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Abstract

Identifying and understanding the impact of gene regulatory variation is of considerable importance in evolutionary and
medical genetics; such variants are thought to be responsible for human-specific adaptation [1] and to have an important
role in genetic disease. Regulatory variation in cis is readily detected in individuals showing uneven expression of a
transcript from its two allelic copies, an observation referred to as allelic imbalance (AI). Identifying individuals exhibiting AI
allows mapping of regulatory DNA regions and the potential to identify the underlying causal genetic variant(s). However,
existing mapping methods require knowledge of the haplotypes, which make them sensitive to phasing errors. In this study,
we introduce a genotype-based mapping test that does not require haplotype-phase inference to locate regulatory regions.
The test relies on partitioning genotypes of individuals exhibiting AI and those not expressing AI in a 263 contingency
table. The performance of this test to detect linkage disequilibrium (LD) between a potential regulatory site and a SNP
located in this region was examined by analyzing the simulated and the empirical AI datasets. In simulation experiments,
the genotype-based test outperforms the haplotype-based tests with the increasing distance separating the regulatory
region from its regulated transcript. The genotype-based test performed equally well with the experimental AI datasets,
either from genome–wide cDNA hybridization arrays or from RNA sequencing. By avoiding the need of haplotype inference,
the genotype-based test will suit AI analyses in population samples of unknown haplotype structure and will additionally
facilitate the identification of cis-regulatory variants that are located far away from the regulated transcript.
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Introduction

Genetic mechanisms that modulate gene expression contribute

to human phenotypic variation and disease susceptibility [2].

Identifying regulatory elements that control RNA transcription

efficiency or level is therefore of major general and medical

interest [3]. Numerous investigations have contributed to the

identification of putative regulatory variants [4,5]. When these

variants are located on the same chromosome as the transcript

they regulate, they are expected to lead to allele-specific differences

in the expression level of cognate transcripts. The resulting allele-

specific expression (ASE) can be identified in heterozygous

individuals that differentially express the two parental copies of

the regulated transcript, also referred to as allelic imbalance (AI).

Multiple efforts have been made to detect genes exhibiting ASE

[6–9]. Less attention has been given to the mapping of regulatory

elements and finding the underlying AI-causing regulatory

variants [6,7]. Working on small genetic distances facilitated the

application of haplotype-based tests, especially when using cell

lines of the HapMap project [10,11] where chromosomal phasing,

based on family trios is relatively reliable. However, phase

uncertainty will be greater in populations of less well characterized

haplotype structure, thus reducing the power of haplotype-based

tests. Also, phasing accuracy decreases with an increasing genetic

distance, hence the detection rate of regulatory variants that are

located far away from their regulated transcripts can be

particularly affected [5,12–14]. In order to improve the mapping

efficiency of regulatory elements and variants using AI data, we

propose a genotype-based contingency test that is insensitive to

phasing errors and can be applied genome-wide to map cis-

regulatory variants. We compared this test with a standard linear

regression test used by Ge et al. [6]and with another haplotype-

based binomial test introduced here. We studied the performance

of these tests in mapping regulatory elements in genes known to

exhibit AI and where AI expressing individuals were already

ascertained. Toward this end we used computer simulated data as

well as empirical datasets of Ge et al. [6], and Montgomery et al.

[7].
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Results

Modeling linkage disequilibrium between regulatory
elements and genes with allele-specific expression

Consider a regulatory site R that affects expression of a gene X

(Figure 1A). Of its two alleles R (ancestral) and r (derived), one

causes up-regulation and the other down-regulation of the

regulated transcript. As a consequence, RNAs transcribed from

two parental copies of this gene are unequally expressed in Rr

heterozygotes, causing AI that can be revealed by measuring

relative levels of the corresponding allelic transcripts. On the

chromosome expressing gene X, there are SNPs (referred to as

sites A) that can be tested for association with AI caused by the R

site. In Figure 1A, some of these sites (SNP1 and SNP2) are found

within the regulatory region, in the vicinity and in linkage with the

R site. Polymorphic sites that are found within the transcript itself

are used as informative markers, which allow distinguishing

between allelic transcripts from the two copies of the chromosome

and their expression levels. In this example, there is no linkage

between the regulatory region and the transcribed region

polymorphisms. Informative markers instrumental in revealing

AI and those that are informative in locating the R site are

physically separated. This emphasizes the difference between the

AI detection and the mapping of the corresponding regulatory

region. In practice the majority of cis-regulatory elements are very

close to the transcript they control, and tightly linked to the

informative markers.

When site R and any of the tested SNPs (A sites) are unlinked,

their respective alleles will segregate randomly. In contrast, SNPs

located in the vicinity of the R site, in the absence of

recombination, i.e. at complete LD between these two sites, co-

segregate in a characteristic fashion. With two bi-allelic sites, there

are four possible mutation histories, each one leading to a

characteristic haplotype trio, i.e. to a combination of three possible

haplotypes depending on the tree genealogy (Figure 2). The sites

are referred to be in ‘‘parallel’’ position when a and r mutations

originate on different branches; then both derived alleles, a and r,

will occur on different haplotypes. The A site mutation and the R

site mutation sequentially occurred on the same branch of the

genealogy, with A site mutating first (thus referred to as ‘‘above’’)

or second (‘‘below’’). Mutation histories are mutually exclusive, yet

histories 2 and 3, when the sites are in parallel position, are

indistinguishable at the level of haplotype trios (Figure 2). From

each haplotype trio, six different sets of diploid genotypes involving

two bi-allelic sites, A and R, can potentially arise (Figure 3). In each

set we find two genotypes representing Rr individuals that express

AI phenotype. Importantly, in each of these sets the distribution of

the A site genotypes differ between AI expressing individuals (Rr)

and non-AI individuals (RR and rr).

Haplotype-based tests
Observing the AI phenotype reveals the heterozygous status of

the R site. R and r alleles are associated with either up- or down-

regulation of transcription. Provided that haplotype phase is

known, two different alleles of any heterozygous SNP from the

same chromosome can be assigned to its up- or down regulated

copy (Figure 1A). In the absence of LD between the R site and

the genotyped SNPs, their A and a alleles are expected to be

distributed with equal probability between up- and down

regulated chromosomes in all AI individuals. In contrast, when

an analyzed SNP is linked to the R site, its A or a allele will tend

to be exclusively associated with only down- or up-regulated

chromosomes. The significance of LD between the R site and a

given SNP can be evaluated as binomial probability p of

observing the data, assuming equal probability of the occurrence

of each of the alleles on up- and down regulated chromosomes

(Figure 1B). Obviously, this test only makes use of AI-(Rr)

individuals that, in the same time, are Aa heterozygotes.

The second haplotype-based test is a linear regression test used

by Ge at al. [6]. It consists of fitting a linear model through the

observed individual AI intensities ordered by the genotype state of

the analyzed SNP. AI intensity is measured as a difference

between transcription levels from two parental copies, chromo-

some 1 and 2, arbitrarily numbered as they appear in the

database. The genotype state represents the allelic status of these

copies, such that ‘‘Aa’’ means ‘A’ on chromosome 2 and ‘a’ on

chromosome 1, which is different than ‘‘aA’’. Measures of

transcription levels can vary substantially from one experiment

to the other, which can directly alter linear regression significance.

Using a simple rule explained in the Methods section, we first

analyse ASE results to identify AI individuals and non-AI

individuals. Then, by definition, the AI intensity of AI expressing

individuals is either +1 or 21, and zero in non-AI individuals

(Figure 1B). It usually leads to higher log(1/p) and to lower FPR of

linear regression test as compared to how it is used in Ge et al. [6]

where AI intensities are those measured directly and may differ

among individuals.

Genotype-based test
As shown in Figure 3, when R and A sites are in LD, each

haplotype trio leads to a specific set of diploid genotypes where

only one type of A-site homozygote, AA or aa, is expected to be

observed in AI individuals (Rr). In contrast, in linkage equilibrium

between different SNPs and the R site, homozygotes AA and aa as

well as heterozygotes Aa are expected to be distributed with equal

probability between AI and non-AI individuals. Therefore,

deviation from random distribution of these genotypes using

263 contingency table (Fisher’s exact–test) will indicate LD

between this A-site and the R site (Figure 1B). In the setting of

genetic association studies of complex phenotypes, this test is

usually referred to as the two degrees-of-freedom genotypic test,

and is already implemented in genetic statistical software such as

PLINK [15].

Performance of mapping tests in simulation experiments
The mapping potential of the proposed tests was studied

through simulation experiments. We simulated DNA segments

considering a range of allele frequencies at the alleged regulatory

sites in a population of constant size with and without

recombination. Recombination events were either distributed

evenly or were concentrated in recombination hotspots. For

simplicity, we only report the results considering SNPs with minor

allele frequency (MAF) of 5% or more, which mimic empirical

results using HapMap genotypes [10,11]. Table 1 presents the

simulation results of power estimates and false positive rates (FPR)

of the three tests. Because FPR is highest in the absence of

recombination, it is only reported for simulation experiments

under this condition. In the three tests considered (Figure 1B) both

power and FPR show overall dependence upon the frequency of

the r-allele and the R site heterozygosity (Table 1). In the case of

haplotype-based tests, power is positively correlated with R

heterozygosity (i.e. number of AI individuals), which is maximal

at the r-allele frequency of 0.5. In the case of the contingency test,

the highest power is observed at the r-allele frequency of 0.85, thus

correlating with the age of the regulatory mutation reflected in the

frequency of the derived allele. However, in contrast to the

contingency test, the power of haplotype-based tests is reduced due

to phasing errors. This effect is non-negligible: after rephasing

Mapping Regulatory Variation
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using fastPhase [16] we lost 13% to 29% of potentially significant

SNPs in simulation experiments reported in Table 1. There are

additional issues to be considered when evaluating the perfor-

mance of these tests. The first concerns the spectra of possible p-

values associated with each of these tests, how these reflect the

extent of LD of the corresponding SNPs with the R site and, in the

case of haplotype based tests, how these are affected by

chromosome phasing as a function of genetic distance between

the regulatory and the transcribed sequence. The second concerns

the distribution of significant SNPs around the R site, how close

they occur and the proportion of significant SNPs of poor

‘‘mapping value’’.

To address these issues we examined the effect of chromo-

somal phasing in a situation when the regulated transcript is

located at a certain distance from its R site, separated by a

recombination hotspot placed in the middle of 100 kb as

illustrated in Figure 4. We selected simulations assigning a

regulatory site at a given r allele frequency at the beginning of

the sequence. The R and r chromosomes of each AI individual

were flagged with help of a heterozygous SNP Aa at the other

end within the transcribed portion of the sequence (Figure 4).

After rephasing, the A and a alleles were used to define R and r

chromosomes and the p values of the SNPs surrounding the

original R site were assessed again. The presence of a single

hotspot (here defining a genetic distance of ,0.1 cM) between

the virtual start site of transcription and the regulatory region

was sufficient to cause a dramatic loss of power of the haplotype-

based tests. Overall, for simulations at r frequency of ,0.35,

there is a loss of 98.7% (binomial) and 91.1% (linear regression)

of significant SNPs (at p,0.01 level) after chromosome phasing

using fastPhase [16] and 29.7% and 19.7%, respectively when

using PHASE [17] (compare Figure 4B with C, and E with F).

Therefore, from now on we will only present results obtained

with better performing PHASE software. These results are shown

Figure 1. Ideograms of linear regression and binomial haplotype-based tests, and of contingency genotype-based test. How AI
results are used in the three tests with hypothetical SNPs, SNP1 and SNP2, chosen such that SNP1 is not linked to the R-site whereas SNP2 is.
doi:10.1371/journal.pone.0038667.g001
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in Figure 5 in the form of plots of the log(1/p) values of all SNPs

as a function of their corresponding r2 coefficients with the R site.

The upper panels illustrate how the three tests perform when

phase is exactly known, and how their log(1/p) values relate to

the LD coefficient r2. After rephasing, there is a substantial

decrease of log(1/p) values in haplotype-based tests but not in the

contingency test (see also Figures S1, S2, S3 for the data at other

frequencies of r). Furthermore, we evaluated the performance of

the tests by comparing the log(1/p) values when the extent of

phasing errors was known. After rephasing, we extracted the data

sets where all AI individuals were in phase, i.e. without phase

switch error between the regulatory and the transcribed region.

We also separated simulations where switch errors were observed

in only one individual, in two individuals and in three or more

individuals. In simulation experiments at r frequency of ,0.35,

the phase was conserved in all AI individuals (n = 23) in 15.5% of

simulations, in 24% of the simulations we found switch error one

individual, in 25% in two individuals and in three or more in the

remaining 35% of simulations (Table 2). Figure 6 compares

log(1/p) values obtained in these four data sets before and after

rephasing using the contingency (red dots) and the linear

regression test (black dots). Due to phasing errors the drop in

log(1/p) values is only observed in the case of linear regression

test. While already noticeable in the data sets without switch

errors in AI individuals, the effect becomes dramatic when two

or more individuals are affected (see also Figures S4, S5, S6). It

can thus be expected that, with an increasing genetic distance

between regulated and regulatory regions, the haplotype-based

tests will become even more vulnerable. In other words, an

accumulation of phasing errors may preclude the efficient use of

haplotype based-tests in mapping regulatory regions that are

located far from their regulated transcripts [3,5,18]

If phase is exactly known the linear regression test attains the

highest log(1/p) values (.28 versus 14.08 and 9.93 for the

contingency and binomial test, respectively). On the other hand,

the average log(1/p) of about 3, considering all SNPs with p,1022

threshold, is very similar in the three tests (Table S1). Because the

spread of the log(1/p) values is test dependent, the same numerical

value will have different weight in different tests. We also observe

that p value is not always correlated with the proximity to the R

site. In Figure 4E and 4F few ‘‘significant’’ SNPs are found

separated from the regulatory region by a recombination hotspot.

The proportion of such SNPs is not negligible and is the highest in

the case of linear regression and the lowest in the case of the

contingency test for the rephased data (Table 3). Moreover, linear

regression also appears least precise in pinpointing the location of

the R site, considering the relative position of the five most

significant SNPs (Figure S7).

Another issue is that of multiple-allelic (e.g. combination of the

effect of two or more closely related sites) or multiple-loci

regulation, whereby the same alleles of a linked polymorphic site

in different individuals can be variably associated with either up-

or down-regulation [19,20]. Potentially, this could reduce the

power of tests that require the measured effect of up- or down-

regulation to be always associated with the same parental

haplotype. For example, two independent adjacent mutations

may affect a regulatory site, such that it becomes effectively tri-

allelic. However, the third allele (formed by two-SNP haplotype)

needs to be present at an appreciable frequency. Otherwise the

two remaining alleles would dominate, making the site to behave

as effectively bi-allelic. Therefore, in our simulations we assigned

similar frequencies to the three alleles. We considered two

genealogical positions (Figure 2) with the second derived allele to

be on the background of the first (below) or to occur independently

on the background of the ancestral allele (parallel). The results

presented in Table 4 show that the three tests should also perform

well in mapping regulatory regions more complex than the bi-

allelic ones.

Figure 2. Four possible mutational pathways creating three
distinct sets of three haplotypes. Depending on the sequence of
mutations starting with the ancestral haplotype on the left, we obtain
three sets of haplotypes, referred to as below, parallel and above to
reflect the position of the A-site vs. R-site mutation on the genealogy
shown on the right. These genealogical positions can be modified by
recombination. We assume no recurrent mutations.
doi:10.1371/journal.pone.0038667.g002

Figure 3. Sets of possible genotypes under complete and
incomplete linkage disequilibrium. Under complete LD for
genealogical positions below (A), parallel (B) and above (C), there are
always two genotypes characterizing AI-individuals and only one type
of A-site homozygote present (AA or aa). Under equilibrium or
incomplete linkage disequilibrium (D) all four haplotypes involving R
and A sites are present and thus potentially all ten resulting genotypes
as well.
doi:10.1371/journal.pone.0038667.g003
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Experimental examples
We used two different datasets obtained with cell lines

representing individuals of European descent from the CEPH

collection. The first dataset obtained using Illumina genotyping

arrays in 54 lymphoblastic cell lines by Ge et al. [6], was analyzed

in the context of HapMap2 genotypes [11]. In this study ASE was

considered as a continuous variable, representing the intensity of

the difference of normalized expression between two chromo-

somes, so called AI index. To convert AI into a categorical

variable, i.e. AI or non-AI, we considered the examined transcripts

to be in AI when their AI index was $|0.1| [6]. The second

dataset was obtained by second generation sequencing [7] of

mRNAs from 57 lymphoblastic cell lines and by matching the

sequencing results with the corresponding HapMap3 genotypes

[10]. Here the difference between the observed levels and the

expectation of equal allelic transcription at p,0.01 was used as

indicator of AI [7] (see also Methods).

Figure 7A shows the contingency test analysis of the LRRIQ3

AI data from Ge et al. [6] including SNPs from all autosomes. A

similar analysis of the TAPBP transcript based on AI data from

Montgomery et al. [7] is shown Figure 7B. It is repeated in

Figure 7C using the full sequence information of chromosome 6

obtained from the 1000 genomes project [21]. In both loci the

analysis revealed single candidate regulatory region overlapping

the examined transcript (Figures S8 and S9). Note that in

Figure 7A, the second minor peak on chromosome 15 is an

artifact caused by coincidental concentration of unlinked singleton

SNPs. As expected, the contingency test becomes especially

practical when looking for regulatory sites that are far from the

affected gene. A classic example is PTGER4 [6,14] with the

regulatory region located about 200 KB upstream of its transcrip-

tion start site. Here, the linear regression test, which performs the

best in terms of log(1/p), the binomial and the contingency test all

point to four AI-associated sites (rs7720838 at map position

40522653 bp; rs7725052 at 40523027 bp; rs9283753 at

Table 1. Power and False Positive Rate (FPR) in simulation experiments.

Power (%) FPR (%)

No Recombination Recombination No Recombination

r frequency 0.15 0.35 0.5 0.85 0.15 0.35 0.5 0.85 0.15 0.35 0.5 0.85

Test

Binomial 25 46 55 42 11 22 24 14 ,0.1 0.1 0.4 ,0.1

Contingency 27 32 31 53 16 12 9 19 0.6 0.8 0.7 ,0.1

Linear Regression 35 55 67 59 23 32 35 28 1.2 1.0 1.1 ,0.1

Note: Power was evaluated as the fraction of simulated SNPs (A sites) showing p-values,0.01 over all SNPs (only sites with MAF$5% were considered). FPR was
estimated by assigning AI status to randomly chosen individuals corresponding to the expected number of Rr heterozygotes,12, 22, 25 and 13, given r frequencies of
0.15, 0.35, 0.5 and 0.85, respectively. FPR is only reported in the case of no recombination, as it is smaller in the presence of recombination.
doi:10.1371/journal.pone.0038667.t001

Figure 4. Looking for regulatory segment ,0.1 cM from its regulated transcript. Vertical red lines in the middle correspond to the location
of the recombination hotspot, the blue line on the left indicate the location of the R site, and the horizontal black line on the upper right corresponds
to the location of the regulated transcript. Results of the binomial test with (A) known haplotypes, (B) haplotypes inferred by PHASE [17] and (C)
haplotypes inferred by fastPhase [16]; (D) results of the genotype-based contingency test, unaffected by rephasing; linear regression test using (E)
rephased data as in B and (F) rephased data as in C.
doi:10.1371/journal.pone.0038667.g004
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40526366 bp; rs10440635 at 40526547 bp – seen on the upper

left in Figure 8A and 8B). The rs7720838 SNP, which was already

reported previously (Table 5) is in complete LD with the three

others. In turn, in the case of TTC39b, it is only the contingency

test that highlights a potential regulatory region at about 600 KB

downstream from the gene (Figure 9C; see also Table 5). The

failure of the binomial and linear regression test (Figure 9A and

9B) to pinpoint the same region as a regulatory candidate is

presumably related to a greater genetic distance separating it from

the regulated TTC39b transcripts than in the case of PTGER4

(600 vs. 200 Kb and even greater difference in genetic distances

when comparing r, the population recombination rate intensities

in Figures 8D and 9D). Note, however, that in the same time, both

haplotype based tests reveal a number of significant SNPs (one

highly significant, p = 2.561027, in the case of linear regression)

among those within the transcript itself and used as informative

markers for the detection of AI.

While in many instances the contingency test outperforms the

binomial one (Figures S8, S9, S10, S11, S12, S13), they often

perform equally well (Figures S14, S15, S16) or the binomial one

appears more efficient (Figure S17). As a rule log(1/p) values are

much higher in the case of linear regression. Both experimental

datasets [6,7] provided high-quality data to reveal the presence of

ASE (Figure S18), although the significant sites did not always fully

overlap due to differences in the SNP catalogs between HapMap2

and HapMap3. Table 5 lists selected SNPs identified by us and

known previously from other studies to provide additional support

and verification of our approach. SNPs density can be easily

increased by incorporating into the analysis the sequence data of

the 1000 genomes project available for the same population

samples (Figure 7C).

Empirical False Positive Rate
In power calculations based on the empirical data we examined

all HapMap2 autosomal SNPs (.2.5 million) in the set of 54

individuals from Ge et al. [6], assuming the presence of AI in a

range of randomly chosen individuals (Table 6). These estimates

show that the overall FPR is less than 1% for all tests at these

conditions. We can therefore presume that scanning the whole

genome will rarely give rise to misleading regions of significant

SNPs. Especially considering most false positives would occur

alone, while significant SNPs are expected to occur in clusters

representing genomic segments in LD. To identify such segments

we additionally examined [22] the recombination rate and LD

profiles in the identified regions, as shown in Figures 8C and 9C.

Figure 5. Extent of linkage disequilibrium and significance level. Plots of r2 coefficients between the R site and all tested SNPs and the
corresponding log(1/p) from simulations at r frequency of ,0.35, with known phase (upper panels) and after rephasing with PHASE [17] (lower
panels), for the binomial (A and B), linear regression (C and D) and contingency tests (E and F).
doi:10.1371/journal.pone.0038667.g005
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Discussion

Variation in transcriptional regulation of gene expression plays

a significant role in determining the diversity of human

phenotypes. The components of transcriptional control include

cis-acting regulatory elements that may act across large genomic

distances, hundreds or thousands of Kb away from the transcript

they regulate [18]. Studies of ASE indicate that allele-specific

differences among transcripts within an individual can affect up

to 30% of loci and, at the population level, ,30% of expressed

genes show evidence of cis regulation by common variants [6]. In

population studies, an even larger proportion of genes showed

ASE that could not be mapped, which could be ascribed to rare

genetic variants or epigenetic effects [8]. However, it is also

possible that some distal regulatory regions have escaped

detection because they are located far from the regulated

transcript. First, because of large distance they could have been

left unexplored, and second, because the mapping could have

failed, if tests required knowledge of the chromosomal phase.

Sample size, the reliability of genotyping and the accuracy and

completeness of AI ascertainment, will affect the outcome of all

tests. Because genotype-based test is independent of chromosom-

al phasing and phasing errors, its mapping efficacy is also

unaffected by genetic distance separating regulatory site from the

Figure 6. Comparison of log(1/p) values obtained before and after rephasing with PHASE. Simulations at r frequency of ,0.35 (i.e.
around 23 AI individuals out of a total of 50) were used and results were separated according to the rephasing quality evaluated as (A) zero, (B) one,
(C) two and (D) three or more, AI individuals with phase switch error.
doi:10.1371/journal.pone.0038667.g006

Table 2. Phase switch errors in AI individuals due to
rephasing (%).

r frequency

Number of errors 0.15 0.35 0.50 0.85

0 34.6 15.5 14.6 43.5

1 33.6 24.3 20.8 27.9

2 20.3 25.4 25.0 16.0

3 or more 11.5 35.0 39.8 12.5

Phase switch errors between the direction of AI and the original haplotype
phase of R and r alleles observed after rephasing (using PHASE) the simulation
data for different r frequencies.
doi:10.1371/journal.pone.0038667.t002

Table 3. Proportion of significant SNPs separated from
regulatory region by a recombination hotspot (as in Figure 4).

r frequency

0.15 0.35 0.50 0.85

Binomial Test

Phase known 5.3 6.5 9.4 23.2

After re-phasing 9.6 9.0 12.8 32.4

Contingency Test

Phase known 12.9 5.7 7.1 23.4

After re-phasing 12.9 5.7 7.1 23.4

Linear Regression

Phase known 17.4 12.5 14.2 27.7

After re-phasing 20.8 15.2 17.2 30.9

A hotspot has been simulated between the transcript locus and the regulatory
rSNP as illustrated in Figure 4.
doi:10.1371/journal.pone.0038667.t003
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regulated transcript. Phasing errors are unavoidable, even when

using best haplotype-phase inference algorithms [23]. Their

number increases with increasing chromosomal distances and

with the number of recombination hotspots in between. They

may be also more frequent in admixed individuals and in newly

studied populations with unknown haplotype catalogs [24]. The

most accurate algorithms, such as PHASE require very long

computation times (on a regular 2 GHz computer), which may

extend from days to months for sets of hundreds of thousands of

SNPs in a hundred genotyped individuals [16,25]. While this was

not an issue with our simulated data sets of 50 diploid individuals

and an average of about 500 SNPs (h= 100), it still took more

than 50 min on 2.67 GHZ processor. Faster programs exist and,

for example, it takes about 2 min run to phase the same data set

using ShapeIT [25]. Regrettably, the speed is reached at the

expense of accuracy which varies as a function of the sample size

and the amount of markers [26]. In other words, using genotype

test is less computationally demanding, we gain in time and in

accuracy when phasing errors are an issue.

Our analyses on real data were carried out in very well phased

CEU individuals from the HapMap project, where phasing was

additionally improved by using child-parental trios. In most cases

the haplotype-based binomial test worked equally well or even

better than the genotype-based test as judged by significance

levels. However, while both tests ‘‘found’’ the PTGER4 cis-

regulatory segment located almost 200 kb upstream of this gene

(Figure 8), our binomial and linear regression test failed to

identify such a region more than 500 kb downstream of the

TTC39b transcript (Figure 9). When we rephased the genotype

data from Figure 8 using fastPhase [16] (but not PHASE [17] or

Shape-IT [25]), the upstream regulatory segment of the

PTGER4 transcript also became ‘‘invisible’’ in the haplotype

based tests. Therefore, when chromosomes are well phased these

tests can be expected to lead to the same or similar overlapping

results (e.g. Figure 8). Importantly, these two examples (Figures 8

and 9) illustrate well the problem of locating regulatory variants/

regions from ASE data. An informative marker whose alleles are

at least partly consistent with the direction of up and down

transcription control may be revealed as significant. The chances

that this happens are increased when many such markers are

used (or when many transcripts are tested with highly informative

markers) and haplotype-based tests seem to be more vulnerable

to this kind of error. Lack of statistical significance in the

genotype-based vs. haplotype-based tests of a number of SNPs

representing the informative markers zone, as in Figure 9,

strongly suggests that these do not indicate the location of the

regulatory region but rather reflect a partial overlapping in

heterozygosity and phase between marker and regulatory sites. In

the reverse case, lack of statistical significance in the haplotype-

based vs. the genotype-based test may also suggest a different

genetic mechanism. For example, in the case of an imprinted

locus, when one of the parental chromosomes is silenced, a signal

of AI will be observed [27]. This is observed in the SNRPN locus

(Figure S19) reported to be imprinted [28], and in the L3MBTL

locus (Figure S20) where haplotype based analyses failed and the

contingency test revealed as significant the informative markers

and other SNPs in their linkage group. Likewise, an ‘‘artificial’’

AI signal could also reflect random mono-allelic expression in a

fraction of individuals (cell lines), due to aberrant methylation of

the genome [27]. In other words, combining the results of

haplotype and genotype-based tests may provide leads to AI-

causing mechanisms other than due to genetic variation within

regulatory elements. In Table 5 we listed selected SNPs found by

us, which were earlier reported in either different GWAS or

expression studies by others. For example, PTGER4 rs7720838

was found associated with the risk of Crohn’s disease [14]. The

rs1384883 SNP from LRRIQ3 was reported in a GWAS of

blood pressure and hypertension [29], while other SNPs

Table 4. Power and FPR in simulation experiments of a tri-
allelic R-site.

Power (%) FPR (%)

Position Parallel Below

Test

Binomial 58 38 0.3

Contingency 39 37 1

Linear Regression 64 47 1

Power is separately evaluated for the two possible genealogical positions
above/parallel and above/below of the derived alleles r1 and r2. The
frequencies were 0.4, 0.3 and 0.3 for the ancestral haplotype (R1R2), the
intermediate (R1r2 or r1R2) and the derived (r1r2), respectively. FPR was
calculated by randomly assigning 33 individuals as AI positive.
doi:10.1371/journal.pone.0038667.t004

Figure 7. Manhattan plots of p-values from the contingency
test. (A) for all autosomes using HapMap2 polymorphisms and AI data
for LRRIQ3; (B) using HapMap3 polymorphisms and AI data for TAPBP;
and (C) using 1000 genomes sequences for chromosome 6 and the
same AI data for TAPBP.
doi:10.1371/journal.pone.0038667.g007
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associated with the ASE of the LRRIQ3 transcript were reported

in gene expression studies [30,31]. The SNP rs751173 (transcript

404053) was reported in a study of susceptibility to cutaneous

nevi [32], these associated with AI of the transcript 404105 were

highlighted in a GWAS on late-onset Alzheimer disease, with

rs2180566 found in the promoter of DEFB123 [33]. In turn,

LTA locus with rs2844484 and rs2239704 was found in studies

of cancer susceptibility and the risk of ischemic stroke [34–36].

All the remaining sites were earlier identified in studies of gene

expression in the context of eQTL mapping. Thus our findings

here can be considered as confirmatory. Interestingly, however,

the three SNPs listed in the context of TTC39b, and found in

the larger cluster of significant sites based on the data shown in

Figure 9, were reported in the context of the PSIP1 transcript,

about 150 kb upstream from TTC39b [7]. Likewise, rs1963273

identified in the context of the FMO1 transcript [37] was found

here to be linked to AI within FMO4 (Figure S10) and SNPs

listed for BAT2 were previously reported in LD with CSNK2B

transcription [37,38]. Do these results represent examples of

synchronized transcription control, as could be suspected in the

Figure 8. Mapping regulatory sites for PTGER4. Plots of p-values for HapMap2 SNPs using binomial test (A), linear regression test (B) and
contingency test (C). Vertical black lines identify SNPs that were used as informative markers within the transcript and the green horizontal line
corresponds to the analyzed transcript. The linkage disequilibrium triangle and recombination intensity profile of the population recombination rate
(r/kb estimated by InfRec [22]) are shown in (D), where, black lines connect SNPs distributed according to sequence position (upper part) with their
position in the LD triangle and vertical green lines delimit the size of the analyzed transcript. Arrow on the top indicates transcription direction.
doi:10.1371/journal.pone.0038667.g008

Figure 9. Mapping regulatory sites for TTC39b. Plots of p-values for HapMap2 SNPs using binomial test (A), linear regression test (B) and
contingency test (C). Vertical black lines identify SNPs that were used as informative markers within the transcript and the green horizontal line
corresponds to the analyzed transcript. The linkage disequilibrium triangle and recombination intensity profile of the population recombination rate
(r/kb estimated by InfRec [22]) are shown in (D), where, black lines connect SNPs distributed according to sequence position (upper part) with their
position in the LD triangle and vertical green lines delimit the size of the analyzed transcript. Arrow on the top indicates transcription direction.
doi:10.1371/journal.pone.0038667.g009
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case of a gene cluster involving FMO1 and FMO4, or are they

due to experimental artefacts partly caused by phasing errors?

In contrast to other analyses, which may consider the intensity

of the ASE signal [6], the tests introduced here are based on a

categorical classification of the individuals studied as AI or non-

AI. The mapping of regulatory variation thus critically depends

on the quality of AI measurement as well as on the number of

intergenic informative marker SNPs serving to ascertain AI status

of the sampled individuals. Detecting or confirming the presence

of AI is not the same as mapping regulatory variants. For the

first it is sufficient to demonstrate that two parental copies of a

gene are differentially expressed. Mapping requires sufficiently

large samples where ideally all AI expressing individuals can be

detected. Power and FPR of the mapping tests depend upon the

characteristics of the polymorphic sites in LD within a regulatory

segment (Table 1). These characteristics, which include their

allelic frequencies, genealogical positions and r2 relative to the R

site, change with the increasing r frequency (Figure S21 and

Table S2). Selecting simulations for the presence of a derived

allele above certain frequency level eliminates a portion of

coalescence trees representing particular genealogical histories

that cannot ‘‘accommodate’’ sites with a derived allele above

certain frequency level. While among 2000 simulated genealogies

all ‘‘carry’’ a site with a derived allele frequency of ,0.15, only

897 (45%) genealogies carried sites with a derived allele

frequency of ,0.85 (Table S2). This leads to a progressive

distortion (as compared to neutral expectation) of allelic

frequency spectra of SNPs in LD with the R site at increasing

frequency of its r allele (Figure S22), which affects the

proportions of significant SNPs in each position category

between the tests. Knowing the number of AI individuals we

may estimate heterozygosity and thus relative R and r allele

frequencies. The knowledge of the expected genealogical

Table 5. Examples of sites identified in previous studies.

Transcript
[direction: .; ,] rSNP Sequence position Reference

PTGER4. chr 5 40715789–40729594

rs7720838 40522653 1

rs7725052 40523027

rs9283753 40526366

rs10440635 40526547

TTC39b, chr 9 15176585–15297244

rs10481503 14650700 2*

rs10481504 14650873 2*

rs9298706 14668730 2*

LRRIQ3, chr 1 74264290–74436459

rs1384883 74274065 3

rs6676622 74282393 4*

rs1032082 74304575 4*

rs11210404 74310840 4*

rs1483795 74315515 4*

rs10789387 74332999 4*

rs10789388 74341340 4*

rs4142948 74344939 4*

rs11806946 74436297 5

TAPBP, chr 6 33379710–33389967

rs469064 33358454 2*

rs455567 33360093 2*

rs446735 33363081 2*

rs463260 33364962 2*

rs464865 33365164 2*

rs3130018 33398380 2*

rs2073525 33398803 2*

rs3130267 33414772 2*

rs3130270 33416199 2*

404053. chr 9 21684732–21687392

rs751173 21697372 6

404105, chr 20 29336791–29338299

rs2180566 29482515 7

rs6059244 29474144 7

BAT2. chr 6 31696429–31713533

rs805257 31742172 8*

rs755714 31717792 8*

rs2736172 31698877 9*

rs805297 31730585 9*

FMO4. chr 1 169550110–69577847

rs1963273 169589070 9*

GUCA1b, chr 6 42259000–42270672

rs4714579 42282456 10

KIF16b, chr 20 16307450–16502078

rs3746786 16515202 10

rs2277777 16518934 5

rs6075078 16519466 5

LTA. chr 6 31648684–31649608

rs2844484 31644203 11,12

Table 6. Empirical False Positive Rate estimates.

FPR (%)

AI individuals 5 10 15 20 29

Test

Binomial 0.00 0.01 0.1 0.17 0.26

Contingency 0.60 0.66 0.69 0.72 0.72

Linear Regression 0.06 0.34 0.34 0.54 0.59

Percent of SNPs showing p-values below 0.01, after randomly assigning AI to 5,
10, 15, 20 and 29 individuals out of the 54 considered (based on the set of Ge et
al.). Based on 20 whole genome scans for 10, 15 and 20 AI individuals and on 20
scans of chromosomes 1 to 4 for 5 and 29 AI individuals.
doi:10.1371/journal.pone.0038667.t006

Table 5. Cont.

Transcript
[direction: .; ,] rSNP Sequence position Reference

rs2239704 31648120 13

MDGA1, chr 6 37708262–37773744

rs6938061 37782317 14

References for Table 5: 1. [14]; 2. [7]; 3. [29]; 4. [31]; 5. [30]; 6. [32]; 7. [33]; 8. [38];
9. [37]; 10. [6]; 11. [36]; 12. [34]; 13. [35]; 14. [45]. *: Reference found through the
eQTL browser (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/).
doi:10.1371/journal.pone.0038667.t005
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positions of SNPs that are tightly linked with the R site allows us

to better understand differences between outcomes of different

tests (Table S2). When combined with the analysis of the

regulatory region haplotypes it may be also useful in finding the

regulatory site itself.

Systematic use of genotype-based tests in concert with

haplotype-based tests may be the most advisable mapping strategy.

Unfortunately, haplotype-based tests will always suffer from

phasing uncertainty inherent to the data itself, especially when

the number of samples precludes the use of computationally slow

but more reliable phasing algorithms. Using the genotype-based

test, the phasing step can be simply postponed saving time and

related costs. The best outcomes can be expected with high quality

data maximizing ascertainment of AI individuals. The utility of the

genotype-based test will increase with the application of new

sequencing methods that improve transcript quantification thus

providing more reliable assessment of AI status. Without phasing

uncertainty, the genotype-based test should pave the road to the

identification of cis-regulatory variants that could have escaped

detection due to their distal location [4,18]. Finally, the current

trend of functional genomics based on next-generation sequencing

makes it possible to interrogate allelic functional effects beyond

transcription [8]. Any inheritable phenotypes that can be

categorized such as AI here, identifying the underlying heterozy-

gotes, can be mapped using presented protocols. The genotype test

can also be extended to compare phenotyped individuals that may

represent different genotype combinations. Our approaches can

be generalized to map for causes of differential DNA-protein

interactions or active chromatin, both shown to be inheritable in

recent studies [39,40].

Methods

Evaluation of statistical tests by simulation experiments
Coalescent simulations were performed using the programs ms

[41] and msHot [42]. A typical experiment consisted of 2000

simulations of 50 individuals (i.e., 100 sequences) with a

population mutation rate H of 50. Considering effective popula-

tion size Ne of 12 500 individuals and mutation rate m of 261028

per nucleotide per generation leads to the sequence of 50 Kb. In

the presence of recombination, the population recombination rate

r was set to 25. When hotspots were simulated, 90% of all

recombinations occurred within a single hotspot of 1 kb in the

middle of the sequence. Genotypes were constructed by randomly

pairing simulated haplotypes and the resulting Rr heterozygotes

were considered as AI individuals.

In each simulation, among the entire set of simulated SNPs, we

selected an rSNP with a specific frequency at its derived allelic

state, r frequency of 0.15, 0.35, 0.5 and 0.85 (or in the closest

interval) and assigned it as an R site. The remaining mutations

were considered as accompanying SNPs (A sites). In practice, our

r-alleles chosen from simulation experiments had frequencies of

0.14460.021, 0.33760.046, 0.49560.056 and 0.84760.060,

respectively. Importantly, not all of the simulations carried derived

alleles above 0.15, such that from 2000 simulations in the absence

of recombination, only 1954 remained in a sample with r-allele

frequency of 0.35, 1681 with r frequency of 0.5 and 897 with r

frequency of 0.85. The data obtained in each simulation

experiment were used to estimate power and FPR of the three

tests. To evaluate the extent of linkage disequilibrium between

rSNP and other sites we used r2 coefficient [43].

Power was estimated as the fraction of significant sites (p,0.01)

over all sites or over all sites with MAF of 5% or more. To evaluate

FPR (type I error), we first calculated the mean number of Rr

heterozygotes corresponding to AI individuals in each experiment

and then, we randomly assigned AI status to the same number of

simulated individuals. The number of significant sites over all

SNPs, or those at MAF$5%, yields the FPR. The number of

simulations having at least one significant SNP was also computed

for the FPR.

Phasing errors and incomplete ascertainment of AI
individuals

To test the effect of phasing haplotypes from the genotypes we

compared the results obtained from the diploid individuals

created using original simulated haplotypes with the ones using

haplotypes inferred from the reconstructed genotypes by

fastPhase [16] and PHASE [17]. In addition, we carried

simulations as described above for 50 individuals, except that

there were 1000 simulations, H and r were set to 100 and 50,

respectively. Thus sequences were 100 kb long, a recombination

hotspot 1 kb wide was placed in the middle of the sequence with

90% percent of all recombinations occurring within the hotspot.

We defined AI individuals as heterozygous for the R site

preselected for desired r frequency and located at one end of the

sequence. In AI individuals, we used heterozygous SNPs at the

other end of the sequence to keep track of the phase of AI after

rephasing (see Figure 4). This way the effect of phasing errors

between a putative R site and the regulated transcript separated

by hotspots can be evaluated.

Tri-allelic R site
To estimate the performance of the tests given the tri-allelic R-

site, we used simulations under the same conditions with no

recombination involved. We combined two mutations to obtain

three haplotypes that would confer distinct levels of allelic

expression. Let us denote R1 and r1 the ancestral and derived

alleles at the first site, and R2 and r2 the corresponding alleles at

the second site. We arbitrarily assumed the lowest expression level

to be associated with the ancestral haplotype R1R2. The first

mutation that leads to the haplotypes r1R2 or R1r2 will be

associated with an intermediate expression and the second

mutation leading to the r1r2 variant was assigned to confer the

highest expression level. In this three-allelic model, we considered

frequencies of 0.4, 0.3 and 0.3 for the ancestral, intermediate and

the derived variant, respectively.

Empirical evaluation of statistical tests
To evaluate the distribution of the observed p-values, we used

the same 54 individuals with their HapMap2 genotypes that were

analyzed by Ge et al [6]. From this sample, we randomly chose 5,

10, 15, 20, 25 or 29 individuals, as if they were in AI.

Subsequently, we evaluated p-values for each SNP along the

whole genome (for 5 and 29 individuals rather than whole genome

we only used chromosomes 1, 2, 3 and 4 instead). This was

repeated 20 times for each number of randomly assigned AI

individuals.

Using the data
The data on differential ASE determined in 54 lymphoblastic

cell lines are from Ge et al. [6]. Briefly, several markers were used

along the genome to evaluate allelic expression. Markers are

considered informative when they are heterozygous and their

expression intensity is sufficiently high as in R = log(Xraw+Yraw).1000.

The AI indices measured by |D het ratio| evaluate the difference in

expression level between two allelic chromosomes and we set the

threshold over which it indicates differential ASE to 0.1. However, the
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results were not always unequivocal, i.e., with all informative markers

reporting consistent results. In practice, there is a substantial variance in

signal intensity and in AI indices between informative marker-SNPs

within a single individual [44]. Since our tests require partitioning AI

and non-AI individuals as well as possible, we carefully evaluated AI for

each individual. We used the mean AI either from all informative

markers (heterozygote markers within that individual) or considering

only significant markers (R.1000). In both cases, the individual was

considered in AI when his AI index was over 0.1.

We also used second generation sequencing results from

Montgomery et al. [7] where differential allelic expression was

examined by counting transcripts in heterozygous individuals,

using polymorphic markers from the HapMap3 project in the 113

HapMap lymphoblastic cell lines representing individuals of

European descent. The presence of differential allelic expression

was assessed based on a binomial probability of differences in raw

counts for each allele with correction for reference mapping biases.

When an individual had at least one marker with a p-value,0.01,

he was considered in AI.

The extent of genetic distance between SNPs of the analyzed

DNA regions was assessed by LD-triangles, representing the

significance of association between SNPs based on x2 or Fisher’s

exact test, and by plotting the intensity profiles of the population

recombination rate r obtained by InfRec [22].

Supporting Information

Figure S1 Extent of linkage disequilibrium and signif-
icance level. Plots of r2 coefficient between the R site and all

tested SNPs and the corresponding log(1/p) from simulations at r

frequency of ,0.15, with known phase (upper panels) and after

rephasing with PHASE (lower panels), for the binomial (A and B),

linear regression (C and D) and contingency test (E and F).

(TIF)

Figure S2 Extent of linkage disequilibrium and signif-
icance level. Plots of r2 coefficient between the R site and all

tested SNPs and the corresponding log(1/p) from simulations at r

frequency of ,0.5, with known phase (upper panels) and after

rephasing with PHASE (lower panels), for the binomial (A and B),

linear regression (C and D) and contingency test (E and F).

(TIF)

Figure S3 Extent of linkage disequilibrium and signif-
icance level. Plots of r2 coefficient between the R site and all

tested SNPs and the corresponding log(1/p) from simulations at r

frequency of ,0.85, with known phase (upper panels) and after

rephasing with PHASE (lower panels), for the binomial (A and B),

linear regression (C and D) and contingency test (E and F).

(TIF)

Figure S4 Comparison of log(1/p) values obtained
before and after rephasing with PHASE. Simulations at r

frequency of ,0.15 (i.e. around 23 AI individuals out of a total of

50) were used and results were separated according to the

rephasing quality evaluated as (A) zero, (B) one, (C) two and (D)

three or more, AI individuals with phase inversion.

(TIF)

Figure S5 Comparison of log(1/p) values obtained
before and after rephasing with PHASE. Simulations at r

frequency of ,0.5 (i.e. around 23 AI individuals out of a total of

50) were used and results were separated according to the

rephasing quality evaluated as (A) zero, (B) one, (C) two and (D)

three or more, AI individuals with phase inversion.

(TIF)

Figure S6 Comparison of log(1/p) values obtained
before and after rephasing with PHASE. Simulations at r

frequency of ,0.85 (i.e. around 23 AI individuals out of a total of

50) were used and results were separated according to the

rephasing quality evaluated as (A) zero, (B) one, (C) two and (D)

three or more, AI individuals with phase inversion.

(TIF)

Figure S7 Distributions of the mean distances of the 5
lowest p-values A-sites to the regulatory SNP. Simulation

results with recombination are shown by the red line (uniform) and

green bars (single recombination hotspot). Those in the absence of

recombination are shown by the blue line. The results from the

binomial, contingency and linear regression tests are presented in

downward order.

(TIF)

Figure S8 Mapping regulatory sites for LRRIQ3 (Ge,
Pokholok et al. 2009). Plots of p-values for HapMap2 SNPs

using binomial test (A), linear regression test (B) and contingency

test (C). Vertical black lines identify SNPs that were used as

informative markers within the transcript and the green horizontal

line corresponds to the analyzed transcript. (D)The linkage

disequilibrium triangle and recombination intensity profile of the

population recombination rate (r/kb estimated by InfRec), where,

black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIF)

Figure S9 Mapping regulatory sites for TAPBP (Mon-
tgomery, Sammeth et al. 2010). Plots of p-values for

HapMap3 SNPs using binomial test (A), linear regression test (B)

and contingency test (C). Vertical black lines identify SNPs that

were used as informative markers within the transcript and the

green horizontal line corresponds to the analyzed transcript. (D)

The linkage disequilibrium triangle and recombination intensity

profile of the population recombination rate (r/kb estimated by

InfRec), where, black lines connect SNPs distributed according to

sequence position (upper part) with their position in the LD

triangle and vertical green lines delimit the size of the analyzed

transcript. Arrow on the top indicates transcription direction.

(TIF)

Figure S10 Mapping regulatory sites for FMO4 (Mon-
tgomery, Sammeth et al. 2010). Plots of p-values for

HapMap3 SNPs using binomial test (A), linear regression test (B)

and contingency test (C). Vertical black lines identify SNPs that

were used as informative markers within the transcript and the

green horizontal line corresponds to the analyzed transcript. (D)

The linkage disequilibrium triangle and recombination intensity

profile of the population recombination rate (r/kb estimated by

InfRec), where, black lines connect SNPs distributed according to

sequence position (upper part) with their position in the LD

triangle and vertical green lines delimit the size of the analyzed

transcript. Arrow on the top indicates transcription direction.

(TIF)

Figure S11 Mapping regulatory sites for LTA (Mon-
tgomery, Sammeth et al. 2010). Plots of p-values for

HapMap3 SNPs using binomial test (A), linear regression test (B)

and contingency test (C). Vertical black lines identify SNPs that

were used as informative markers within the transcript and the

green horizontal line corresponds to the analyzed transcript. (D)

The linkage disequilibrium triangle and recombination intensity

profile of the population recombination rate (r/kb estimated by
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InfRec), where, black lines connect SNPs distributed according to

sequence position (upper part) with their position in the LD

triangle and vertical green lines delimit the size of the analyzed

transcript. Arrow on the top indicates transcription direction.

(TIF)

Figure S12 Mapping regulatory sites for GUCA (Ge,
Pokholok et al. 2009). Plots of p-values for HapMap2 SNPs

using binomial test (A), linear regression test (B) and contingency

test (C). Vertical black lines identify SNPs that were used as

informative markers within the transcript and the green horizontal

line corresponds to the analyzed transcript. (D)The linkage

disequilibrium triangle and recombination intensity profile of the

population recombination rate (r/kb estimated by InfRec), where,

black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIF)

Figure S13 Mapping regulatory sites for BAT2 (Ge,
Pokholok et al. 2009). Plots of p-values for HapMap2 SNPs

using binomial test (A), linear regression test (B) and contingency

test (C). Vertical black lines identify SNPs that were used as

informative markers within the transcript and the green horizontal

line corresponds to the analyzed transcript. (D)The linkage

disequilibrium triangle and recombination intensity profile of the

population recombination rate (r/kb estimated by InfRec), where,

black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIF)

Figure S14 Mapping regulatory sites for transcript
404053 (Montgomery, Sammeth et al. 2010). Plots of p-

values for HapMap3 SNPs using binomial test (A), linear

regression test (B) and contingency test (C). Vertical black lines

identify SNPs that were used as informative markers within the

transcript and the green horizontal line corresponds to the

analyzed transcript. (D) The linkage disequilibrium triangle and

recombination intensity profile of the population recombination

rate (r/kb estimated by InfRec), where, black lines connect SNPs

distributed according to sequence position (upper part) with their

position in the LD triangle and vertical green lines delimit the size

of the analyzed transcript. Arrow on the top indicates transcription

direction.

(TIF)

Figure S15 Mapping regulatory sites for transcript
404105 (Montgomery, Sammeth et al. 2010). Plots of p-

values for HapMap3 SNPs using binomial test (A), linear

regression test (B) and contingency test (C). Vertical black lines

identify SNPs that were used as informative markers within the

transcript and the green horizontal line corresponds to the

analyzed transcript. Arrow on the top indicates transcription

direction. Two crossed sites represent SNPs that were identified in

the GWAS on late-onset Alzheimer disease: rs2180566 in the

DEFB123 (orange line) promoter and rs6059244 more to the left

(see Table 3). (D) The linkage disequilibrium triangle and

recombination intensity profile of the population recombination

rate (r/kb estimated by InfRec), where, black lines connect SNPs

distributed according to sequence position (upper part) with their

position in the LD triangle and vertical green lines delimit the size

of the analyzed transcript.

(TIF)

Figure S16 Mapping regulatory sites for MDGA1 (Ge,
Pokholok et al. 2009). Plots of p-values for HapMap2 SNPs

using binomial test (A), linear regression test (B) and contingency

test (C). Vertical black lines identify SNPs that were used as

informative markers within the transcript and the green horizontal

line corresponds to the analyzed transcript. (D)The linkage

disequilibrium triangle and recombination intensity profile of the

population recombination rate (r/kb estimated by InfRec), where,

black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIF)

Figure S17 Mapping regulatory sites for KIF16b (Ge,
Pokholok et al. 2009). Plots of p-values for HapMap2 SNPs

using binomial test (A), linear regression test (B) and contingency

test (C). Vertical black lines identify SNPs that were used as

informative markers within the transcript and the green horizontal

line corresponds to the analyzed transcript. (D)The linkage

disequilibrium triangle and recombination intensity profile of the

population recombination rate (r/kb estimated by InfRec), where,

black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIFF)

Figure S18 Comparison of the results from Ge, Pokho-
lok et al. 2009 (left, based on HapMap2) with those from
Montgomery, Sammeth et al. 2010 (right, based on
HapMap3). Plots of p-values for HapMap2 (left) and HapMap3

(right) SNPs using binomial test (A), linear regression test (B) and

contingency test (C). Vertical black lines identify SNPs that were

used as informative markers within the transcript and the green

horizontal line corresponds to the analyzed transcript. (D)The

linkage disequilibrium triangle and recombination intensity profile

of the population recombination rate (r/kb estimated by InfRec),

where, black lines connect SNPs distributed according to sequence

position (upper part) with their position in the LD triangle and

vertical green lines delimit the size of the analyzed transcript.

Arrow on the top indicates transcription direction.

(TIFF)

Figure S19 Analysis of ASE in SNRPN. Plots of p-values for

HapMap3 SNPs using binomial test (A), linear regression test (B)

and contingency test (C). Vertical black lines identify SNPs that

were used as informative markers within the transcript and the

green horizontal line corresponds to the analyzed transcript. (D)

The linkage disequilibrium triangle and recombination intensity

profile of the population recombination rate (r/kb estimated by

InfRec), where, black lines connect SNPs distributed according to

sequence position (upper part) with their position in the LD

triangle and vertical green lines delimit the size of the analyzed

transcript. Arrow on the top indicates transcription direction.

(TIF)

Figure S20 Analysis of ASE in L3MBTL. Plots of p-values

for HapMap2 SNPs using binomial test (A), linear regression test

(B) and contingency test (C). Vertical black lines identify SNPs that

were used as informative markers within the transcript and the

green horizontal line corresponds to the analyzed transcript.

(D)The linkage disequilibrium triangle and recombination inten-

sity profile of the population recombination rate (r/kb estimated

by InfRec), where, black lines connect SNPs distributed according

to sequence position (upper part) with their position in the LD
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triangle and vertical green lines delimit the size of the analyzed

transcript. Arrow on the top indicates transcription direction.

(TIF)

Figure S21 Relation between the linkage disequilibrium
between the R site and all tested SNPs (r2 coefficient),
and the corresponding Minor Allele Frequency (MAF).
Green dash are for the SNPs above the rSNP, red slash are for

below and blue back-slash are for parallel SNPs. The four different

rSNP frequencies tested are shown.

(TIF)

Figure S22 Folded and unfolded allelic frequency spec-
tra from the different r frequencies sets of simulations.
Both spectra are from four subsets of 2000 simulations where a

rSNP of frequency 0.15 (black), 0.35 (red), 0.5 (blue) and 0.85

(green), could be assigned. The subsets are 2000, 1954, 1681 and

897 for 0.15, 0.35, 0.5 and 0.85, respectively.

(TIF)

Table S1 Lowest and mean p-values, expressed in
log(1/p), of the significant results of the three tests
performed on three sets of simulations, the ‘‘no-

recombination’’ set, the ‘‘recombination with phase
known’’ and the ‘‘recombination with re-phased data’’.

(DOCX)

Table S2 Distribution of segregating sites across gene-
alogical trees preselected to carry r alleles above certain
frequency threshold and its effect on r2, derived allele
frequency (DAF) and power of the tests in each site
position category.

(DOCX)
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