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Abstract

Background: The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation
in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and
skeletal system.

Methodology/Principal Findings: We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and
found a significant deviation of Tajima’s D statistics from neutrality taking human population growth into account. Data
from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and
significantly low degree of genetic differentiation among human populations.

Conclusion/Significance: We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during
the evolution of modern human.
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Introduction

After dispersal from African, modern human migrated to the

rest of the world and adapted rapidly to a variety of environmental

challenges, such as climate, food supply, etc. Many phenotypes

may undergo apparent adaptation [1]. Skeletal system has been

observed to evolve rapidly during the past 10,000 years among

human populations during the time of rapid population growth

[2]. However, unlike other beneficial traits, e.g. speech, cognitive

ability, diverse skin and others [1], virtually no single gene has

been identified under a major selection event accounting for the

rapid evolution of skeletal system of human.

Polydactyly, characterized by the addition or part of a digit, is

one of the most common congenital limb malformations which are

relatively common human abnormalities occurring at an incidence

of one per ,500–1000 live births [3]. Polydactyly occurs in many

phenotypes, like preaxial polydactyly II (PPD II), triphalangeal

thumb-polysyndactyly syndrome (TPT-PS) and isolated triphalan-

geal thumb (OMIM 174500) [3–7]. LMBR1 gene, which contains

17 exons spanning approximately 200 kb of genomic DNA,

encodes a 490-amino acid protein containing 9 putative

transmembrane and one coiled-coil domains [8]. Level of LMBR1

activity had been associated with the number of digits across

vertebrates [4]. The crucial functional element of LMBR1 is

located within the intron 5, which serves as the long-range

regulatory element of the adjacent SHH gene, a key development

gene in the nervous system, skeletal system and others. Disruption

of this intron, leading to dysregulation of SHH, can cause all kinds

of above mentioned polydactyly [3–7]. Phylogenetic analysis also

indicated conservation of the intron 5 region in teleost fishes and

throughout the tetrapod lineage [9].

Considering the profound role of LMBR1 gene, particularly the

intron 5, in the development of limb and skeletal system, we

checked the evolutionary pattern by sequencing a ,10 kbp region

in the intron 5 in 41 East Asian individuals. Tajima’s D value is

significantly higher than neutrality as after considering human

population growth. Additionally, the advent of large-scale genome

and polymorphism data in human population supports specific

selection effect during human evolution. Extensive linkage

disequilibrium and lower genetic differentiation were found in

this region in East Asian and European populations. We

concluded that balancing selection at the region occurred during

the evolution of modern human.

Results

Genetic variation of the sequenced region in the intron 5
in the East Asians

We sequenced one 9256 bp region in the 5th intron of LMBR1

gene in 41 East Asian individuals, and identified 21 SNPs, 8 of

which had the minor allele frequencies .0.4. The sequence for

each individual was submitted to GenBank under accession

numbers EU880543-EU880583. One SNP was difficult to be

confirmed in about one fourth individuals for sequencing

technology difficulties, the SNP and 300 bp sequence around it

were excluded from analysis. The other total 20 SNPs were used to
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construct the haplotypes by the PHASE program [10,11], and 13

haplotypes were obtained (Figure 1A). All SNPs were not deviated

from Hardy-Weinberg equilibrium.

The nucleotide diversity p is 6.461024, lower than the human

genome average (,7.561024) [12], and the Watterson’s estimator

hw is 4.4961024. The haplotype diversity is 0.828. There are two

major haplotypes found at high frequencies, and the network

analysis indicates that they are separated by relative long branch

length (Figure 1B). The ‘‘twin-peak’’ phenomenon is observed in the

mismatch distribution of pairwise differences between the haplotypes

(Figure 1C). Tajima’s D value is 1.25 (p.0.1), but the value is

significantly higher at the empirical 95% level (by one sided p-value)

in an empirical distribution available from a study of 313 genes [13].

These data are suggestive of the direction of balancing selection.

Evidences have suggested that human populations have grown

dramatically, which have strong effects on the genetic diversity. The

assumption of constant population size is highly conservative in the

detection of balancing selection, and will cause type II statistical error

(i.e. a failure to reject the null hypothesis of neutrality when it is false)

[14]. Considering the population size change in human populations,

we performed 250 different tests of Tajima’s D using the algorithm of

Rogers [15] across different magnitudes of population growth (from

1-fold growth [i.e., no growth] to 250-fold growth), with the growth

beginning at different times (0 years ago to 250,000 years ago). The

hypothesis of neutrality is rejected by Tajima’s D under those models

assuming magnitudes of growth greater than 1.3, from an ancient

effective population size of 10,000, beginning more than about

65,000 years ago. The sequence is large enough that recombination

may have occurred, and it would make Tajima’s D test conservative.

Age estimation
The time of the most recent common ancestor (TMRCA) is

calculated as THC*DH/DHC. THC is the time of divergence

between human and chimpanzee, DHC is the divergence between

human and chimpanzee sequences (from NCBI) and DH is the

average difference of human haplotypes. The values are 66106

years, 95.00, and 5.71 respectively, and the TMRCA is 3.616105

years, much longer than 65,000 years.

Extensive linkage disequilibrium of the intron 5 in the
East Asian and European populations

Extended linkage disequilibrium is usually observed in the

selected region because recombination does not have enough time

to break it down [16]. Large scale polymorphism data are

facilitating the studies of evolutionary patterns in human genome.

We examined the characteristics of LMBR1 by the HapMap data.

All pairwise D’ measures among these HapMap SNPs were

estimated, and the graphical representation of LD level is

illustrated in Figure 2, which demonstrates strong LD of the

intron 5 region in the East Asian and European populations

(Figure 2). We also estimate the LD extent by analyzing the R2 of

all pairwise comparisons between the 20 SNPs, and found 56

significant pairs at 5% level (Figure 1D).

Lower genetic differentiation among human populations
In general, positive directional selection promotes the divergence

among populations, but balancing selection will decrease the

differentiation of selected loci compared with neutrality. The average

Fst values of total 113 SNPs in the LMBR1 gene were 0.036 (East

Asian vs European), 0.081 (East Asian vs African), and 0.064

(European vs African), significantly lower than the average values in

[17], 0.098, 0.128 and 0.102 respectively by t test (p = 9.36E-44,

1.57E-07, 2.08E-06 respectively with degree of freedom 112;

p = 0.00098, 0.016, p = 0.02 respectively with degree of freedom 2;

and p = 0.014, 0.058, 0.065 respectively with degree of freedom 1).

Such weak genetic differentiation indicates balancing selection might

have occurred in this region rather than population subdivision.

Discussion

Evidences have indicated that the size of human population

increased in the Upper Pleistocene [15]. Populations that have

grown are expected to have an excess of low-frequency alleles and

thus low pairwise difference between sequences, which will lead to

the reduction of common statistics used to detect from neutrality, e.g.

Tajima’s D, [18]. Therefore, it is inappropriate to detect natural

selection, e.g. conservative to detect balancing selection, under the

model of constant population size [14]. In this study, we identified

significant deviation of Tajima’s D from neutrality under models

incorporating different human population growth parameters.

Another two pieces of evidences, strong linkage disequilibrium and

lower genetic differentiation among human ethnical populations also

support the existence of a balancing selection, because population

subdivision, another competing hypothesis, could also lead to

significantly high Tajima’s D for divergent haplotypes existing in

different geographical regions [14,19]. However, the nucleotide

diversity is low in the region, which is not usually observed in the

genes under balancing selection (Figure 3). Perhaps, the intron 5

region is highly conservative during evolution for its essential

function and does not allow accumulation of new mutations. For

example, the nucleotide diversity of ACE2 gene, subject to balancing

selection, is even lower than that found in this intron [20].

Cis-regulating modules have been known contributing profoundly

to the genome evolution as they are key regulator of gene expression

level. Up to now, cis-regulatory regions of many genes showed

evidence of positive and/or balancing selection. For example, the cis-

regulator of CCR5 [21] was involved in a strong balancing selection,

whereas, the encoding sequence of the gene was subject to positive

selection. The intron 5 and the downstream SHH gene appear

evolving in a similar manner as CCR5, in that evidence of positive

selection has been found in SHH gene in primate, particularly

lineage leading to human, and human population [22].

It is appealing that testing for selection should be based on a strong

biological working hypothesis [23]. The lower genetic differentiation

of the loci among human populations indicated that the balancing

selection had occurred before the divergence between the main

modern human subpopulations. Accordingly, we proposed that

polydactyly has maintained for a long time during the evolution of

human. However, considering the strangeness appearance of the

phenotype, it may be a slightly side effect and disadvantage during the

adaptive evolution of limb and skeletal system, like limb size, hand

bone strength, finger flexibility or others. Presumably, the variants

maintained by balancing selection may be associated additional

intermediate phenotypes other than polydactyly. In addition, the

balancing selection on the region probably also plays a role in

maintaining the diversity of skeletal system, e.g. sizes, among different

populations and different individuals. Although we showed the

evidence of balancing selection in this region, the mechanism under

which balancing selection occurred at the intron 5 of LMBR1 gene is

unclear. It may become more apparent when more insight into

function of the intron 5 is available by the future functional studies.

Materials and Methods

Samples and sequencing
41 unrelated East Asian individuals (19 Han Chinese, 15

minorities of China, five Thais, 1 Filipino and 1 Lao) were chosen
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Figure 1. Genetic variation analyses in the LMBR1 intron 5 among 41 East Asian individuals. A: The 13 haplotypes constructed by PHASE
program, and the right-most column shows the number of each haplotypes among 41 subjects. B: Median joining network of haplotypes. Each circle
represents a haplotype indicated in Figure 1A, and the size of the circle is the relative frequency. Beside the branches are labels of the SNPs in the
haplotypes counted from left to right. C: Graph of pairwise differences between the haplotypes. The dash line represent the observed sequence
pairwise difference, and the real line represent the expected distribution of pairwise difference simulated by DnaSP under population growth with
initial theta as 3.442, final theta as 1000, and final tau as 2.267. The ‘‘twin-peak’’ of observed mismatch distribution is suggestive of balancing
selection. D: LD extent analyzed by R2 of all pairwise comparisons between the 20 SNPs. The shadows indicate significant pairwise comparison
identified with x2 tests by using a Bonferroni correction for multiple testing.
doi:10.1371/journal.pone.0002948.g001

Balancing Selection on LMBR1

PLoS ONE | www.plosone.org 3 August 2008 | Volume 3 | Issue 8 | e2948



for sequencing. Ethical approval for this study was provided by the

Ethics Committee of Kunming Institute of Zoology, Chinese

Academy of Sciences, and all participants provided written

informed consent. The first ten kbps of LMBR1 intron 5 was

amplified by LA-PCR method with two pair primers (59-

AGAAAGGAGGTCATTGTAG-39 as first sense primer and 59-

AGATTGAGGTCCAGGTAT-39 as first antisense primer; 59-

CGTATGGGAACTCAGAAA-39 as second sense primer and 59-

ACGCAAGCCAAATAAGAC-39 as second antisense primer),

and sequenced by ABI PRISM 3730xl DNA analyser (Applied

Biosystems) with ABI BigDye Terminator Cycle Sequencing Kit,

Version 3.1 (Applied Biosystems, Foster City, California, USA).

The thermal cycling condition of two pair primers both are: 95uC,

4 min; 94uC, 1 min, 57uC, 5 min, 72uC, 5 min, 30 cycles; 72uC,

10 min. The resulting sequences were analyzed by the DNASTAR

software (DNASTAR). Detailed information on sequencing

primer sequences is available on request.

Statistical analysis on the sequenced intron 5 region
The haplotypes were constructed by PHASE program [10,11],

and the network was constructed by using median joining

algorithm [24] implemented in Network. The average number

of pairwise difference (p), Watterson’s estimator (hw) [25] and

haplotype diversity were calculated. Tajima’s D (1989) [26] was

used to test the evolutionary pattern by Arlequin program [27].

Allowing for human population growth, we applied the Tajima’s

D test on the background of different magnitudes of population

growth and the growth beginning at different times simulated by

Figure 2. Linkage disequilibrium pattern of chr7: 155920–156290 kbp (NCBI35) region in the East Asian, European and African
populations based on the HapMap Data. LMBR1 gene and the intron 5 are showed.
doi:10.1371/journal.pone.0002948.g002

Figure 3. Nucleotide diversity (p) of previous reported
balancing selection genes and the LMBR1 intron 5 studied
here. It shows that LMBR1 intron 5 had low p among these genes with
documented evidence of balancing selection. The data are from [29]
(LDLR), [30] (HAVCR1), [18] (ABO, IL10RB, IL1A, and ACE2), [19] (59 CCR5),
[31] (MBL2), [32] (CD209L), [33] (C6), [13] (PTC), [34] (FSHB), [35] (FMO3),
[36] (G6PD), [37] (FUT2).
doi:10.1371/journal.pone.0002948.g003
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the algorithm of Rogers (1995) [15]. Pairwise mismatch analysis

was performed by DnaSP [28] under population growth

assumptions with initial theta as 3.442, final theta as 1000, and

final tau as 2.267. LD extent was analyzed by R2 of all pairwise

comparisons between SNPs, and the significances were identified

with x2 tests by using a Bonferroni correction for multiple testing.

The nucleotide diversity (p) values of previous reported balancing

selection genes were obtained from [29] (LDLR), [30] (HAVCR1),

[20] (ABO, IL10RB, IL1A, and ACE2), [21] (59 CCR5), [31]

(MBL2), [32] (CD209L), [33] (C6), [14] (PTC), [34] (FSHB), [35]

(FMO3), [36] (G6PD), [37] (FUT2).

LD analysis and Fst comparison based on the HapMap
data

SNPs of LMBR1 location in chr7:155920–156290 kbp

(NCBI35) were chosen from HapMap with the criteria: minor

allele frequency $10% and consistent with Hardy-Weinberg

equilibrium in 0.01 level. LD measures between pairs of SNPs

were quantified using statistic D’ [37], which were calculated by

Haploview program [39]. The results of pairwise D’ were

visualized by the GOLD program [40]. SNPs in the LMBR1

gene region were used to calculate Fst values between Caucasians,

Africans, and East Asians. Total 113 SNPs in the LMBR1 region

fulfilled the criteria were used to calculate the Fst values among

human populations as described in [17,41].
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