed strong negative correlations (over

multiple time scales) with tourist arrivals suggesting that tourism

and tourism-related activities may be a driving force behind the

accelerating removal of shells from marine shorelines. The shell

loss may have substantial ecological and environmental conse-

quences, although a rigorous quantitative assessment is not yet

possible.

There is a growing realization that the most recent fossil record,

including surficial skeletal remains found on land and in the sea,

may yield diverse data for assessing ecosystem changes

[14,15,41,68,69]. This study suggests that shell accumulations

found along shorelines may also provide quantifiable information

about local consequences and global implications of seasonal and

multi-decadal changes in tourism.

Supporting Information

Table S1 Raw data on shell abundance used in this
study. Abbreviations: RD - number of right drilled valves; LD-

number of left drilled valves; RUD - number of right non-drilled

valves; LUD - number of left non-drilled valves; D - total number

of drilled valves; UD - total number of non-drilled valves; R - total

number of right valves; L - total number of left valves; Total -

Total number of valves.

(XLSX)
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