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Abstract

Background: The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease.
A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in
the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of
testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are
witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain
clinically untested and therefore do not translate into a therapeutic benefit for patients.

Objective: To present a computational method aimed to comprehensively exploit the scientific knowledge in order to
foster the development of personalized cancer treatment by matching the patient’s molecular profile with the available
evidence on targeted therapy.

Methods: To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel
therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were
manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy
tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane
databases were searched.

Results and Conclusions: We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant
data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for
the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments
based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms
of an original method developed to fully exploit the available knowledge on cancer biology with the ultimate goal of
fruitfully driving both preclinical and clinical research on anticancer targeted therapy. In the light of its theoretical nature,
the prediction performance of this model must be validated before it can be implemented in the clinical setting.
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Introduction

Targeted Therapy in Cancer Medicine
Cancer represents the third leading cause of death worldwide

and the second in Western countries [1,2]. Early diagnosis

continues to offer the best chance of cure for most tumor types.

The efficacy of currently available anticancer treatments are far

from satisfactory in the advanced/metastatic setting where most

patients succumb to their disease. General agreement exists

regarding the urgency of developing molecularly targeted

therapies, their implementation in the clinical setting being in its

infancy [3,4,5,6,7,8].

The term ‘‘targeted therapy’’ includes all those approaches that

aim to tailor the therapy to the patient (or cohort of patients) based

on specific molecular features of the disease- and/or patient

[3,7,9,10,11,12,13,14]. The ultimate goal is obviously to maximize

the therapeutic efficacy while minimizing the toxicity, that is,

increasing the ‘‘therapeutic index’’. In cancer medicine, tumor-

specific molecular derangements (e.g., gene mutation or protein

overactivation), are the ideal targets for therapeutic strategies

aimed to kill malignant cells while sparing normal cells.

Furthermore, patient-specific molecular features such as polymor-

phisms of detoxifying enzymes can affect the metabolism of

anticancer drugs and thus can play a role in both efficacy and

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e11965



toxicity profiles. According to these principles, personalized

targeted therapy includes not only the development and clinical

implementation of ‘‘smart’’ drugs (i.e., agents that target tumor-

specific molecular derangements), but also the identification of the

patient molecular profile that maximizes the therapeutic index of

‘‘conventional’’ chemotherapeutics.

Therefore, the two mainstreams of research in the field of

targeted anticancer therapy can be summarized as follows:

A) to develop novel therapeutic agents based on the molecular

‘‘Achilles’ heel(s)’’ of malignant cells, which usually implies

the selection of patients bearing a cancer that harbors that

specific molecular derangement;

B) to identify biomarker(s) predictive of tumor responsiveness

based on the molecular characteristics of both the patient

and the tumor; this approach, ultimately, would lead to

administer conventional and/or targeted drugs only to

patients with the greatest likelihood of responding and the

least likelihood of suffering from side effects.

Research on anticancer targeted therapy has made several

advances; a number of ‘‘smart’’ approaches have now reached the

clinical phase of experimentation and some of them have been

approved for the routine treatment of patients affected by specific

types of cancer [5,8,15,16,17,18,19,20,21,22]. Nevertheless, there

is general agreement that most work is still to be done before we

can state that targeted therapy is the standard of care for cancer.

In this regard, the most important hurdles appear the following: 1)

elucidation of the molecular pathways governing disease develop-

ment and progression has provided investigators with numerous

potential new therapeutic targets, but has at the same time

exponentially increased the number of variables that must be

taken into account when designing new drugs and trials; 2) the

ever growing amount of information generated by the scientific

community stands in striking contrast to the parallel lack of

publicly available bioinformatic tools capable of integrating data

and knowledge in a rationally organized, biologically informative

and therapeutically oriented manner, which would maximize the

likelihood of finding the shortest path to effective cancer

treatments; 3) therapy personalization requires the study of

molecular profiles on a single-patient basis, which requires the

availability of huge computable biological databanks; a formidable

corollary issue is that data sharing implies the compatibility of

different technological platforms used around the world by

different investigators (as exemplified by the CaBig project,

https://cabig.nci.nih.gov); 4) the costs for the development and

the production of ‘‘smart’’ drugs may pose problems of expenses

that cannot be sustained by either public or private research

institutions or even by national health care systems.

Overall, despite the wealth of preclinical studies addressing

the issue of targeted anticancer therapy, the complexity of

testing each preclinical hypothesis in the clinical arena

represents an intrinsic obstacle. As a consequence, the gap is

widening between the pace of discovery in the field of cancer

biology and the improvements in therapeutic benefit for

patients. In particular, the scientific community has only

recently acknowledged that the lack of tools for the systematic

and therapy-oriented collection of the biomedical data may

ultimately cause an enormous and paradoxically unethical waste

of information [23,24,25,26,27,28,29,30,31,32].

The creation of an open-access repository for the storage and

the analysis of data on targeted therapy is a relatively feasible step

towards the full exploitation of the information produced by the

scientific community. Although some attempts have been made in

this direction [33,34,35,36,37,38,39], no disease-specific project

exists to systematically collect and comprehensively exploit

scientific data for the therapeutic management of patients.

The objective of the present project is to create a manually

annotated database where the relevant data are gathered in a

formal representation that can be computationally analyzed for

the identification of therapeutic hypotheses based on the available

evidence and for ranking treatments based on the molecular

profile of single patients.

To this aim we focused on melanoma, an increasingly

diagnosed malignancy for which there is an urgent need to

develop novel therapeutic approaches since no effective treatment

is available, especially in the advanced setting.

The case of melanoma
Although cutaneous malignant melanoma is the least common

form of skin cancer, it accounts for 75% of skin cancer deaths

[2,40,41,42,43]. During most of the twentieth century, the

incidence of melanoma in populations of European origin rose

faster than any other solid cancer, barring lung cancer. An

estimated 160,000 new cases and 41,000 deaths were reported

worldwide in 2002. In the United States, the American Cancer

Society reported approximately 60,000 new cases of melanoma

(with an estimated lifetime risk of 1 in 49 for men and 1 in 73 for

women), leading to an expected 8,110 deaths in 2007. In

comparison, the incidence in 2001 was approximately 47,700

new cases. This underscores that melanoma is an important and

growing public health concern.

The therapeutic management of cutaneous melanoma is one of

the most challenging issues for oncologists [40,41,42]. Because

melanoma is among the solid malignancies most refractory to

medical therapy, early diagnosis coupled with surgical removal of

the primary tumor is virtually the only curative approach currently

available. For metastatic melanoma, no conventional or molecu-

larly targeted drug is better than dacarbazine (DTIC); however,

there is no convincing evidence that DTIC is better than best

supportive care [44,45,46].

In patients with high-risk melanoma, ie, with American Joint

Committee on Cancer (AJCC) TNM stage II (T2-4 N0 M0) and

III (Tany N+ M0) disease the rate of disease recurrence ranges

between 20% to 60%, with 5-year overall survival (OS) varying

between 45% and 70% [47]. The only agent currently approved

treatment for such patients after apparently radical surgery (ie,

adjuvant setting) is interferon (IFN) alpha [48]: according to the

most recent meta-analysis published on this subject, the use of

IFN-alpha reduces the risk of death by about 10% [49].

Overall, it is clear the urgency of accelerating the pace at which

novel, effective therapeutic options can be offered to patients

affected with melanoma.

From a translational perspective, one way of maximizing the

practical usefulness of the available scientific evidence would be to

share the knowledge and organize it in a computationally oriented

fashion: ultimately, this would allow to comprehensively utilize

both clinical and preclinical information on targeted therapy for

the therapeutic management of patients.

In 2007 we have started an initiative in this direction by

launching the Melanoma Molecular Map Project (MMMP,

http://www.mmmp.org), an open-access website dedicated to

the systematic collection of scientific information on melanoma

biology and treatment [50]. The MMMP website, which presently

collects more than 4,000 records distributed in seven intercon-

nected databases, currently ranks first as ‘‘melanoma database’’ in

the Google search engine.

Targeted Therapy Database
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This essay describes the main features of a newly implemented

MMMP database called Targeted Therapy Database (TTD),

which specifically focuses on the available scientific information

that can be exploited to promote the development of personalized

treatments for patients affected with melanoma.

Methods

The Targeted Therapy Database
The Targeted Therapy Database (TTD) is a systematic

collection of the scientific knowledge regarding the development

of targeted therapy for melanoma. A copy of the database is

available as an open-access file in the MMMP website (http://

www.mmmp.org).

This database is intended to gather in a standardized and

computationally oriented fashion the published evidence on the

molecular features that have been so far investigated to develop

melanoma-specific therapies.

The TTD can be queried for the following purposes:

1) To provide both basic researchers and clinical investigators

with an unprecedented synopsis of the available scientific

literature regarding the targeted therapy of melanoma;

2) To obtain summaries of the current evidence about the

relationship between single molecules (or set of molecules)

and the efficacy (or toxicity) of a given therapeutic agent (or

set of therapeutic agents); summaries regarding the syner-

gisms between drugs (conventional and/or targeted drugs)

can also be obtained;

3) To match the patient (cancer) molecular profile with the

available scientific evidence about the targeted therapy of

melanoma, thus developing a drug ranking system for the

personalized treatment of melanoma.

As such, the information collected in the TTD will provide an

overall picture of the data produced by the scientific community

with regard to anti-melanoma targeted therapy, which are

currently scattered in thousands of individual articles published

in hundreds of journals often not open-access. Even more

importantly, the computational analysis of the TTD data may

prove useful to promote both the preclinical and clinical

development of patient-tailored therapy based on the comprehen-

sive (instead of piecewise) use of the available evidence.

Data collection
The sources of the information input in the TTD are the

PubMed, Medline, Embase, Cancerlit and Cochrane databases.

Our literature search is aimed to identify scientific evidence about

the relationship between:

A) any molecule (each in a particular state, such as mutated,

overxpressed, phosphorylated and so on) and the anti-

melanoma efficacy of a therapeutic agent being used or being

investigated for the treatment of melanoma (i.e., relationship

of sensitivity/resistance);

B) any molecule and the toxicity of any therapeutic agent being

used or being investigated for the treatment of melanoma

(i.e., relationship of toxicity);

C) any molecule that - after modulation of its functional state by

a ‘‘modifier’’ (e.g., inhibition by a drug) - can increase (or

decrease) the efficacy a therapeutic agent being used or being

investigated for the treatment of melanoma (i.e., relationship

of synergism/antagonism).

Only original full-length articles are taken into consideration, so

to guarantee that the data collected in the TTD are supported by

research works whose methods, results and conclusions are fully

reported in a manuscript that has passed through a standard peer-

review process.

At the time of writing, over 1,200 records (ie, database rows)

have been created, which cover more than 50% of the relevant

literature published between January 2000 and January 2010,

while for previous years the coverage is currently less than 50%.

Our commitment is to complete the literature search back to

January 1990 over the next 12 months.

Our search is systematic, that is, no key word other than

‘‘melanoma’’ is utilized, the only restriction being the English

language. Accordingly, any type of study (i.e., preclinical/clinical,

human/animal, in vitro/in vivo) regarding any type of melanoma

(i.e., cutaneous, mucosal, uveal) is allowed to contribute to the

content of the database.

Data organization
Information is extracted from each retrieved article according to

the following driving principle: the Authors of each article describe

their findings and virtually always come to a main conclusion,

whether ‘‘positive’’ (e.g., a molecule in a specific state can favor

tumor response to a given treatment), ‘‘negative’’ (e.g., a molecule

in a specific state can oppose tumor response) or ‘‘null’’ (e.g.,

tumor response is unaffected by a given molecule in a specific

state). In other words, each study sustains one targeted therapy

hypothesis, whether positive (the relationship between molecule

and drug is favorable for the patient), negative (unfavorable) or

null (unimportant, not influential).

Data are organized in rows and columns using a Microsoft

Excel file. Each row contains the main data representing the

targeted therapy hypothesis made by the Authors of a given

article. Each column contains one type of data according to a

standardized format.

The following 15 columns compose the database:

1) ID: this is a unique number identifying each record (that is,

each row of the database).

2) Source: this indicates the tissue/cell type where the molecule

under investigation (see next column) is expressed/present.

For instance: somatic mutations of BRAF are investigated in

melanoma specimens, polymorphisms of genes involved in

drug metabolism can be studied in any patient’s nucleated

cell, and expression of cytokine receptors can be assessed in

immune cells.

3) Molecule: this is the name of the molecule under investigation

as a tumor-specific target, or as a biomarker of sensitivity/

toxicity of melanoma/patient to therapeutic agents. The

molecule’s name is generally that reported by the Authors of

the corresponding article.

4) Alias (molecule): since molecules often have multiple names,

aliases are reported in this column in order to clarify

molecules’ identity. Aliases are chosen on the basis of

international databases such as HUGO (http://www.

genenames.org) and Uniprot (http://www.uniprot.org).

5) State (molecule): this refers to the condition (e.g., mutated,

overexpressed, phosphorylated) under which the molecule

exerts the biological activity related to the targeted therapy

hypothesis reported in the article. For instance, the

expression ‘‘mut V600E’’ for the protein BRAF refers to

its V600E mutation (as opposed to the wild type protein or

any other mutational status).

Targeted Therapy Database
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6) Modifier: this refers to any drug or drug-like compound or

laboratory method that can modulate the biological function

of a molecule of interest so to interfere with the efficacy of a

therapeutic agent. For instance, a small molecule inhibitor

can decrease the activity of a target molecule, which may

ultimately affect the efficacy of an anticancer drug; likewise,

technology based on RNA interference (e.g. small interfering

RNA) can downregulate the expression of a gene of interest

which may ultimately impact on the melanoma sensitivity to

a given treatment.

7) Alias (modifier): since modifiers often have multiple names,

aliases can be found in this column in order to facilitate their

identification.

8) Relationship: this column reports the hypothesized relation-

ship between the molecule of interest and the corresponding

treatment/drug (see ‘‘Drug’’ column). Three main types of

relationships are considered: A) Efficacy: the molecule

under investigation can be associated with either sensitivity

or resistance to a therapeutic agent; B) Synergism: the

modulation of a molecule activity by a modifier (see

‘‘Modifier’’ column) can be associated with an increased

(synergism) or decreased (antagonism) therapeutic activity of

a given drug/treatment; C) Toxicity: the molecule under

investigation can be associated with either increased or

decreased toxicity of a given drug/treatment. Of course, all

these associations can be reported to be absent. For the

purpose of prompt identification, positive (i.e. with positive

effects on anti-melanoma treatment), negative (i.e. with

adverse effects) and null associations are highlighted with

different colors (green, orange and blue, respectively).

9) Drug (therapy): this is the drug (or more generally the

treatment) whose effectiveness can be influenced (positively,

negatively or not significantly) by the molecule listed in

column ‘‘Molecule’’. The drug’s name generally is that

reported by the Authors of the corresponding article.

10) Alias (drug): since drugs often have multiple names, one alias

of the drug of interest is often reported in this column in

order to clarify its identity.

11) Model: this column reports the model used by the Authors to

generate the hypothesis. Seven different models are

considered:

1) animal, in vitro (e.g., murine melanoma cell line)

2) animal, in vivo (e.g., syngeneic murine melanoma

model)

3) human in vitro (e.g., human melanoma cell line)

4) human xenograft (e.g., human melanoma xenogeneic

model)

5) clinical study/non-randomized clinical trial

6) randomized controlled trial

7) meta-analysis of clinical trials/studies

This order is dictated by the ‘‘distance’’ of the model from

the human-in vivo condition, or - in other words - by the

level of evidence of the published data. This order will play a

key role in the ‘‘weight’’ assigned to each study, as described

in detail later on.

1) H (hypothesis): As above mentioned, each article can be

classified according to the main conclusions of its Authors

supporting a ‘‘positive’’ hypothesis (e.g., a molecule in a

specific state can favor tumor response to a given treatment),

‘‘negative’’ hypothesis (e.g., a molecule in a specific state can

oppose tumor response) or ‘‘null’’ hypothesis (e.g., tumor

response is unaffected by a given molecule in a specific

state). Following this principle, each record (row) of the

TTD is assigned a value that identifies the corresponding

hypothesis (+1, 21 or 0, respectively).

2) Cases: this is the number of cases (e.g., patients, animals, cell

lines) examined. At present, this information is only

available for clinical studies/trials (i.e., number of patients).

3) Reference: the citation of the source of information is reported.

4) Notes: additional information on the study results/features

can be found in this column in order to facilitate the

interpretation of the data reported in the previous columns.

This information can help users understand whether or not

the molecular condition described in the record applies to

their research/clinical question.

The information found in the TTD regards cutaneous

melanoma, except for drug toxicity data (which are independent

of the tumor type). If the entry relates to uveal melanoma, this is

specified at the beginning of the column ‘‘Notes’’ by the bolded

expression ‘‘Uveal melanoma’’. Therefore, should one be

interested exclusively in targeted therapy for uveal melanoma,

data must be ordered by column ‘‘Notes’’: this way the

information contained in this column is rearranged in the

alphabetical order and data on uveal melanoma will appear

towards the end of the database as a sequence of rows tagged by

the expression ‘‘Uveal melanoma’’ written in the column ‘‘Notes’’.

Likewise, information on specific subtypes of melanoma (e.g.,

acral lentiginous melanoma, mucosal melanoma) can be easily

retrieved using the same method.

Information on gene polymorphisms and drug toxicity can

derive from non-melanoma models, as specified in the ‘‘Notes’’

column in bold character.

Results

Synopsis of the evidence
As above mentioned, the goal of the TTD is to enable

investigators to find targeted therapy related information orga-

nized in a standardized and computationally oriented fashion.

Since data are collected in an Excel file, they can be ordered by

each of the 15 columns and also by any combination of three

columns is sequential order.

For instance, by sorting the database by ‘‘Molecule’’, ‘‘State’’

and ‘‘Drug’’ (in this order), one can easily obtain for each molecule

(and its state) the list of therapeutic agents whose efficacy is

influenced by that molecule (in that particular state), as shown in

Figure 1.

On the other hand, by sorting the database by ‘‘Drug’’,

‘‘Molecule’’ and ‘‘State’’ (in this order), one can easily obtain for

each therapeutic agent the list of molecules (and their state) that

can modulate its efficacy, as shown in Figure 2.

Likewise, by sorting the database by ‘‘Drug’’, ‘‘Relationship’’ and

‘‘Modifier’’ (in this order), one can easily obtain for each therapeutic

agent the list of compounds that can modulate its efficacy.

Obviously, many other searches can be performed by ordering

the columns on the basis of a specific interest (e.g., evidence only

from human models) or research question (e.g., ‘‘what gene

polymorphisms affect the toxicity of cisplatin ?’’).

Summary of the evidence
One aim of the TTD is to allow researchers to conveniently

summarize the available evidence on a given subject. This is an

12)

13)

14)

15)

Targeted Therapy Database
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important feature because the scientific literature routinely poses

the problem of multiple (sometime overwhelmingly numerous)

inputs that often are not concordant (if not conflicting).

The standard way of making a quantitative review of the

available scientific knowledge is performing a meta-analysis, which

is considered the highest level of evidence in medicine, particularly

when based on randomized controlled trials [51,52,53,54,55,56].

The basic idea behind a meta-analysis is to calculate the weighted

mean of the results reported by different studies regarding a

particular subject; to this aim, the following key steps must be

taken: 1) an effect measure (e.g., odds ratio, hazard ratio, relative

risk, risk difference, mean, rate) common to all the studies must be

Figure 1. Example of evidence synopsis regarding the targeted therapy of melanoma, as obtained by searching the Targeted
Therapy Database (TTD). The available evidence on the relationship between a molecule state (BRAF mutation V600E) and its effects on different
therapeutic agents is shown. Due to space considerations, neither all columns nor all rows are displayed.
doi:10.1371/journal.pone.0011965.g001

Figure 2. Example of evidence synopsis regarding the targeted therapy of melanoma, as obtained by searching the Targeted
Therapy Database (TTD). The available evidence on the relationship between a drug (temozolomide) and the molecular determinants of its
therapeutic effect is shown. Due to space considerations, neither all columns nor all rows are displayed.
doi:10.1371/journal.pone.0011965.g002

Targeted Therapy Database
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identified; 2) the effect size (and its variance) must be extracted (or

calculated) from each study; and then 3) the weighted mean of the

effect sizes (overall effect) can be computed. From a therapeutic

perspective, the overall effect quantifies the benefit (or the harm) of

a given treatment, and the confidence interval (CI) represents the

measure of uncertainty about its estimate (which in turn

determines the statistical significance in terms of type I error,

based on the predefined alpha level of significance).

In the light of these considerations, one can see that meta-

analysis is not appropriate for summarizing the information

contained in the TTD. In fact, the different effect measures

adopted by the Authors to describe the results obtained in different

models (ranging from animal in vitro models to randomized

clinical trials) cannot be pooled together. Moreover, even if the

effect measures were the same, different experimental models

cannot be considered equally informative and reliable: obviously,

human and in vivo models provide a higher level of evidence as

compared to animal and in vitro models (provided that each study

is equally well designed, performed and analyzed).

Therefore, the TTD cannot be exploited to calculate an overall

effect size for a given therapeutic approach, which is why it does

not record the effect sizes of the single studies.

What then is meant by ‘‘summary of the evidence’’ within the

TTD ?

As above mentioned, each study (which is represented by a row

of the database) can be envisaged as a working hypothesis about a

targeted therapy against melanoma. When more than one record

(i.e., one row of the database) exists for a given hypothesis (e.g.,

BRAF mutation V600E modulates the efficacy of small molecule

inhibitor sorafenib), we propose a score-based approach to make a

summary of the available evidence. With this method we aim to

identify the ‘‘prevalent’’ hypothesis, a process taking the following

steps (see also Figure 3):

1) As reported in column ‘‘H (hypothesis)’’, each record (i.e.,

each row of the database) is assigned one of the integer numbers

‘‘+1’’, ‘‘21’’ or ‘‘0’’, based on the fact that it represents a piece of

evidence in support of one of the three possible hypotheses (as

expressed by the Authors of the corresponding manuscript):

A) positive relationship (green color in the ‘‘Relationship’’ column):

the study supports the hypothesis that the molecule (e.g.

BRAF) in a particular state (e.g. mutation V600E) is

associated with increased efficacy of a drug, synergism

between drugs or decreased toxicity of a drug. On the

practical ground, a patient carrying this molecule (in this

specific state) would benefit from the given treatment;

B) negative relationship (orange color): the study supports the

hypothesis that the molecule can oppose the efficacy of the

drug; a patient (tumor) carrying this molecule (in this specific

state) would be refractory to the given treatment

C) null relationship (blue color) if the study supports the hypothesis

that the molecule does not change the efficacy of the drug;

knowing that a patient (tumor) carries this molecule (in this

specific state) would be uninformative in terms of respon-

siveness to the treatment.

2) As reported in the ‘‘Model’’ column, each record is also

assigned a score (model score), based on the experimental/

clinical model used to generate the targeted therapy hypothesis.

Clearly, the evidence coming from an in vitro study carried out

with murine melanoma cell lines cannot have the same ‘‘weight’’

as the evidence derived - for instance - from a study performed in a

human trial model. The closer the model to the in vivo human

condition, the higher the level of evidence and thus the greater is

the weight assigned to that study.

Within the frame of this arbitrary score, the proportion between

the weights of ‘‘adjacent’’ models is fixed: in particular, the score of

each model is twice that of the immediately precedent model. The

starting score (model: animal, in vitro) was set to 6 because this is

the smallest natural number that meets the decision rule below

described (in case a single study based on such a model supported

a given hypothesis).

The evidence score is then adjusted according to an additional

weight (size score), which is based on the number of cases (e.g.,

patients, animals, cell lines) analyzed (‘‘Cases’’ column): this way,

studies describing results obtained from larger series are assigned a

higher score.

The total evidence score (ESi) for each hypothesis i is

computed according to the following formula:

ESi~ Model scoreð Þ| Size scoreð Þ,

where Size score = n/10 (n is the sample size [e.g., number of

patients enrolled] of the study under evaluation).

3) The percentage of the evidence score (score percentage,
SP) in favor of each of the three above mentioned hypotheses (i.e.,

positive, negative, null) is simply defined as the proportion between

the evidence score in favor of each hypothesis i and the sum of the

evidence score of all hypotheses:

SP~ESi=
X

ESið Þ

4) At this point, a decision rule must be applied to determine

whether or not a prevalent hypothesis exists: we chose 50% (0.5) of

the evidence score as the minimum value to define the prevalent

hypothesis. In other words, if one of the three possible hypotheses

(i.e., positive, negative, null) is associated with more than 50% of

the available evidence score and the lower level of the 95% CI of

this proportion does not cross this decision rule value, one can

reasonably suppose this is the prevalent hypothesis in the scientific

literature.

The 95% CI of the score percentage (SP) can be calculated

according to the Agresti-Coull formula (which provides a

substantial improvement over the widely used Wald method

especially for proportion values near 0 and 1 and for small sample

sizes, as it can occur in the TTD):

Score percentage 95%CI~SPc+1:96 � SE

where:

SPc~ ESiz 1:962=2
� �� �

=TSc, that is the score percent-

age (SP) corrected according to the Agresti-Coull

method

SE~H SPc � 1{SPcð Þ½ �=TScf g, that is the standard

error of SPc

TSc~
P

ESið Þz 1:962
� �

, that is the total evidence

score (supporting any given hypothesis i) corrected

according to the Agresti-Coull method.

A formal comparison between a given score percentage (SP) and

the 50% (0.5) decision rule value can be made using a Z-test,
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according to the following formula:

Z~ SP{0:5ð Þ=SE

where:

SP~ESi=
P

ESið Þ
SE~H SPc � 1{SPcð Þ½ �=TScf g

For a two-tailed test, the P-value is given by:

P{value~2 1{W DZDð Þ½ �

where W (|Z|) = standard normal cumulative distribution.

Of course, the decision rule value (0.5) can be shifted up or

down to make it more or less stringent respectively, thus rendering

more or less conservative the conclusion regarding the relationship

between the patient’s profile and the response to treatment.

If none of the three hypotheses meets the decision rule, we can

reasonably suppose that there is no prevalent hypothesis, that is,

there is not enough evidence to link a given molecule (in a

particular state) to the efficacy/synergism/toxicity of a given drug.

5) Once we know that there is enough evidence to support the

hypothesis that no relationship exists between a molecule and a

drug, or that not enough evidence exists to support any hypothesis

on this relationship, this molecule is eliminated from the list of

molecules useful to predict drug responsiveness. Importantly, this

is not a definitive elimination, because new data will likely be

published on this relationship and thus the result of the summary

can change at any time. Since the TTD is routinely updated, the

selection of relevant molecules is a dynamic process that can

provide different results over time as the scientific knowledge

grows.

6) If the summary of evidence is instead in favor of the

hypothesis that a molecule (in a particular state) can modulate

Figure 3. A scheme of the evidence score method to synthesize the literature evidence and identify prevalent hypotheses
regarding the relationship of sensitivity/resistance between a given molecule (in a specific state) and a given drug. Each study is
assigned an evidence score based on the experimental model used to generate the findings reported in each article In this example, 70% of the total
score (that is, 70% of the published evidence rated according to the experimental model used to generate the findings reported in each article)
supports the hypothesis that molecule-X (in a particular state, here not specified for the sake of simplicity) is associated with responsiveness to drug-
Y. To be defined as ‘‘prevalent’’, the hypothesis must be characterized by the fact that the lower bound of the 95% confidence interval of its score
percentage does not cross the decision rule value (50%). The same method can be used to identify prevalent hypotheses regarding the relationship
of toxicity and synergism (see text for more details).
doi:10.1371/journal.pone.0011965.g003
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(either positively or negatively) the activity of a treatment, then

that molecule is added to the list of molecules potentially useful

(i.e., informative) to predict the responsiveness to the treatment.

To provide readers with a working example of the computations here described,

the above algorithm is fully implemented in the TTD spreadsheet entitled

‘‘Summary of Evidence’’ (available as an open-access file in the MMMP website).

Drug ranking system
Once a list of molecules for which ‘‘consistent’’ evidence is

available in favor of their role in predicting the responsiveness (or

refractoriness) to a specified therapeutic agent, as assessed by

means of the above described summary of the evidence, one might

be willing to test the relevant biospecimens from a given patient for

these molecules and match the patient’s molecular profile with the

currently available evidence on targeted therapy.

This opens the avenue to the use of the already available

scientific knowledge for generating hypothesis of personalized

treatment based on the fundamental principle of molecular

medicine: to use the patient (disease) molecular profile for

designing the treatment most effective and least toxic.

Before entering the technical details, one crucial issue must be

clearly addressed. The TTD has exclusively research purposes,

and thus neither the information nor the analytical models

included in this database should be used for the clinical decision

making process by any means. In fact, this way of summarizing the

evidence across (sometime very) different models has never been

reported before and thus it requires adequate validation before it

can be considered reliable on the clinical ground.

With this important caveat in mind, we propose to take the

following steps in order to match the patient’s molecular profile

with the current evidence on targeted therapy (see also Figure 4):

1) Using the above described score-based system, the

informative molecules (each along with a particular state of

expression/function) are extracted from the TTD along with their

score percentage (SP) and 95% CI. Each SP can be viewed as a measure

of strength of the hypothesis sustaining the relationship between the molecule and

the drug efficacy (toxicity, synergism) based on the available literature as rated

by the evidence score above described.

2) Score percentages (SP) of molecules associated with

sensitivity to treatment are initially assigned a ‘‘+’’ sign (e.g.

BRAF mutation V600E increases the efficacy of drug Sorafenib),

whereas molecules associated with resistance to treatment are

assigned a ‘‘2’’ sign (e.g. BRAF mutation V600E decreases the

efficacy of drug Sorafenib). Then, the concordance (or discor-

dance) between the molecular state of the prevalent hypothesis and

that of the patient (tumor) must be assessed. In particular, the sign

of the SP will be left unchanged if the patient carries the same

molecular state as that of the SP (e.g. BRAF mutation V600E); in

contrast, if the patient carries the ‘‘opposite’’ molecular state (e.g.

BRAF wild type), the SP will be assigned the opposite sign.

3) At this point, an overall score (OS) can be calculated as

the weighted average of the score percentage calculated for each

informative molecule. The OS and its confidence interval can be

calculated using the inverse variance method as follows:

OS~
X

Wi � SPið Þ=
X

Wi

And

Overall score 95%CI~OS+1:96 � SE,

where:

SPi : score percentage of the prevalent hypothesis

calculated for each molecule (in a specific state) for

which the patient (cancer) has been tested

Wi = 1/Vi, the weight assigned to each molecule based

on the variance of the SP

Vi = SPc * (12SPc), i.e. the variance of the SP calculated

for each molecule (see above)

SE = standard error = ! (OV)

OV = overall variance = 1/S Wi

The interpretation of the resulting score obviously depends

upon the decision rule one adopts. Using the 50% decision rule (as

we suggested for the summary of the evidence), two outcomes can

occur:

A) if the overall score for a given patient is greater than 50% (0.5)

and its 95% CI does not cross the 50% decision rule value, one

can reasonably conclude that the available evidence supports

the hypothesis that this specific profile is associated with

sensitivity (or resistance, depending on the ‘‘direction’’ of the

overall score) to the treatment under evaluation;

B) if the overall score for a given patient either is lower than (or

equal to) 50% (0.5) or its 95% CI crosses the 50% decision

rule value, one can reasonably conclude that there is not

enough evidence linking this specific profile to the respon-

siveness (or refractoriness) to the treatment under evaluation.

A formal comparison between the calculated overall score (OS)

and the 50% (0.5) decision rule value can be made using a Z-test,

according to the following formula:

Z~ OS{0:5ð Þ=SE

where OS and SE are defined as above reported. For a two-tailed

test, the P-value is given by:

P{value~2 1{W DZDð Þ½ �

where W (|Z|) = standard normal cumulative distribution.

To provide readers with a working example of the computations here described,

the above algorithm is fully implemented in the TTD spreadsheet entitled ‘‘Profile

Matching’’ (available as an open-access file in the MMMP website).

Of course, the decision rule value (0.5) can be shifted up or

down to make it more or less stringent respectively, thus rendering

more or less conservative the conclusion regarding the relationship

between the patient’s profile and the response to treatment.

In this regard, we plan to validate the predictions of our model

by fitting logistic regression analysis to the scores generated by the

TTD. This is a standard approach for binary outcome prediction

models (responder vs. non-responder) and has several useful

features: 1) it allows to adjust for confounding factors (e.g., age,

gender, clinical setting, previous treatments) and even for the

creation of a multivariable prediction model using the logistic

regression linear predictor as a composite prediction score (which

would allow to synergistically exploit the predictive power of

multiple covariates); 2) predictive accuracy can be defined in terms

of discrimination and calibration by means of dedicated statistics

(e.g., Brier score and its decomposition); 3) Receiver Operating

Characteristic (ROC) curve analysis can help choose the optimal

score trade off value to define responders (currently set to 50%).

4) If the above procedure is performed for more than one

treatment (i.e., the patient’s molecular profile is matched with
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more than one therapeutic agent), it is also possible to create a

drug rank based on the overall score obtained for each drug as

above outlined. A formal comparison between two overall scores

(e.g., OSa and OSb) relative to the matching of the patient’s profile

with drug A and drug B can be computed using a Z-test, according

to the following formula:

Z~ OSa{OSbð Þ=SEa{b

where:

SEa{b~H OVazOVbð Þ
OVa : variance of the overall score for the matching of

patient’s profile with drug A

OVb : variance of the overall score for the matching of

patient’s profile with drug B

For a two-tailed test, the P-value can be calculated using the

following formula:

Figure 4. A scheme of the drug ranking system to match the patient’s molecular profile with the available scientific evidence
regarding the relationship of sensitivity/resistance between a set of molecules (each in a specific state) and a given drug. After
identifying the prevalent hypothesis (along with its score percentage) for each molecule according to the evidence score method (see text and
Figure 3 for more details), the same molecules (and their state) are tested in the tumor of a patient. Each molecule is said to be concordant (positive
sign) or discordant (negative sign) according to whether the molecule state found in the patient’s tumor is identical or opposite to the state reported
in the literature, respectively. Then, a weighted mean of the score percentages is calculated to obtain the overall score for the patient. In this
example, the overall score indicates that on average 60% of the available evidence (that is, 60% of the published evidence rated according to the
experimental model used to generate the findings reported in each article) is in favor of the hypothesis that the patient’s molecular profile is
associated with responsiveness to drug-Y. To be defined as ‘‘sensitive’’ (or ‘‘resistant’’), a molecular profile must be characterized by an overall score
with a lower bound of its 95% confidence interval that does not cross the decision rule value (+50% or 250%, respectively). The same method can be
used to assess whether the available evidence supports the hypothesis that a molecular profile is associated with higher/lower toxicity for a given
drug-Y (see text for more details).
doi:10.1371/journal.pone.0011965.g004
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P{value~2 1{W DZDð Þ½ �

where W (|Z|) = standard normal cumulative distribution.

Of course, the same procedure can be used to match the

patient’s molecular profile with the available evidence regarding

drug/treatment toxicity.

Discussion

The Targeted Therapy Database is the first publicly available

repository that provides investigators with a searchable and

computation-compatible collection of the scientific evidence

regarding the targeted therapy of melanoma. Users can query

the database to easily obtain standardized information about the

molecular determinants of sensitivity or resistance of melanoma to

a given treatment, the compounds that can synergize with a given

treatment, as well as the molecular determinants of toxicity of a

given treatment.

This information can be utilized to quickly ascertain the most

studied as well as the emerging therapeutic strategies, along with

the models where they have been tested and the results yielded

so far.

Using the above presented model based on the evidence score,

these data can also be exploited to identify prevalent therapeutic

hypotheses, which is especially helpful when conflicting results are

reported in the literature. As above explained, although our model

cannot quantify the therapeutic benefit of a given targeted

therapy, it can be used to discern trends in the available evidence,

pinpointing the most promising approaches based on the amount

of literature (rated according to the scoring method described

above) in favor of each therapeutic hypothesis.

Finally, this archive - along with the algorithm we have

proposed - can be utilized to match the patient’s molecular profile

with the available literature and thus to hypothesize patient-

specific drug sensitivity toxicity or synergism based on the scientific

evidence supporting each type of relationship for each of the

molecules investigated.

We chose melanoma because this tumor paradigmatically

represents the urgency of providing patients with better treat-

ments: in fact, no current drug regimen significantly impacts on

the clinical course of this disease in the metastatic setting. Under

these unfortunate circumstances, any therapeutic choice based on

the available evidence (even without clinical proof of efficacy of

such a strategy) would appear more rational than offering patients

no options at all. However, since the drug ranking system

described above is based on a theoretical model, it should only be

used to generate hypotheses, not to make clinical decisions. In

other words, at the moment the findings obtained with our model

should only be used a posteriori (after the patients has been treated

with a regimen chosen independently of the model results) in order

to determine the actual performance of the model itself. Only this

validation of the model on the clinical ground will enable us to

verify whether our theoretical computations are accurate enough

to be clinically valuable, and thus to propose the implementation

of the model in the routine setting for choosing the therapeutic

regimen most likely to benefit individual patients.

Despite its intrinsic limitations (e.g., the score is arbitrary, the

literature coverage is incomplete and thus many hypothesis are

based on few or even single original articles), this model is - to the

best of our knowledge - the first attempt to directly apply the

enormous amount of data accumulated by the scientific commu-

nity in the field of personalized medicine. This translational

approach has the undeniable advantage of making the most of the

scientific production by using it comprehensively, without wasting

any evidence. This can be envisaged as an effort to deal with the

general problem that the biomedical community produces more

data than those utilized for clinical purposes. The actual

impossibility of testing each preclinical hypothesis in the clinical

setting represents undoubtedly a waste of potentially useful

information: this ‘‘abandoned’’ information could be ‘‘rescued’’

by taking it into consideration through the model we propose for

the evidence-based design of further research, both preclinical and

clinical. Should the clinical validation of this drug ranking system

demonstrate that it is reliable, the TTD could be utilized as a

template to develop similar repositories dedicated to any tumor

and more generally to any disease.

On the other hand, it should be clearly noted that scoring the

hypotheses reported in the literature as we propose to do here

cannot replace the standard rules of research, including clinical

phases of treatment evaluation and formal meta-analysis of

therapeutic interventions. The model we presented can only speed

up the identification of the most promising hypotheses of targeted

therapy by making an unprecedented comprehensive use of the

available evidence based on two principles: 1) any information is

potentially useful, independently of the experimental model that

has generated it, provided that different ‘‘weights’’ are assigned to

different models in order to reflect the difference in reliability; 2)

disease’s outcomes virtually always depend upon molecular

combinations, which calls for the simultaneous use of information

about all the molecules so far investigated, which should maximize

the likelihood of successfully drive targeted therapies.

As the available and eligible data are added to the TTD, we will

be able to make predictions more and more reliable because they

will be based on more information. In particular this will minimize

the risk of publication bias because some positive/significant

molecular associations published in the first place will be

‘‘balanced’’ by negative/non significant findings. We note that -

in analogy to standard meta-analysis - the greater the number of

studies considered the smaller the variance of the overall effect; in

our case, the smaller the sampling error the more accurate the

prediction. Furthermore, the growing information will enable

investigators to make setting specific predictions thanks to the

flexibility of the TTD: in fact, its format allows to insert more

columns (e.g., a new one could be dedicated to distinguish data

obtained in the primary tumor or metastatic setting) at any time.

Then our model can still be applied as above described because

the user can simply sort the database by the new column (e.g.,

primary vs. metastatic) and use only the relevant information (e.g.,

data from primary or metastatic setting) based on the clinical

question to be addressed.

Finally, we would like to underscore that this kind of project can

succeed only if the scientific community participates in the effort of

improving the model we have proposed. This can be realized in

several ways, such as: A) by giving notice of relevant articles not yet

included in the TTD, which will maximize the literature coverage of

the database and thus will ultimately increase the reliability of the

analyses performed; B) by proposing new algorithms improving the

exploitation of the information contained in the database; C) most

importantly, by testing the hypotheses generated by the TTD

analyses both in the preclinical and clinical setting.

Overall, putting together the pieces of a ‘‘disease puzzle’’ is

becoming increasingly difficult due to the continuous and growing

flow of information that no single mind can keep up with: we

therefore propose the TTD (and the associated model for drug

ranking) as a tool for the synopsis and synthesis of the scientific

hypotheses with the aim of favoring the rational design of both

preclinical and clinical research.
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The commitment of the MMMP Team (the core of basic

researchers and clinical investigators taking care of the scientific

content of the MMMP website) is not only to keep the TTD

regularly updated but also to carefully take into consideration

suggestions, criticisms and contributions from the scientific

community.

We strongly believe that the bidirectional exchange of informa-

tion (from the database to the user and vice versa) represents the

most efficient way of gathering and exploiting scientific data on a

specific disease: in fact, if every researcher spent just a small amount

of time to share his/her knowledge to keep up-to-date the TTD or

any other similar project, the pace of discovery of more effective

anticancer strategies would be greatly increased.
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