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Abstract

The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various
computational models. Here, we address the related question of how maximum mutation size affects the formation of
species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate
values of a mutation size parameter m; the result is observed for evolving organisms on a randomly changing landscape as
well as in a version of the model where negative feedback exists between the local population size and the fitness provided
by the landscape. The same result is observed for various distributions of mutation values within the limits set by m. When
organisms with various values of m compete against each other, those with intermediate m values are found to survive. The
surviving values of m from these competition simulations, however, do not necessarily coincide with the values that
maximize the number of species. These results suggest that various complex factors are involved in determining optimal
mutation parameters for any population, and may also suggest approaches for building a computational bridge between
the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species
level.
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Introduction

Why do mutation rates not evolve to zero? It is now more than

seventy years since A. H. Sturtevant posed this question [1],

raising a problem in evolutionary biology which remains

unresolved. Some pieces of the puzzle are emerging, however,

from experimental and, increasingly, from computational studies.

Arguments from biochemistry and bioenergetics suggest the

existence of a physicochemical lower bound on how far mutation

rates can be decreased [2]. A related, though not identical, lower

limit is likely imposed by the ‘‘cost of fidelity’’, the combined

metabolic and temporal cost of reaching for perfection in

replication and transcription fidelity [2,3]. Beyond a certain limit,

an organism would expend an amount of energy on proofreading

that would not be worth the minimal gain in fidelity, a limit which

might be most aptly described by the old adage ‘‘the best is the

enemy of the good’’.

The origins of limits on mutation rates from above are perhaps

harder to untangle. A source of variation is obviously necessary for

the process of natural selection. On the other hand, too high a

mutation rate has obvious negative consequences [4–6]. Is there,

then, an optimum amount of variability?

Drake’s studies of microbial genetics showed similar mutation

rates across a wide range of genome sizes [7,8]. However, as with

any biological problem, exceptions to the rule were quick to

follow, and evidence for a universal mutation rate in eukaryotes

has not been forthcoming [2]. Other studies suggest that observed

mutation rates, whether optimal or not, are certainly not minimal.

Studies in bacteriophage T4 [9,10], E. coli [10] and Drosophila

[11] have demonstrated that mutation rates can be driven lower

than (or can increase above [12]) wild type values under various

external pressures, and can be restored to wild type when control

conditions are reestablished [12]. Evolutionary stress can drive

selection for increased mutation rates: mutator bacterial strains are

more antibiotic resistant than non-mutator strains, and thus have a

clear selective advantage, potentially leading to an increase in the

overall mutation rate within a population [13]. Mutation rate

variability is a key theme in current discussions of the need for an

extended evolutionary synthesis [14,15] under the name of ‘‘the

evolution of evolvability’’, the tantalizingly recursive possibility

that the ability of organisms to evolve is itself a trait, or spectrum of

traits, under evolutionary control [16–19].

The question of mutation rate optimization is compounded by

the problem of causality, to the extent that an increased mutation

rate cannot be selected for in a current organism on the basis of that

organism’s descendants’ increased ability to radiate into new

ecological niches. In other words, the fact that a higher mutation

rate will help later generations does not explain how it can be

selected for in the current generation, for which it does not have a

clear advantage. As a result, mutations in genes that control

mutation rate may often hitchhike along with other mutations that

confer immediate selective advantage [2,16]. This sort of

hitchhiking is obviously less prevalent in organisms with more

genetic recombination [2].

Several recent computational studies have addressed the

problem of optimum mutation rate. Three of these studies, Bedau

and Packard [19], Earl and Deem [16] and Clune et al. [20]

specifically address the problem of whether an intermediate mutation rate

can optimize fitness. In the present paper, we investigate a closely

related problem, the optimization of the number of species as a function of
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maximum mutation size. Since we pose similar questions and take a

similar approach to those of the three papers just cited – though in

the context of speciation rather than of individual fitness – we

briefly review each of those works.

Bedau and Packard [19] investigated optimal mutation rate in

the context of a ‘‘balance [between the] competing demands’’ of

evolutionary novelty (adaptability) and evolutionary memory (adapt-

edness). They explored the optimization of fitness as a function of

mutation rate in a model of reproducing agents on a toroidal

lattice; the agents consumed energy from a ‘‘continually

augmented external source’’, and reproduced when they had

accumulated sufficient resources to split into two organisms. The

organisms were characterized by their strategies of interacting with

the environment and gathering resources; their fitness, defined as

the amount of food gathered, was found to be optimized for an

intermediate mutation rate, where the mutation rate represented

the rate at which strategy elements were selected from a pool of

possible behaviors. Bedau and Packard also performed simulations

in which agents with different mutation rates competed against each other; they

found that those with a specific intermediate mutation rate were

the most successful. Using measures of diversity, they also

demonstrated that ‘‘the mutation rate governs a transition between

two qualitatively different phases of evolutionary dynamics’’,

namely a more ordered state characterized by long periods of stasis

for low mutation rates, and highly disordered dynamics where

‘‘the gene pool tends to be a continually changing plethora’’ of

strategies at high mutation rates [19]. The optimal mutation rate

marked the boundary between these two phases, and was

suggested by the authors to indicate a possible adaptation to

‘‘the edge of genetic disorder’’, implying a close relation between

this result and other studies of phase transition-like behavior in

complex systems, where complex behavior is found to exist at the

boundary between regimes [21,22].

Earl and Deem [16] took a different approach entirely,

investigating the minimization of an energy function in a model

of protein evolution. Their simulated proteins experienced point

mutations as well as larger recombination/swapping events. The

rates of both types of mutations could be selected for. Fitness was

determined by the minimization of an energy function involving

subdomain interaction energies and binding energies. Protein

evolution took place on a fitness landscape determined by various

properties of the environment; the landscape was shifted

periodically. Earl and Deem found that larger mutational shifts

(recombination/swapping rather than point mutations) were

selected for, and became dominant, when landscape shifts

occurred faster and/or were larger. This result demonstrates first

that, in this model, as in that of Bedau and Packard, evolvability

can be selected for. Equally important, Earl and Deem’s study

showed that different mutation rates can be selected for in different

environments; this implies that there is not necessarily an optimum

mutation rate, but rather that different evolvability characteristics can be

optimal under different circumstances. This result was already suggested

by the bacteriophage and Drosophila studies cited above; it

appears again in another computational evolutionary model, that

of Clune et al. [20].

Clune et al. [20] explored the optimization of mutation rate

using the Avida model, in which computer programs compete as

digital organisms, with their success at performing certain

computational operations serving as a measure of fitness. Fitness

was measured over a range of mutation rates, and was found to be

maximized at an intermediate value. Next, Clune et al. allowed

various digital organisms, with various values of the mutation rate,

to compete against each other. When the organisms competed on

a smooth landscape, the surviving organisms exhibited a mutation

rate close to the optimal intermediate value. However, when the

organisms competed on an irregular, rugged landscape, the

surviving mutation rates were significantly lower than the optimal

value, in contrast to the results of Bedau and Packard. This work

again suggests that different mutation rates may be optimal under

different circumstances; moreover, it suggests that even if a value is

optimal, it may not be reachable via a natural selection algorithm

operating on a highly rugged landscape. The authors interpret this

in terms of the short term vs. long term cost of mutation rates: a

high mutation rate would provide the benefit of rare large

mutations that could ‘‘carry the organism over a valley to the next

fitness peak’’, but would also exact a high energetic cost due to the

occurrence of mutations that are ‘‘not quite large enough’’, costing

the organism dearly, but leaving it stranded in the valley it was

trying to escape. Clune et al. contrast their results with studies

suggesting that high mutation rates can be optimal in all

circumstances, commenting that ‘‘it seems unlikely that stably

high mutation rates, such as those for RNA viruses, are

maintained primarily because of the rapid adaptive capacity they

bestow, as has sometimes been argued’’ [20].

The three studies summarized above address the optimization

of a measure of individual organismal fitness. However, individual

fitness is not the only quantity that can be optimized by natural

selection. Darwin himself explored the idea that diversity itself may

be selected for, and that phyla that are better at radiating may also

be better at flourishing. This can be envisioned as an optimal

filling of morphospace or, in more nineteenth-century terms, as a

‘‘Benthamite optimization calculus’’ [23]. These questions are

deeply complicated by – and may also be critical to – the ongoing

discussion of the various levels at which natural selection operates,

and the interplay between these levels. Here, we investigate the

optimizing role of a mutation parameter in a spirit similar to the

three studies described above; however, instead of focusing on

individual fitness, we address the optimization of the number of

species, represented in our model as clusters of organisms in a

simulated morphospace.

Methods

The motivation for the design of the present model, implemented

in MATLAB, was to incorporate the three fundamental aspects of

Darwinian evolution, variability, heritability and overpopulation, in the

simplest possible manner. Organisms exist in a two-dimensional

morphospace, where each axis represents a hypothetical phenotype.

At each time step, a new generation of organisms is produced via an

assortative mating algorithm. The number of new organisms

depends on an underlying fitness landscape; the locations of new

organisms in the morphospace are determined by the locations of

their parent organisms, as well as by the mutation size. We

investigate the clustering of organisms, where clusters are defined as

reproductively isolated groups and serve as an analogue of species,

as a function of maximum mutation size.

Organisms within a morphospace
Simulated organisms exist on a landscape in a two-dimensional

morphospace, with the x- and y-coordinates corresponding,

respectively, to a given organism’s two traits. This is illustrated

in Figure 1; diamonds show the locations of organisms within the

space. In this implementation of the model, the landscape axes

range from 0 to 45; organisms cannot exist beyond the boundaries,

i.e., the morphospace is finite. Note that the simulation could be

performed with a morphospace of variable size and with different

boundary conditions; note also that the landscape axis units are

arbitrary.

Mutation Size and Speciation

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e11952



Assortative mating
The model uses assortative mating, whereby, in each genera-

tion, every organism picks the nearest other organism in the

landscape and mates with it to produce new organisms for the next

generation. The choice of an assortative mating scheme is

motivated at once by its simplicity and its realism. Recalling that

the organisms exist in a morphospace rather than a physical space,

it should be immediately apparent that the simplest realistic

mating scheme is one in which phenotypically similar organisms

mate with each other rather than with more phenotypically distant

organisms.

Assortative mating schemes have been extensively used in

various studies, such as investigations of the mechanisms of

sympatric [24] and competitive [25,26] speciation. Given what de

Cara et al. [27] describe as ‘‘the ubiquity of assortative mating in

nature’’, other recent studies have focused on the evolution of

assortative mating itself [27–29]. It should be emphasized that

clustering of organisms is by no means a given outcome of

assortative mating. As recently as 1995, Maynard Smith and

Szathmáry commented that ‘‘it is plausible that a ‘sexual

continuum’, in which there are no discrete species and individuals

can mate with others not too distant from themselves, would break

up into species… However, we are not aware of any explicit model

demonstrating the instability of a sexual continuum’’ [30]. The

conditions under which such clustering occurs are a central focus

of the present investigation.

Generation of new organisms
If (c1x,c1y) and (c2x,c2y) are the morphospace coordinates of the

two parent organisms, the coordinates (cbx,cby) of a next-generation

organism are given by

cbx~ min (c1x,c2x){mzfmax (c1x,c2x)

zm{( min (c1x,c2x){mgrx

ð1aÞ

cby~ min (c1y,c2y){mzfmax (c1y,c2y)

zm{( min (c1y,c2y){mgry

ð1bÞ

where rx and ry are random numbers selected from a uniform

distribution between 0 and 1, and where m represents the maximum

possible mutation size.

In another version of the experiment, the coordinates (cbx,cby) of

a new organism are calculated as follows:

cbx~mean(c1x,c2x){mzfmax (c1x,c2x)

zm{( min (c1x,c2x){mgbrx

ð2aÞ

cby~mean(c1y,c2y){mzfmax (c1y,c2y)

zm{( min (c1y,c2y){mgbry

ð2bÞ

with rx and ry selected from a normal distribution with zero mean,

and b = 0.1581. Again, m represents the maximum mutation size.

Thus, for both versions of the model, the coordinates of each new

organism are randomly chosen to lie within a range defined by the

coordinates of the parents, but with the boundaries of the range

extended by the parameter m. Note that m can be easily related to a

mutation rate M by integrating the rate over (generation) time.

Thus,

m~

ð
Mdt:

If M is constant, then the maximum mutation size m will be

directly proportional to the mutation rate M.

Underlying fitness landscape
The landscape, in addition to having two dimensions indicative

of trait values, also has a third dimension, which, when visualized,

resembles the elevation of the space (see the morphospace color

scale in Figure 1). The elevation at any location on the landscape

represents the fitness level available to organisms residing at that

location. These fitness levels, ranging from 1 to 4, are realized in

the model as the number of offspring an organism will produce.

The fitness landscape originates from a randomly-generated

12612 matrix of fitness levels. Linear interpolation is used to

expand the matrix to dimensions 45645. After the initial

distribution of fitness levels is generated, the fitness landscape

changes during the simulations in one of two different ways, either

(1) shifting gradually or (2) being altered by feedback from the local

density of organisms.

For the randomly shifting landscape, every l generations, the

last column is deleted from the 12612 random matrix underlying

the fitness landscape. The other n columns are shifted to the n+1

position, leaving a ‘‘hole’’ at the first column of the matrix, which

is replaced by 12 new, randomly-generated values, after which

interpolation is performed again to generate a 45645 landscape.

These operations have the effect of shifting the landscape

gradually to the right. The parameter l was set at 2 throughout

the simulations shown here.

For landscapes modulated by feedback, in every generation, the

fitness value at each location in the landscape grid was decreased

by an amount proportional to the number of organisms living in

the region. For the models implemented here, the proportionality

was set at 0.0071. These reactive changes in the landscape

symbolize the depletion by over-use of the available resources in a

given ecological niche. The total summation of fitness values

available across the entire landscape was conserved in each

generation; this was done by adding back the entire subtracted

quantity after dividing it equally amongst each of the 144 elements

of the fitness landscape matrix (before interpolation). Through this

method, areas in the morphospace which were unaffected by the

Figure 1. Results of a simulation after 1000 generations.
Diamonds show the location of individuals in the morphospace; the
color scale indicates the fitness levels corresponding to each location in
the morphospace. In this realization of the model, m= 0.88, the
landscape is influenced by feedback from the population density, and
the mutation sizes are normally distributed.
doi:10.1371/journal.pone.0011952.g001
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subtraction (areas whose resources were not depleted) become

increasingly advantageous for reproduction.

Random death and overpopulation
In order to introduce further randomness into the model, a

fraction r of the new organisms are randomly eliminated before

the start of the new generation, where, for each generation, r is a

random number selected from a uniform distribution between 0

and 0.70. The effects of overpopulation are implemented by

setting a distance limit within which only one organism can exist.

In all the implementations of the model shown here, the

overpopulation limit is set at 0.25.

Competition among organisms with different values of m
In order to investigate the interactions between organisms with

different mutation parameters, the model was modified so that

each organism was assigned not only coordinates in the morpho-

space, but also a distinct value of m (which was held constant over

the entire population in all other simulations). The mutation

parameter m for each individual in the initial population was

selected randomly from a uniform distribution between 0 and 1.

Note that the choice of a maximum value of m= 1 is motivated

solely by the range of m values used in other simulations shown

here; there is no a priori limit for the value of m.

The simulation was performed identically to the other

simulations (using the model with a shifting, rather than a

feedback-modulated, fitness landscape, and with uniformly

distributed mutation values within the limits set by m), except that

each new organism takes the m value of one of its parents.

Clustering algorithm
Clusters, the analog of species in our model, are determined by

who mates with whom. The development of this algorithm was

motivated by the concept of biological species, in which species are

defined as reproductively isolated groups, i.e., groups with the

ability to interbreed, developed by Dobzhansky, Mayr and others

in the early days of the modern synthesis [31]. A similar species

definition was also used in another recent computational study,

that of de Aguiar et al. [32].

As implemented here, the clustering algorithm is carried out as

follows. For a given organism in a given generation, a search is

performed to find all the organisms that it, as well as its nearest

neighbor (its mate) and its second-nearest neighbor, have mated

with. Then a similar search is performed for each of the organisms

found during this first search. This iterative search continues until

a closed set – a cluster – is obtained, where all organisms within

the set have mated, in that generation, only within the set. This

algorithm assigns each organism to one, and only one, cluster, and

arrives at a unique solution for each generation.

It should be clarified that the definition of clusters implemented

here is based on ‘‘who does mate with whom’’ rather than ‘‘who

can mate with whom’’, and thus we have described it as being

inspired by, rather than being an explicit implementation of, the

biological species concept. Several points need to be mentioned in

this regard.

First, let us consider the extent to which our cluster definition

can be interpreted as defining ‘‘who can mate with whom’’.

Consider one individual in the cluster, and its mate. A third

organism which mates with the mate is also included in the cluster,

and therefore the first individual chosen to seed the cluster could

presumably mate with this third individual, under an expanded

version of our assortative mating criterion. To this extent, we do

indeed implement a criterion of ‘‘who could mate with whom’’.

A second point to be emphasized is that a more explicit

implementation of the rigorous definition of biological species

would necessitate a top-down definition of clusters (for example,

specifying that individuals could mate with organisms within a

given radius). Such a top-down definition would undermine the

crux of the approach taken here, which is to capture fundamental

dynamical features which emerge naturally from a model satisfying certain basic

criteria of evolving systems.

Implementation of the model
After all the parent organisms in a given generation have

produced a new generation of organisms and some of the new

organisms have been culled, the parent organisms vanish and a

new generation begins, with the previous offspring now playing the

role of parents. In the implementation of the model used here, the

initial generation consisted of 300 individuals randomly placed

within the landscape; during subsequent generations the popula-

tion fluctuated between several hundred and nearly ten thousand

organisms.

Five experiments were performed: (1) uniformly distributed

mutations with shifting fitness landscape, (2) uniformly distributed

mutations with feedback-modulated landscape, (3) normally

distributed mutations with shifting fitness landscape, (4) normally

distributed mutations with feedback-modulated landscape, and (5)

competition between organisms with different maximum mutation

parameters (m) on a shifting fitness landscape with uniformly

distributed mutation values within the limits set by m.

Experiments (1)–(4) were run for a range of values of m, with all

other parameters held constant. For each experiment and at each

value of m, the simulation was allowed to run for 1000 generations;

in some cases, the population became extinct before 1000

generations were reached. Over the course of each simulation,

various parameters were recorded at each generation, such as the

total population size, the number of clusters, the mean distance

between individuals in a cluster, etc. For each experiment, five

runs were performed at each value of m.

Results

The results of a typical simulation after 1000 generations are

shown in Figure 1. As described above, the shaded background of

the landscape corresponds to the fitness level of individuals at that

location, with individuals in the darkest regions being the least fit

(one offspring each), and those in the lightest regions being the

most fit (four offspring each). In the first generation, 300 organisms

were randomly seeded throughout the landscape with a uniform

distribution. By the end of 1000 generations, as shown here,

organisms occur in clusters throughout the landscape. In this

realization of the model (discussed in more detail below), there is

negative feedback between the population and the fitness levels

available on the landscape, so that when many organisms grow in

the most advantageous regions, the regions’ underlying fitness

levels decrease. This leads to clustering along the boundaries

between the regions offering the highest and lowest fitness.

In some cases, simulations with identical parameters exhibited a

high degree of historical contingency, as illustrated in Figure 2.

Here, two simulations, with m= 0.9, mutation values selected from

a normal distribution, and a feedback-modulated landscape, show

dramatically different outcomes. Figure 2a shows the population

for each of the two runs as a function of generation. For one

simulation, the population fluctuates and then suddenly plummets

nearly to extinction, while the population in the other simulation

continues to fluctuate without crashing. Snapshots of the two

simulations at generation 1000 are shown in Figures 2b and 2c.

Mutation Size and Speciation
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Figure 3 shows results for the shifting landscape model, with

mutation values distributed uniformly within the limits set by m.

Figure 3a shows the mean population size as a function of m,

averaged over all generations where the population size exceeded

zero. At each value of m, the mean population size is averaged over

five realizations of the simulation. The population size remains

small for low values of m, and then begins to rise sharply for

intermediate values, before reaching a plateau. For low m, the

populations typically tend toward extinction, and survive for more

generations as m increases.

In Figure 3b, we show the number of clusters as a function of m.

The clusters behave similarly to the population size, with one

crucial exception: instead of reaching a plateau, they reach a

maximum and then begin to decrease for the largest values of m.

Thus, a maximal number of clusters (species) is achieved for an

intermediate value of m.

In order to obtain a measure of the diversity within species/

clusters, we calculated the mean Euclidean distance in the

morphospace between individuals in a cluster. This value was

averaged over all clusters and all generations to give the within-

cluster diversity at a given m. This diversity measure is shown,

averaged over five realizations of the model at each value of m, in

Figure 3c. Unlike the population size and the number of clusters,

the within-cluster diversity shows a gradual decline, reaching a

minimum for values of m just preceding the sharp increase in the

mean population size and the number of clusters, and then

gradually rising.

Figures 3a and 3b suggest that, for low values of m, the mean

population size correlates with the mean number of clusters.

Correlation between these two quantities is also observed within

each run of the individual simulations as well, as shown in

Figure 3d by the correlation coefficient between the time series of the

population size and the time series of the number of clusters. At values of m
for which the population size and number of clusters sharply

increase, however, the correlation coefficient drops, and also

shows an increase in variability from one simulation run to

another, indicated by the increased standard deviation. For some

runs, there is a positive correlation between population and

clusters; for others, a negative correlation. As m reaches values

corresponding to the population plateau, a consistent antic-

orrelation is observed between the two quantities.

Figures 4, 5 and 6 show (a) population size, (b) number of

clusters, (c) within-cluster diversity and (d) correlation between

Figure 2. Historical contingency. (a) Population size vs. number of
generations for two runs of the simulation under identical conditions
(m= 0.9, mutations normally distributed, landscape modulated by
feedback). (b) Simulation at generation 1000 for run 1 (solid line in
2a), showing near-extinction. (c) Simulation at generation 1000 for run 2
(dotted line in 2b), showing a large population spread throughout the
landscape.
doi:10.1371/journal.pone.0011952.g002

Figure 3. Shifting landscape model with uniformly distributed
mutations. (a) Population size, (b) Number of clusters (species), (c)
Mean distance between individuals in a cluster (diversity), and (d)
Correlation between number of clusters and population size, all shown
as a function of m. Symbols show mean values over five realizations of
the simulation at each value of m; error bars show standard deviation
among five realizations. Other parameters are given in the text.
doi:10.1371/journal.pone.0011952.g003
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population size and number of clusters, for three other

implementations of the model (experiments 2–4 as defined above).

The results from these various modified versions of the model are

consistent with the results shown in Figure 3. The population size

tends toward a plateau, while the number of clusters reaches a

peak and then falls off. Within-cluster diversity reaches a minimum

for values of m immediately preceding the sharp rise in population

size and number of clusters. Population size correlates positively

with number of clusters for m values below that for which the sharp

population increase occurs, followed by a precipitous drop in the

correlation coefficient around this ‘‘critical’’ range of m.

In order to investigate the spread of an organism’s descendents

through the population, a random organism of the initial

generation was labeled, and its descendents traced through

subsequent generations. The maximum ratio of labeled organisms

to total organisms is illustrated in Figure 7a. In many cases, like the

one shown in this example, the traced organisms ultimately

constituted 100% of the population, indicating that all the

organisms can count the original labeled organism as an ancestor.

In many other cases, however, the descendants of the labeled

organism died out quickly, never constituting more than a tiny

fraction of the population. Figure 7b illustrates a histogram of the

ratio of traced organisms to total population, compiled over all

simulations for m#0.35. Figure 7c shows a histogram for m$0.36.

Note that for larger values of m (Fig. 7b), the labeled organism’s

descendents are more likely to spread through the entire

population. To correctly interpret this result, it is important to

emphasize that the survival of one organism as an ancestor does not

preclude others from doing the same. A traced organism has the

original labeled organism as one of its ancestors, but this does not

imply that this was its only ancestor. The fact that the final fraction

of traced organisms increases with m is likely a result of the

increased mixing of the population as m increases.

In Figure 8, we show a typical result of competition among

organisms with different values of m. The panels show distributions

of m throughout the population at various generations within a

representative simulation. Initially, the distribution is uniform.

(Note that since there are only 300 initial organisms, the uniform

distribution is poorly sampled.) In the initial generations, most of

the organisms with smaller values of m become extinct. By

generation 70, in this example, only a few values of m remain

represented in the population. These populations grow and shrink

Figure 4. Feedback-modulated landscape model with uniform-
ly distributed mutations. (a) Population size, (b) Number of clusters
(species), (c) Mean distance between individuals in a cluster (diversity),
and (d) Correlation between number of clusters and population size, all
shown as a function of m. Symbols show mean values over five
realizations of the simulation at each value of m; error bars show
standard deviation among five realizations. Other parameters are given
in the text.
doi:10.1371/journal.pone.0011952.g004

Figure 5. Shifting landscape model with normally distributed
mutations. (a) Population size, (b) Number of clusters (species), (c)
Mean distance between individuals in a cluster (diversity), and (d)
Correlation between number of clusters and population size, all shown
as a function of m. Symbols show mean values over five realizations of
the simulation at each value of m; error bars show standard deviation
among five realizations. Other parameters are given in the text.
doi:10.1371/journal.pone.0011952.g005
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in size, jockeying for position in the fitness landscape, until, by

generation 200, one value of m dominates the population. In later

generations (not shown), the other values of m disappear entirely.

The simulation illustrated in Figure 8 is typical; a single value of m
was always found to dominate the population after a number of

generations. However, different values of m dominate in different runs of

the simulation, and the surviving m (,0.68 in the example shown in

Figure 8) does not coincide with the value of m (,0.35) that gives a

maximal number of species for the shifting landscape model with

uniformly distributed mutations (Figure 3b) from which the

competition simulation was derived. The variety of surviving m
values over various competition experiments is illustrated in

Figure 9.

Discussion

The model presented here illustrates that mutation size can

affect the formation of clusters of organisms in a continuous

morphospace. An intermediate maximum mutation size m leads to

a maximal number of clusters. It should be emphasized that the

organisms in the model exist in a morphospace rather than a

physical space, and thus the process of speciation modeled here is

sympatric, rather than allopatric or parapatric.

In all implementations of the model, a high level of historical

contingency was observed for intermediate values of the mutation

parameter m. This is illustrated in Figure 2, where, for identical

conditions, two radically different outcomes are observed. The

existence of contingent evolutionary outcomes has been discussed

extensively by Gould [33], among others, and has recently been

experimentally demonstrated by Lenski’s group in their long term

evolution experiment (LTEE) with populations of E. coli [34]. In

the model presented here, such contingency is not observed for

low values of m, where populations exclusively tend towards

extinction, or for high values of m, where the mean population size

has reached a plateau. Rather, contingent behavior occurs for the

intermediate values of m over which sharp changes in the system’s

behavior are observed: a sharp rise in population size and number

of clusters, and a sharp drop in population-cluster correlation. The

contingent behavior illustrated in Figure 2 is observed in all four

versions of the model studied (data not shown), and always within

a critical window of m values.

Figure 6. Feedback-modulated landscape model with normally
distributed mutations. (a) Population size, (b) Number of clusters
(species), (c) Mean distance between individuals in a cluster (diversity),
and (d) Correlation between number of clusters and population size, all
shown as a function of m. Symbols show mean values over five
realizations of the simulation at each value of m; error bars show
standard deviation among five realizations. Other parameters are given
in the text.
doi:10.1371/journal.pone.0011952.g006

Figure 7. Spread of a genealogy through the population.
Results are shown in the case of a shifting landscape with uniformly
distributed mutation values (same conditions shown in Figure 3). (a)
Ratio of descendants of the initial labeled organism to the total
population, as a function of time (in units of generations), for one trial
with m= 0.5 (b and c). Histograms bin trials according to the maximum
ratio of organisms descended from a single, random individual, for (a)
0.2#m#0.35 and (b) 0.36#m#0.5.
doi:10.1371/journal.pone.0011952.g007
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As illustrated in Figures 3a, 4a, 5a and 6a, we observe a low

mean population size for low values of m, a sharp rise in population

size for intermediate values of m, and a plateau in the population

size for high values of m. This can be interpreted based on the

overpopulation limit imposed in the model. For low m, new

organisms remain in tight clusters, unable to explore the landscape

far beyond the locations of their parents. This results in

overcrowding, followed by a decrease of the population and

eventual extinction. For high m, the population cannot grow

indefinitely, constrained by both the overpopulation limit and the

finite landscape size, which combine to play a role analogous to

the carrying capacity in logistic population models.

The number of clusters (Figures 3b, 4b, 5b and 6b) undergoes a

sharp rise for intermediate values of m, but then reaches a

maximum, rather than a plateau. This maximum can be

qualitatively explained as follows. For the highest values of m,

organisms can experience very large mutational jumps away from

the locations of their parents. Since other organisms, and thus

other clusters, may exist nearby, these far-jumping organisms may

venture so far from their parents’ locations that they fall into the

purview of other clusters, rather than either enlarging the cluster in

which they originated, or nucleating a new cluster. This drives the

total number of clusters lower as m increases.

A measure of diversity within clusters shows a minimum for an

intermediate value of m (Figures 3c, 4c, 5c and 6c). This result

might seem counterintuitive, since for low values of m, the

organisms cannot get very far from the locations of their parents,

and thus one would expect the diversity to be lowest for smallest m.

However, note that for low values of m the populations quickly

become extinct, so the diversity values are averaged over a small

number of generations. This means that the initial seeding of the

landscape (at random locations drawn from a uniform distribution)

contributes heavily to the diversity calculation. During early

generations, organisms are forced to mate with partners which

may be a considerable distance away, and therefore clusters will be

less dense (more diverse). The diversity will reach a minimum for m
large enough that the population survives for sufficient generations

to render the early ‘‘wide’’ clusters negligible in the diversity

calculation. For values of m beyond this point, diversity increases

with m, reaching a plateau as the mean population size approaches

its asymptotic limit.

The population size and the number of clusters within each

simulation correlate closely for small m, as shown in Figures 3d, 4d,

5d and 6d. For values of m near the critical transition to higher

population size and maximum number of clusters, this correlation

very suddenly becomes unpredictable. In some runs, a high

correlation is observed; in others, there is essentially no

correlation, and in still others, an anticorrelation. This can be

interpreted in light of the different scenarios shown in Figure 2.

For m within the critical range (see, for example, m= 0.9 in

Figure 6, corresponding to the examples illustrated in Figure 2),

the population can sometimes become extinct (Figure 2b). In this

case, both population size and number of clusters tend sharply –

and simultaneously – toward zero, and hence are strongly

correlated. When the population does not become extinct,

however, as in Figure 2c, population and clusters are not

Figure 8. Distribution of values of m in a competition experiment. The generation number is shown in bold face at the top of each histogram.
The competition experiment shown here corresponds to experiment 8 in Figure 9 below.
doi:10.1371/journal.pone.0011952.g008
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necessarily correlated, and indeed may be anticorrelated. This

range of possible outcomes is the source of the large error bars

around m= 0.9 in Figure 6d.

For values of m beyond this critical range, the population size

and the number of clusters are strongly anticorrelated, which can

be interpreted as follows. As the population increases for larger

values of m and the landscape becomes filled, new organisms will

not be able to seed new clusters due to the finite size of the

landscape: they will have nowhere to go except into some other

cluster, and there will be no new possible niches they can colonize.

This will effectively lead to the merging of clusters, and a decrease

in the number of clusters.

The model studied here is remarkably robust across various

modifications, including changes in how the landscape varies

(gradual shift vs. feedback) and in the distribution of mutation sizes

(uniform vs. normal). However, some differences do occur between

the various implementations of the model. For example, the cases

where mutation sizes are normally distributed (Figures 5 and 6)

exhibit transitions in the parameters of interest for significantly

higher values of m than the cases where mutation sizes are

uniformly distributed (Figures 3 and 4). This can be interpreted as

follows. Mutations selected from a zero-mean normal distribution

will tend to be small, with the majority being around size zero.

Therefore, new organisms will not vary far from the locations of

their parents for small values of m, and, due to the overpopulation

limit, will tend toward extinction (see, for example, Figures 5a and

6a for m,0.65). For a uniform distribution of mutation values,

however, the mutation values will be as likely to land the new

organism near the limiting value of m as they will be to leave them

close to a point intermediate between their parents (mutation

size = 0). Thus, a significant proportion of the organisms will be

able to venture farther into the morphospace for smaller values of

m, as seen in Figures 3 and 4. Note that in the cases shown in

Figures 5 and 6, an increase of the parameter b in Eq. (2) will

increase the width of the normal distribution of mutation sizes,

shifting the plots to the left.

A second difference among the different versions of the model

concerns the sharpness in the drop of the correlation between

population size and number of clusters. For the models without

feedback (Figures 3d and 5d) the correlation decreases gradually.

For the models including feedback, however (Figures 4d and 6d),

the correlation drops far more sharply. This difference between

the models can be explained as follows. Consider the antic-

orrelation between the population and the number of clusters as m
increases, discussed above. The feedback model strongly exacer-

bates this anticorrelation. For large values of m, the organisms

expand to fill the most advantageous regions of the morphospace

(i.e., those where they will produce the most offspring). Increased m
allows them to take more advantage of these regions, since they

can more easily spread through these areas. However, once they

begin to flourish at a particular location, the feedback aspect of the

model will render the regions less advantageous, leading to an

ultimate decrease in population. Some of this population drop will

lead to the splitting of formerly large clusters. Thus, as population

decreases, the number of clusters will increase. Likewise,

depopulated regions will increase in fitness, leading to an increase

Figure 9. Distribution of values of surviving m values after 500 generations for eight competition experiments. Stars indicate
simulation runs (2, 5 and 6) where only a single value of m survived. In other runs, most of the organisms at generation 500 exhibited a single value of
m, with smaller sub-populations exhibiting other m values. Histograms of m values for simulations 3, 4 and 7 are shown at the bottom of the figure as
examples.
doi:10.1371/journal.pone.0011952.g009
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in population, and coalescence of smaller clusters; this again leads

to an exaggerated anticorrelation between the two quantities. This

effect of feedback, leading to negatively correlated fluctuations in

both population and number of clusters over time, may also

explain the greater variability in all quantities for the feedback

models, visible in the much larger standard deviations in Figures 4

and 6 than in Figures 3 and 5.

For all versions of the model, sharp changes are observed in

various quantities characterizing the system as m is varied. These

sharp changes are strongly reminiscent of phase transitions, with

population size, number of clusters and population-cluster

correlation serving as order parameters characterizing the system.

Not only do these parameters exhibit sharp changes in their mean

values as a function of m, but they also exhibit large fluctuations

(i.e., large standard deviations) during the transition, another

characteristic of phase transitions. It is possible that further

investigation of this and related models from such a statistical

physics perspective may be of critical importance in understanding

the role of mutation rate and mutation size in modulating

speciation. Moreover, such models may eventually begin to touch

upon a fundamental problem of evolutionary biology: the bridge

between micro (individual) and macro (demes, species, genera)

levels. The phase transition behavior observed here is particularly

tantalizing in this regard, since a key characteristic of phase

transitions is the co-existence of multiple scales of behavior. Further, in

the model presented here, properties at the individual level (such

as the parameter m) affect the global dynamics of the entire

population, both by modulating the formation of clusters, and

modulating the average properties of these clusters. It should be

emphasized that this relation between scales is fundamentally in the

spirit of statistical physics, where microscopic dynamics determine

global, macroscopic behavior.

If an intermediate mutation parameter maximizes the number

of clusters, does this mean that this value of m is optimal? The

competition experiment illustrated in Figure 8 shows that a single

value of m tends to dominate the population in the limit of many

generations. However, we find that the surviving value of m varies

from one run to the next, as illustrated in Figure 9. Given the

irregularity and variability of the landscape, and seen in the light of

the results of Earl and Deem [16] and Clune et al. [20], this is

perhaps not surprising. The strong role of contingency, as well as

the variability of the landscape and the fact that the system is not

driven only to maximize the number of clusters, but is also subject

to other pressures ‘‘from below’’, such as a basic increase in

population, all tend toward different values of m surviving in

different runs of the model.

It is striking that multiple stable populations with different

values of m have not been found to coexist in this model. However,

the simulations did not allow for the reemergence of extinct

mutation values, and thus perhaps the eventual dominance of a

single value of m may be inevitable, especially given the system’s

tendency in the limit of a large number of generations to exhibit a

fully mixed population where all organisms share at least one

common ancestor (as shown in Figure 7). Nonetheless, the fact that

different values of m survive in different realizations of this

experiment strongly emphasizes not only the high degree of

contingency in such systems, but also the delicate balance of

various competing optimalities as a population struggles to expand

into every available crevice of its morphospace.
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