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Abstract

Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex
genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic
alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of
patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian
carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs)
were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two
clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number
data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS)
and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to
each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification
scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly
different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and
20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of
ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous
tumors into clinically relevant treatment subgroups.
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Introduction

Epithelial ovarian carcinoma represents the fifth leading cause

of cancer death among women in the United States [1,2]. It is

estimated that there will be 21,550 cases of invasive ovarian cancer

diagnosed and 14,660 deaths attributed to ovarian cancer in 2009

[3]. The five year survival rate of ovarian cancer ranges from 30 to

92%, depending on the spread of the disease at the time of

diagnosis [3]. While early-stage ovarian cancers are highly curable,

over 70% of ovarian cancer patients are diagnosed with the

advanced disease with lower cure rates and are associated with

significant morbidity and mortality [4]. Over the past decades

there have been significant advances in ovarian cancer treatment

as a result of improved surgical techniques and chemotherapy

regimens through multiple clinical trials [5,6]. Debulking surgery

has become the standard treatment for advanced stage ovarian

carcinoma; a residual tumor size of greater than 2 cm is associated

with a survival of 12–16 months, compared with 40–45 months if

the tumor is less than 2 cm [7,8]. Adjuvant chemotherapy with

platinum and taxane based regimens improves both disease free

survival and overall survival in all patient subgroups; however, the

longest survival periods are observed in optimally debulked
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patients. Up to 80% of patients with advanced stage disease

experience an initial response to chemotherapy but eventually

relapse with a median progression free survival of 18 months

[9,10,11,12,13]. A number of resistance mechanisms have been

defined in vitro [14,15,16]. However, the importance of these

resistance mechanisms in patients remains unclear. Thus, there is

a need for improvement in the understanding of the underlying

genetic alterations involved in the pathogenesis of ovarian cancer.

Identification of prognostic/predictive markers can improve

patient management and allow development of molecularly

targeted therapeutics.

The serous type ovarian carcinoma accounts for approximately

70% of ovarian cancer cases and is one of the clinically aggressive

subtypes [17]. High-grade serous tumors differ from all other

ovarian carcinomas in terms of their pathology, pathogenesis,

prognosis and underlying genetic alterations [18,19]. The most

frequently documented mutation is in the TP53 tumor suppressor

gene.

Expression profiling-based studies have also shown that high-

grade tumors cluster separately from low grade carcinomas and

borderline tumors [20,21]. Several expression profiling based

studies have identified gene expression signatures associated with

response to chemotherapy [22,23] and to different subtypes of

ovarian cancer [21,24]. High-level amplifications of ERBB2, MYC,

PIK3CA, EVI1, RAB25, AKT2, CCNE1, NOTCH3, FGFR2, CCND1,

PAK1, EMSY, ZNF217, NCOA3 [23,25,26,27,28,29,30,31,32] and

homozygous deletion, mutation, reduced expression and/or

hypermethylation of TP53, KRAS, LOT1, DOC2, NOEY2, OVCA1,

SPARC, CDKN2A, RB1, PTEN [33,34,35,36,37,38,39] genes have

also been reported. However, little consensus or overlap between

all these studies has emerged.

Array-based comparative genomic hybridization (aCGH) allows

detection of DNA copy number alterations (CNA) and provides a

global assessment of molecular events in the genome [40]. Several

studies have been reported utilizing either conventional metaphase

chromosome-based CGH [41,42,43] or array-based high resolu-

tion genomic technologies for identifying genome wide CNAs in

ovarian cancer [23,44,45,46,47]. The above mentioned studies

have identified frequent regions of increased copy number along

1q, 3q26, 7q32–q36, 8q24, 17q32 and 20q13; and regions of

decreased copy number along 1p36, 4q, 13q, 16q, 18q and Xq12.

However, specific genetic markers that are predictive of clinical

outcome are yet to be identified for high-grade ovarian cancers.

The rationale for our study is based on the idea that genetic

alterations are the cause of tumor development and progression.

Therefore, it is likely that combination of specific genetic

alterations will be predictive of clinical behavior [48,49]. In this

study, using high-resolution aCGH, we sought to identify

potentially useful DNA-based prognostic marker/s to delineate

high-grade serous type ovarian cancer patients into molecularly

defined clinically relevant subgroups.

Materials and Methods

Tumor samples and clinical data
The study group included tumor samples from 72 patients

identified within prospectively collected MGH Gynecological

Tissue Repository and Cedars-Sinai Women’s Cancer Research

Program Tissue Bank under IRB approved protocols at Massa-

chusetts General Hospital and Cedars-Sinai Medical Center from

1991 to 2008 (Table 1). Under these protocols, patients with

suspected ovarian cancer are consented in writing for tissue

collection and prospective clinical data collection prior to surgical

exploration. Frozen tumor tissues were collected, catalogued and

anonymized. In each case, a small piece of tissue adjacent to the

tissue that was used for DNA extraction, was paraffin embedded

and H&E stained for histological validation. All samples were

reviewed by a pathologist to confirm the presence of viable tumor

cells in the tissue sample. Only samples with more than 70–80%

viable tumor tissue were chosen for this study. Clinical data were

then paired to the assigned catalogue number of each sample.

Clinical factors including age at diagnosis, stage of disease, grade

of tumor, origin of tumor (ovary, peritoneum, fallopian tube),

specific surgical therapy, specific chemotherapy, platinum sensi-

tivity, recurrence, progression free survival (PFS), overall survival

(OS) were recorded and paired with the molecular data for

correlation.

For reference DNA, buffy coats from 5 anonymous donors were

purchased from the Massachusetts General Hospital Blood Bank.

Table 1. Patient characterisitics.

Age

Median 60.1

Range 36.9, 90.5

Grade

2 5 (6.9%)

3 67 (93.0%)

Stage

II 5 (6.9%)

III 43 (59.7%)

IV 24 (33.3%)

Primary tumor site

ovary 56 (77.7%)

peritoneal 12 (16.7%)

fallopian tube 4 (5.6%)

Radiation

Yes 5 (6.9%)

No 67 (93.0%)

Optimal Cytoreduction

Yes 64 (88.9%)

No 8 (11.1%)

Platinum Sensitive

Yes 39 (54.2%)

No 27 (37.5%)

Not available 6 (8.3%)

Bowel Resection

Yes 21 (29.2%)

No 51(70.8%)

Overall Survival

median (months) 38.5

% censoring 59.2

hospice/deceased 29 (40.3%)

Progression-free Survival

median (months) 8.0

% censoring 28.2

doi:10.1371/journal.pone.0030996.t001
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Validation datasets
Two independent datasets were used for validation. The first

dataset included a panel of 160 high-grade serous tumors from

UCSF and the Gynecology Oncology Group (UCSF-GOG).

These samples were analyzed using a 1 Mb BAC array platform.

For these patients, overall survival information was available. The

second dataset was obtained from The Cancer Genome Atlas

(TCGA) project, included 246 high-grade serous tumors that were

analyzed using a custom designed 415 k oligonucleotide array

from Agilent. Clinical information for these samples was obtained

with permission from the TCGA data committee.

Oligonucleotide array CGH
High molecular weight genomic DNA was isolated from 72

primary ovarian tumor samples and normal whole blood from 5

anonymous female donors using routine protocol. Array CGH was

performed to determine DNA copy number changes using Agilent

Human 105 K oligonucleotide microarrays (014698_D_20070820)

following the manufacturer’s instructions (http://www.home.

agilent.com/agilent/home.jspx). Genomic coordinates for this

array are based on the NCBI build 36, March 2006 freeze of the

assembled human genome (UCSC hg18), available through the

UCSC Genome Browser. This array includes a comprehensive

probe coverage spanning both coding and non-coding regions, with

emphasis on well-known genes, promoters, micro RNAs, and

telomeric regions and provides an average spatial resolution of

21.7 kb. Array hybridization, washing and image processing were

performed following the protocol described in Gabeau-Lacet et al

2009 [50].

aCGH data analysis methods
All 5 normal reference DNA samples were hybridized one at a

time to identify the common polymorphisms (CNVs) [51]. These

CNVs were flagged during image analysis and were eliminated

from subsequent analysis. DNA copy number alteration (CNA)

was identified through dynamic thresholding of segmented aCGH

data. Circular binary segmentation (CBS) was used to segment

each hybridization into regions of common mean [52]. For each

hybridization, the median absolute deviation (MAD) across all

segments was then obtained. Probes assigned to segments with

mean value greater than a scaled MAD were identified as gain.

Likewise, probes corresponding to segments with mean value less

than a scaled MAD were identified as loss. A default MAD scaling

factor of 1.11 was utilized for both gains and losses [53]. Both

UCSF-GOG and TCGA data sets were subjected to CBS-MAD

algorithms followed by GISTIC analysis to identify amplifications

and deletions. Following segmentation and classification, data

were further reduced, without compromising the continuity and

breakpoints, to facilitate downstream analyses [54]. This reduced

dataset was used for all subsequent analyses.

To identify minimal regions of common alteration across all

hybridizations, the Genomic Identification of Significant Targets

in Cancer (GISTIC) approach [55] was utilized on each data set.

Threshold selection for the GISTIC procedure was based,

conservatively, on the maximum threshold for alteration (across

all hybridizations) identified under the MAD approach described

above; 0.4 was selected as the gain and loss threshold and 0.25 was

selected as the significance threshold. Each analyzed CBS segment

consisted of at least four markers. Segments that contained fewer

than four markers were combined with the adjacent segment

closest in segment value. A q-value was then obtained for each

region. Each peak (i.e., region associated with a low q-value) was

tested to determine whether the signal was primarily due to broad

events, focal events or overlapping events of both types.

Identification of markers associated with survival (PFS and OS)

was conducted through utilization of cluster analysis. Unsuper-

vised clustering was first conducted on the set of log2 ratios from

the reduced data set described above. Markers on the X

chromosome were excluded from the analysis. The Euclidean

distance metric was employed in conjunction with the Ward

approach for agglomerative clustering. Resultant clusters were

then assessed for differences in survival under the Cox propor-

tional hazards model. Because significant differences were

identified, GISTIC was performed to identify makers uniquely

associated with each subgroup.

To validate the identified set of discriminating markers,

supervised clustering was then conducted separately on the

UCSF-GOG and TCGA data sets through use of Support Vector

Machines [56]; genomic regions in each of the two validation data

sets corresponding to the identified discriminating markers were

utilized to guide the clustering. For each data set, resultant clusters

were then assessed for differences with regard to both overall and

progression-free survival.

Results

Clinical Characteristics of OVCA patients
The median age at the time of diagnosis of the 72 patient cohort

was 60 years (range 37–90) (Table 1). Mean follow up time was 37

months (range 1–212). The majority (93%) of the population

presented with advanced stage disease. Surgical staging was

utilized as upfront therapy for all patients in the cohort, and this

intervention was described as optimal with less than 1 cm of

residual disease in 67 patients (88%). Extensive surgical cyto-

reduction including peritoneal stripping and bowel resection were

utilized in 64% of the cohort in order to achieve an optimal

debulking. Only 1 patient did not receive a taxane and platinum-

containing regimen as adjuvant therapy after surgery. Six patients

were lost to follow up less than 2 months after surgical exploration.

Platinum sensitivity defined as a progression free survival of

greater than 6 months following the last dose of adjuvant

chemotherapy was observed in 42 of 70 (60%) patients, with 12

patients (17%) demonstrating progressive disease despite chemo-

therapy. Median progression free survival was 8 months, with a

median overall survival of 38 months. Univariate survival analysis

identified platinum sensitive disease (p,0.0001), optimal cytor-

eduction (p,0.0001), lack of recurrence or progression (p,0.001)

and presenting CA-125,500 U/mL (p,0.04) as prognostic

clinical factors predicting an overall survival advantage. A Cox

proportional hazards model incorporating these clinical factors

adjusted for age revealed that platinum sensitive disease (hazard

ratio 0.06), and optimal cytoreduction (0.12) were independent

prognostic factors associated with an improved survival.

Global DNA copy number alterations
Genomic copy number for each probe was determined by

calculating the log2 ratio of median signal intensities of the tumor

and normal reference DNA. High signal to noise ratios were

observed in all samples due to good quality tumor DNA.

Representative profiles for five different tumors are shown in

Figure 1. A large number of tumors showed some degree of

genetic heterogeneity in the background along with distinct

increase and decrease of DNA copy numbers involving large

portions of chromosome arms (Figure 1A, C, and D). High-level

amplifications of regions including 3q26.2 and 8q24.2 were

frequently observed (Figure 1B–D). Some tumors displayed more

than 10 regions of high-level amplifications (Figure 1E). A

genome-wide view of the CNAs in the 72 tumors is shown in

DNA Copy Number in Ovarian Carcinoma
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Figure 1F and the frequency of amplification and deletion is shown

in Figure 1G. In order to identify frequent regions of copy-number

alterations, and to define the minimal regions of gains and losses,

the statistical method Genomic Identification of Significant

Targets In Cancer (GISTIC) was applied to the entire dataset

(Figure 1H and I).

GISTIC analysis identified 19 regions of gains along 18

chromosome arms (Figure 1H) and 18 regions of losses along 17

chromosome arms (Figure 1I) distributed throughout the genome.

Several chromosomal arms had more than one minimal region of

gain and loss. For each alteration, the peak region (i.e., the highest

frequency and amplitude of events) was selected as the region most

likely to contain a cancer gene. Several oncogenes and tumor

suppressor genes previously known to have copy number changes

in human ovarian cancer, such as MYCL1, EVI1, BRAF, MYC,

KRAS, CCNE1, TP73, RB1, and MN1, were readily identified by

GISTIC. Chromosomal locations, frequencies, genomic intervals,

gene contents and candidate cancer genes of these changes are

highlighted in Table 2. There were 19 regions each of gains and

18 regions of losses (with significant q values) identified with the

number of genes ranging from 2–61. The size of deletions ranged

from 400 kb to 3 Mb and the number of genes mapping to these

regions ranged from 6–106 respectively. In addition, gain and loss

of entire chromosome arms were frequently observed. Genes with

known or possible function in cancer are highlighted in figure 1H

and 1I.

Amplification of 3q26.2 including EVI1 gene and 8q24.12

including MYC oncogene were the most frequent alterations

occurring in 72–75% of tumors suggesting a role for these genes in

tumor maintenance or dissemination process. The most frequently

deleted regions (78%) were located on 16q24.2 including FBXO31

and BANP genes and on 22q13.33 (Table 2). Other amplified

regions were observed in 28–58% of tumors and deleted regions

were observed in 30–70% of tumors respectively. In addition to

the identification of regions of gain and loss common to the entire

set of tumors, it was also of interest to identify regions of copy

number alteration significantly associated with differences in OS

and PFS which was assessed using clustering algorithms.

Cluster analysis
In order to identify a robust genomic signature and to define

clinically relevant genetic subgroups among the high-grade

tumors, we applied unsupervised hierarchical clustering algorithm

to unfiltered aCGH data from 72 serous type tumors. Figure 2A

illustrates the two subgroups that resulted from unsupervised

clustering. The two primary subgroups were shown to differ

significantly with regard to progression free survival (PFS)

(p = 0.0008) and a marginal difference in OS (p = 0.07); figure 2B

shows the PFS Kaplan-Meier plot for the two groups. Figure 2C

illustrates differences between clusters with regard to clinical

covariates. Formal comparison under the Cox proportional

hazards model revealed a significant difference between the two

subgroups with regards to platinum sensitivity (p = 0.016) and

peritoneal stripping (p = 0.011).

To identify CNAs associated with each subgroup, and to

determine whether these markers predict outcome independent of

grade, we conducted a separate GISTIC analysis of grade 3

tumors only from each cluster. Figure 3A and B show

amplifications and deletions identified by GISTIC for tumors in

cluster 1 (worse prognosis) and 3C and D for tumors in cluster 2

(better prognosis) respectively. Amplification and deletion peaks

unique to each group were readily identified by GISTIC and are

indicated by green stars. We used these unique probe sets, listed in

Supplementary Table S1, to build a prediction model for

conducting supervised clustering. We then evaluated the model

against our tumor panel, including grades 2 and 3, using leave-

one-out cross validation method. This resulted in 80% accuracy

rate in classifying the tumors into good and poor outcome

subgroups.

Validation of independent datasets
Two independent datasets of high-grade serous tumors with

clinical follow up information were used for validation. The

UCSF-GOG dataset included 160 high-grade tumors, with overall

survival information, randomly selected from the Gynecology

Oncology Group. Copy number information for this dataset was

generated using a 1 Mb BAC array. Data were analyzed using

CBS-MAD followed by GISTIC (Figure S3). In order to perform a

proper comparison, we pulled targets from the BAC array

corresponding to unique probe sets identified from our analysis

as described in methods (Table S2 1ists BACs used for clustering).

Supervised clustering using our discriminating markers resulted in

two subgroups with a statistically significant difference in overall

survival (p = 0.028) (Figure 4). Since validation datasets were

generated using different array formats, frequency of amplifica-

tions and deletions were compared in all three datasets prior to

analysis (Table S3).

The second dataset included 246 high-grade serous tumors from

the TCGA project that were analyzed by a custom made Agilent

415 K oligonucleotide array. Supervised clustering using our

discriminating markers resulted in three subgroups with significant

difference in PFS (p = 0.0017) and in OS (p = 0.0098) (Figure 5A

and B) (Figure S1). Further analysis of the subgroups showed a

difference in PFS (p,0.001) and OS (p = 0.0028) between

subgroup 2 and combined subgroups 1 and 3 (Figure 5A1 and

B1) suggesting that cluster 2 includes patients with worst outcome.

Results from the GISTIC analysis of TCGA clusters are shown in

Figure S2 A–F. Note that the amplification and deletion peaks of

original cluster 1 resembled the amplification and deletion peaks of

TCGA cluster 2. To identify genetic alterations specific to each

group, we compared CNAs in each cluster (Figure 5C–E1). The

TCGA clusters were distinctly different at 8 genomic regions along

8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21, and

20q13.2.

Discussion

In this study, we first evaluated global DNA copy number

alterations in a panel of 72 clinically annotated high-grade serous

ovarian carcinomas to identify specific genetic alterations

associated with clinical outcome. Unsupervised hierarchical

clustering identified two distinct genomic subgroups with signif-

icant difference in clinical outcome. Unique genomic regions

identified from each group were then able to successfully divide

two independent datasets into clinically distinct subgroups with a

significant difference in survival.

Previous studies that attempted to identify the molecular

determinants of clinical outcome have focused on single genes

because of the frequent involvement of these genes/pathways in

serous type ovarian cancers [57,58]. However, these genes,

although frequently associated in ovarian carcinomas, failed to

predict outcome compared to the conventional clinical indicator

such as the extent of surgery [59,60]. Gene expression based

studies have been useful in predicting clinical phenotypes such as

histologic types and stage for various tumor types [61], including

breast [62,63] and ovarian cancers [64,65,66,67,68].

Several groups have applied aCGH-based genomic technology

to identify CNA patterns predictive of platinum resistance [23,45],
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and to identify potential driver genes contributing towards ovarian

cancer pathogenesis [29,30,39]. However, these studies have not

established a correlation between CNA pattern and clinical

endpoints such as PFS and OS. Some limitations that could have

affected the outcome of these studies are sample size, a

heterogeneous mixture of samples from different histology/grades,

difficulty in combining data from various platforms due to minimal

overlap of the results, and lack of a robust dataset for validation.

To our knowledge, our study is the first to link a distinct set of

CNAs to clinically relevant patient subgroups of high-grade serous

ovarian cancers with a significant difference in PFS and OS.

Based on GISTIC analysis, we identified a set of discriminating

markers from a cohort a 72 high-grade serous ovarian cancer.

Next, we applied those discriminating markers on a dataset

generated from a cohort of 160 high-grade serous cancers that

were analyzed using a 1 Mb BAC array and identified three

clusters which is likely due to larger sample size. Analysis of the

three resulting clusters showed a significant difference in overall

survival between cluster 1 and combined clusters 2 and 3

(p = 0.028) (Figure 4) (Figures S4 and S5). We then used a cohort

of 246 tumors from TCGA that were analyzed using Agilent 415 k

oligonucleotide arrays. Using the same discriminating markers, we

identified three clusters with a significant difference in both PFS

(p = 0.0017) and OS (p = 0.0098) (Figure 5). To further define the

groups, we compared the groups in combination. Combination of

clusters 1 and 2 versus cluster 3 showed a marginally significant p

value of 0.048 for PFS and 0.077 for OS. However, comparison of

cluster 2 versus clusters 1 and 3 resulted in a significant difference

both in PFS (p,0.001) and OS (p = 0.0028) (Figure 5). Of note,

alterations in the cluster 1 of our dataset resembled the alterations

in the cluster 1 of UCSF-GOG dataset and cluster 2 of TCGA

dataset further confirming our initial results.

In order to identify markers specific for each group, we utilized

TCGA dataset since it provided the highest resolution and larger

sample size. First, we compared the frequency of losses, gains and

high-level amplifications and deletions in each cluster (Figure 5 C–

E1). The three TCGA clusters were distinctly different at 8

genomic regions along 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12,

19q12, 20q11.21, and 20q13.2. In Cluster 1, 70–76% of samples

showed loss of 17p11.2 (Chr17:17646236–21720090) and 17p12

(Chr17:10689461–16833125). In cluster 2, 65–70% of samples

had amplifications on 12p12.1 (Chr12:16803022–25998952),

19q12 (Chr19:34794890–35592893), 20q11.21 (Chr20:29363673–

29773184) and 20q13.12 (Chr20:42510865–45356897). In

cluster 3, 84–94% of tumors showed losses on 8p21.3

(Chr8:22388473–25606748) and 8p23.2 (Chr8:1422246–

5781946) regions respectively. Furthermore, in all three datasets

the poor outcome subgroups had amplifications along 12p12.1,

19q12 and 20q. In the UCSF-GOG dataset, the 12p12.1 in

cluster 1 was distinctly visible compared to the 19q and 20q

amplifications. This is likely due to the lower resolution of the

array used for these samples. Similarly, the deletions along 8p

and 17p were also present in high frequencies in the other two

clusters (Supplementary Figure S4).

The minimal region of deletions including homozygous

deletions along 17p included the mitogen-activated protain

kinase 3 (MAP2K3) and mitogen-activated protein kinase 4

(MAP2K4) genes. MAP2K3 is activated by mitogenic and

environmental stress, and participates in the MAP kinase-

mediated signaling cascade. MAP2K4 is a central mediator in

the stress activated protein kinase signaling pathway that

responds to a number of cellular and environmental stress factors

[69]. By phosphorylating MAP kinases such as JNK, MAP2K4

can ultimately transmit stress signals to nuclear transcription

factors that mediate various processes including proliferation,

apoptosis and differentiation. The majority of metastatic ovarian

cancers show significantly reduced expression suggesting that

MAP2K4 protein levels are down regulated when cells acquire

the ability to grow at a metastatic site [70]. Analysis of a number

human ovarian cancer cell lines showed that MAP2K4 expression

is not detectable in 3 cell lines (SHOV3ip.1, SKOV-3 and HEY-

A8) known to be metastatic in vivo while other members of the

MAP2K4 pathway are intact including MEKK1, MKK7, JNK

and c-JUN. In addition, key members of the p38 pathway

including MKK6, MKK3 and p38 were also present. These

results implicate dysregulation of the stress-activated protein

kinase signaling cascade in ovarian cancer metastasis and support

the hypothesis that MAP2K4 regulates metastatic colonization in

ovarian cancer. Several studies have reported somatic mutations

in the MAP2K4 gene in multiple cancer types including ovarian

cancer [71,72,73]. Kan et al. 2010 stably expressed MAP2K4

mutants in mammalian cells to test their transforming activity.

They found that several of the mutants promoted anchorage-

independent growth. However, a majority of the MAP2K4

mutants showed reduced activity compared with wild-type kinase.

These results suggest that the MAP2K4 mutants may function in

a dominant-negative manner and promote anchorage-indepen-

dent growth in a manner similar to a synthetic dominant-negative

MAP2K4 previously reported [74]. From a translational

perspective, this finding suggests that modulation of the MAP2K4

pathway, either by restoration of MAP2K4 function alone or in

combination with therapeutic agents, could have a clinical

benefit.

Figure 1. A–E. Representative aCGH profiles of 5 ovarian carcinomas. Log2 ratios (y axis) are plotted along the chromosomes (x axis). Each tumor
showing many CNAs including gain and loss of entire chromosome and/or chromosome arms, interstitial deletions, and high-level amplifications
(indicated in red arrows). Some tumors had more than 10 high-level amplifications. F. Genomic profiles of 72 primary ovarian carcinomas generated
by oligonucleotide array CGH. Each column in the left panel represents a tumor sample and rows represent losses and gains of DNA sequences along
the length of chromosomes 1 through X as determined by the segmentation analysis of normalized log2 ratios. The color scale ranges from blue
(loss) through white (two copies) to red (gain). The right panel indicates the frequencies of gain and loss of oligonucleotide probes on a probe-by-
probe basis for all autosomes and the X chromosome. The color scale ranges from white (no changes) to blue (frequent changes). Amplification of
3q26.2 and 8q24.12 including the EVI1 and MYC oncogenes and deletion of 16q24.2 and 22q13.33 were the most frequent alterations observed in
75% and 78% of the ovarian carcinomas respectively. G. Overall frequency of CNAs in 72 high-grade serous ovarian carcinomas. H and I. GISTIC
analysis of copy number gains (H) and losses (I) in ovarian carcinomas. The statistical significance of the aberrations identified by GISTIC are displayed
as false discovery rate q values to account for multiple hypothesis testing (q values; green line is 0.25 cut-off for significance). Scores for each
alteration are plotted along the x-axis and the genomic positions are plotted along the y-axis; dotted lines indicate the centromeres. H) GISTIC
revealed twenty broad and focal regions of gain (copy number threshold = log2 ratio $0.4). I) Loss of both broad and focal regions were identified by
GISTIC (copy number threshold = log2 ratio#0.4 for broad and #0.1 for focal events). Twenty broad and focal regions of losses, including seven focal
events, were identified in the background of broad regions. Candidate genes for some broad and focal events are noted. Green stars indicate known
or presumed copy number polymorphisms.
doi:10.1371/journal.pone.0030996.g001

DNA Copy Number in Ovarian Carcinoma

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30996



The second cluster included the worse outcome subgroup. In

this cluster, four regions along 12p12.1, 19q12, 20q11.21, and

20q13.12 were amplified in significantly high proportion of

samples (Figure 5). The peak region on 12p12.1 included 4 genes:

SRY (sex determining region Y)-box 5 isoform b (SOX5),

(branched chain aminotransferase 1, cytosolic) BCAT1, cancer

susceptibility candidate 1 isoform a (CASC1), and c-K-ras2 protein

isoform a precursor (KRAS). The SOX5 gene encodes a member of

the SOX (SRY-related HMG-box) family of transcription factors

involved in the regulation of embryonic development and in the

determination of the cell fate. The encoded protein may act as a

transcriptional regulator after forming a protein complex with

other proteins [75]. The functional consequence of SOX5

amplification in human cancers has not been explored. One

report suggests that over expression of SOX5 enhances nasopha-

ryngeal carcinoma progression and correlates with poor survival

[76]. However, its role in ovarian cancer is unexplored.

The Bcat1 gene was isolated in mouse by a subtraction/

coexpression strategy with Myc-induced tumors of transgenic

mice, and was shown that Bcat1 is a direct genetic target for Myc

regulation in mouse [77]. The Bcat1 gene is highly expressed early

in embryogenesis, and during organogenesis its expression is

Table 2. Amplifications and deletion peaks identified by GISTIC.

Descriptor
Amplification
or Deletion

Broad or
Focal Peak Limits q values

Frequency
(%)

Number of
genes in peak

Known
cancer genes

1p34.2 Amp Peak 1 focal chr1:39685801–40370914(probes 1602:1635) 1.58E-05 47 10 MYCL1

1q21.2 Amp Peak 2 broad chr1:148088286–149154002(probes 4428:4494) 1.08E-05 54 19

1q42.3 Amp Peak 3 both chr1:232669917–234247146(probes 7525:7574) 3.59E-08 55 7

2p21 Amp Peak 4 broad chr2:44361420–47866370(probes 9494:9634) 0.0008159 47 21

2q31.1 Amp Peak 5 focal chr2:175187074–177201863(probes 13436:13501) 0.0002898 41 16

3q26.2 Amp Peak 6 both chr3:170088444–170608075(probes 21389:21408) 7.20E-28 75 2 EVI1

5p15.33 Amp Peak 7 broad chr5:763495–848743(probes 28334:28422) 0.0011277 39 23 TERT

6p22.3 Amp Peak 8 broad chr6:18594470–21251395(probes 34246:34314) 1.13E-07 55 21 DEK

7q34 Amp Peak 9 broad chr7:138546566–139329889(probes 43855:43891) 9.41E-06 48 61 HIPK2

8q24.21 Amp Peak 10 both chr8:128870582–129868380(probes 48692:48710) 4.80E-31 72 6 MYC

9p24.2 Amp Peak 11 broad chr9:2454035–3357700(probes 49382:49413) 0.0059345 28 7

10p15.1 Amp Peak 12 broad chr10:5337351–6259241(probes 53434:53478) 1.40E-05 51 18

10q22.3 Amp Peak 13 focal chr10:80077917–80824746(probes 55808:55827) 0.025847 30 19

11q14.1 Amp Peak 14 focal chr11:76347688–79590923(probes 60715:60818) 8.53E-05 34 27 PAK1

12p12.1 Amp Peak 15 broad chr12:24100724–24946002(probes 63600:63632) 8.34E-06 42 25 SOX5

19p13.11 Amp Peak 17 broad chr19:16413980–16621934(probes 86569:86580) 0.0043441 39 27 NOTCH3

19q12 Amp Peak 18 focal chr19:34887276–35388638(probes 86927:86937) 3.99E-11 45 3 CCNE1

20p13 Amp Peak 19 broad chr20:2081797–3588124(probes 88375:88451) 1.06E-06 50 26

20q13.12 Amp Peak 20 focal chr20:43063207–44606609(probes 89762:89861) 1.34E-10 58 2 ZMYND8

1p36.33 Del Peak 1 focal chr1:823965–2511264(probes 10:101) 0.0002071 46 56 TP73

4q34.1 Del Peak 2 both chr4:174091952–174549004(probes 27547:27566) 1.28E-11 55 10

5q13.2 Del Peak 3 broad chr5:72832600–75235131(probes 30065:30149) 2.93E-07 53 29

6q26 Del Peak 4 broad chr6:162719313–165363813(probes 38878:38948) 1.84E-08 52 28

7p22.3 Del Peak 5 focal chr7:902447–1887560(probes 39172:39224) 0.0046966 39 23 MAD1L1

8p23.2 Del Peak 6 broad chr8:1422246–3652163(probes 44761:44852) 1.14E-11 60 6

9q34.11 Del Peak 7 broad chr9:130311520–131652310(probes 52720:52791) 6.85E-06 46 31

11p15.5 Del Peak 8 both chr11:1–562228(probes 57848:57879) 2.58E-11 56 22 HRAS

13q14.12 Del Peak 9 broad chr13:39671016–49044112(probes 68180:68577) 3.87E-05 49 53 RB1

15q13.1 Del Peak 10 broad chr15:26364997–27222402(probes 74201:74215) 0.0024529 30 10

16p13.3 Del Peak 11 focal chr16:479088–756440(probes 77335:77357) 2.93E-07 51 22

16q24.2 Del Peak 12 broad chr16:86172468–87009930(probes 80015:80041) 3.65E-15 78 12 FBXO31, BANP

17p11.2 Del Peak 13 broad chr17:17622694–18869071(probes 80901:80951) 1.14E-12 65 35

18q23 Del Peak 14 broad chr18:71478691–74906480(probes 85605:85715) 1.12E-08 55 12

19p13.3 Del Peak 15 both chr19:353214–3505632(probes 85779:85940) 3.99E-16 70 106

19q13.32 Del Peak 16 broad chr19:52180116–52242321(probes 87658:87660) 8.45E-08 50 57

22q12.1 Del Peak 17 broad chr22:26250112–26828858(probes 92440:92459) 1.86E-09 55 17 MN1

22q13.33 Del Peak 18 both chr22:48814623–49204003(probes 93575:93600) 3.40E-21 78 30

doi:10.1371/journal.pone.0030996.t002
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localized to the neural tube, the somites, and the mesonephric

tubules. The gene is also expressed in several MYC-based tumors.

As in mouse, the BCAT1 gene is a target for MYC activity in the

oncogenesis process in human [77]. Using expression profiling, Ju

et al. 2009 reported differential expression of BCAT1 gene in

chemoresistant ovarian cancer compared to chemosensitive

tumors [78]. Depletion of BCAT1 by RNA interference in

nasopharyngeal cancer cells effectively blocked the proliferation of

cells suggesting a role for BCAT1 in tumorigenesis [79]. In

colorectal cancer immuno-histochemical analysis of BCAT1

protein showed significantly higher levels of expression in tumor

tissues with distant metastasis compared to those without and was

shown to be highly predictive of distant metastasis [80]. The Casc1

gene was identified as a strong candidate lung tumor susceptibility

gene through whole genome analyses in inbred mice [81].

About 20–40% of human tumors carry mutation in KRAS [82].

The KrasG12D conditional knock-in mouse model has been

extensively used to study the mechanisms of Ras-induced tumor

development [83,84]. The conditional expression KrasG12D in

mice, when combined with other mutations, leads to malignant

tumorigenesis in various tissues, including ovarian surface

epithelium (OSE). The responses of cells to RAS activation

appear to be context dependent such that cells may either undergo

oncogenic transformation or become senescent [85]. Although

there are rare documented cases of RAS mutations in serous

carcinomas, the amplification of this gene may ultimately activate

the same pathways that mutant RAS turns on. A better

understanding of the molecular targets of RAS in OSE will help

identify potential therapeutic targets.

The region on 19q12 included focal amplification of the cyclin

E1 (CCNE1) gene. High-levels of CCNE1 protein, an activating

subunit of the cyclin dependent kinase 2 (CDK2), are often

observed in patients with ovarian cancer [86]. Deregulation of cell

cycle control is thought to be a prerequisite for tumor

development, and several studies have shown an accelerated entry

into S phase because of constitutive expression of CCNE1 [87,88].

Furthermore, CCNE1 is able to induce chromosome instability by

inappropriate initiation of DNA replication, and centrosome

duplication [89]. Amplification of CCNE1 in ovarian cancer

correlates with drug resistance [23] and poor clinical outcome

[90]. Our finding confirmed the above-mentioned studies and

identified amplification of CCNE1 as a marker of poor outcome

and a possible therapeutic target.

Amplification of two distinct regions on 20q11.21, and

20q13.12 were associated with the poor outcome subgroup. The

region on 20q11.21 included two notable genes among others:

Figure 2. Unsupervised hierarchical clustering of CNAs identifies distinct patient subgroups. A) Unsupervised hierarchical clustering of
raw log2 ratios derived from 72 serous type ovarian cancers. Copy number values are color coded as follows: blue (loss), white (normal) and magenta
(gain). The pattern of dendrogram suggests two major genomic subgroups within the grade 3 tumors. B) PFS Kaplan-Meier plot for the two
subgroups. C) Comparison of clinical characteristics between the patient subgroups. Histology: red = serous; Grade: orange = grade 2, yellow = grade
3; Stage: red = Ic, blue = II, green = IIc, yellow = IIIa, orange = IIIb, brown = IIIc, pink = IV, dark gray = IVa; Status: red = evidence of disease, blue = no
evidence of disease; Outcome: green = complete remission, orange = progression, yellow = partial remission, brown = lost to follow up, pink = benign;
6 month progression: red = yes, blue = no, green = P (progression); Recurrence: brown = yes, orange = persistent disease, yellow = no; Platinum
response: red = sensitive, black = resistant; Drug: blue = yes, light blue = no; Ascites: red = yes, black = no; Chemo: orange = yes, brown = no; Radiation:
red = yes, black = no; General: white = n/a and/or blank.
doi:10.1371/journal.pone.0030996.g002
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inhibitor of DNA binding 1 (ID1) and BCL2-like 1 (BCL2L1). ID1

is a member of a family of 4 proteins (ID1-4) known to inhibit the

activity of basic helix loop helix transcription factors by blocking

their ability to bind DNA. ID1 has been implicated in a variety of

cellular processes including cell growth, differentiation, angiogen-

esis, and neoplastic transformation. It has been shown that ID1 is

de-regulated in multiple cancers and up-regulation of ID1 is

correlated with high-grades and poor prognosis in human cancers

[91,92]. ID1 has also been shown to be an effector of the p53-

dependent DNA damage response pathway [93]. In ovarian

cancer, the level of Id1 protein expression correlates with

malignant potential, associated with poor differentiation and

aggressive behavior of tumor leading to poor clinical outcome

[94]. BCL2L1 is a BCL2-related gene and can function as a BCL2-

independent regulator of programmed cell death [95]. Both BCL2

and BCL2L1 are antiapoptotic and downstream targets of p53.

Overexpression of BCL2L1 suppresses mitochondrial-mediated

apoptosis and enhances cancer cell survival in cancer models [96].

Figure 3. GISTIC analysis of patient subgroups. A–B) Cluster 1; C–D) Cluster 2 amplification and deletion peaks defined by GISTIC in two
patient subgroups show clear difference in the location of peaks. Green stars indicate major differences between the two subgroups. Probes from
these regions were used to build the model for training.
doi:10.1371/journal.pone.0030996.g003
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Several studies report the expression of BCL2L1 in 60–70% of

ovarian cancer and that BCL2L1 expression is associated with

chemoresistant and recurrent disease [97].

Previous studies using conventional CGH have reported

consistent high-level amplification of the 20q13.12 region

encompassing many genes that may play causal role in ovarian

cancer pathogenesis [42,98,99]. In this study, we have identified

a 2.8 Mb region including 61 genes. Among others, the likely

candidates are MMP9, PI3, NCOA5, TP53RK, ZMYD8

[100,101,102,103,104]. Based on integrated analysis of DNA

copy number and expression profiling results, 20q11.22–q13.12

region has been reported to be associated with poor response to

primary treatment [23]. More recently, another study using

tissue microarray composed of late stage, high-grade serous

ovarian carcinomas correlated PI3 expression with poor overall

survival [101].

Finally, cluster 3 samples predominantly showed losses on

8p21.3 and 8p23.2 regions. Several candidate tumor suppressor

genes that are less known to be implicated in human cancers

include DOCK5 [105] and CSMD1 [106] map to this region. Based

on the available literature, the above mentioned genes are likely to

play important roles but future studies are required to define their

roles in the pathogenesis of serous type ovarian carcinomas.

Whether expressions of all candidate genes described above are

altered in high grade serous ovarian cancer is not yet known and is

currently under investigation in our laboratory. Our study may

also have missed rare copy number variants, including duplica-

tions and deletions, in predisposing cancer susceptibility genes

since the normal reference DNA was made from healthy donors

but not matched normal DNA from each patient. However, it is

less likely given the very large deletions and amplifications we

identified in these tumors.

In summary, the results from this study illustrate the unique

molecular landscape of the genetic subgroups that exist within the

high-grade tumors. In the future, using these genomic markers, the

high-grade serous tumors can be stratified into clinically relevant

subgroups, help develop new diagnostic strategies and eventually

lead to targeted therapy.

Figure 4. Validation of classification accuracy in UCSF-GOG
dataset. Kaplan-Meier plot for UCSF-GOG subgroups identified
through supervised clustering. Subgroups are clinically distinct with
regard to overall survival (p = 0.028).
doi:10.1371/journal.pone.0030996.g004

Figure 5. Validation of classification accuracy in TCGA dataset. Kaplan-Meier plots for TCGA subgroups identified through supervised
clustering. Subgroups are clinically distinct with regard to both (A) progression-free survival (p = 0.0017) and (B) overall survival (p = 0.0098). The
combined cluster of subgroup 1 and 3 is clinically distinct from subgroup 2 with regard to both (A1) progression-free survival (p,0.001) and (B1)
overall survival (p = 0.0028). C–E) Frequencies of genome copy number gain and loss plotted as a function of genome location from 1pter to 22qter
in the three clusters identified in the TCGA dataset. Vertical lines indicate chromosome boundaries, and vertical dashed lines indicate position of
centromeres along the chromosomes. Positive and negative values indicate frequencies of tumors showing copy number increases (gain shown in
red) and decreases (loss shown in green). C1–E1) Frequencies of tumors showing high-level amplifications and homozygous deletions in the three
TCGA clusters. Data are displayed as described in C–E. Arrows indicate genomic regions where the three clusters differ significantly.
doi:10.1371/journal.pone.0030996.g005
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