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Abstract

Retinoic acid inducible gene-I (RIG-I) is a key regulator of antiviral immunity. RIG-I is generally thought to be activated by
ssRNA species containing a 59-triphosphate (PPP) group or by unphosphorylated dsRNA up to ,300 bp in length. However,
it is not yet clear how changes in the length, nucleotide sequence, secondary structure, and 59 end modification affect the
abilities of these ligands to bind and activate RIG-I. To further investigate these parameters in the context of naturally
occurring ligands, we examined RNA sequences derived from the 59 and 39 untranslated regions (UTR) of the influenza virus
NS1 gene segment. As expected, RIG-I-dependent interferon-b (IFN-b) induction by sequences from the 59 UTR of the
influenza cRNA or its complement (26 nt in length) required the presence of a 59PPP group. In contrast, activation of RIG-I
by the 39 UTR cRNA sequence or its complement (172 nt) exhibited only a partial 59PPP-dependence, as capping the 59 end
or treatment with CIP showed a modest reduction in RIG-I activation. Furthermore, induction of IFN-b by a smaller, U/A-rich
region within the 39 UTR was completely 59PPP-independent. Our findings demonstrated that RNA sequence, length, and
secondary structure all contributed to whether or not the 59PPP moiety is needed for interferon induction by RIG-I.
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Introduction

The innate immune system has evolved to recognize pathogen-

associated molecular signatures leading to activation of innate

immune receptors [1]. This activation results in the production of

antiviral and proinflammatory cytokines that impair microbial

replication and induction of adaptive immune responses that

actively eliminate pathogens [2]. Different pathogen sensing

receptors are found in multiple locations, such as in the cytosol,

plasma and intracellular vesicular membranes, and extracellular

tissue fluids, to better defend against microbes that have different

metabolic requirements and tropism for cellular compartments

[3,4,5,6,7,8,9]. Two cytosolic pathogen sensors, Retinoic Acid

Inducible Gene-I (RIG-I) and Melanoma Differentiation-Associ-

ated gene-5 (MDA5) have been found to be critical in the

activation of the type I interferon-dependant antiviral innate

immune response [10,11]. While RIG-I detects RNA species from

a number of viruses belonging to paramyxoviridae, orthomyx-

oviridae, rhabdoviridae, filoviridiae and herpesviridae, MDA5

detects RNA primarily from picornaviruses [12]. However, both

these sensors appear to detect at least some strains of West Nile

virus [13]. Various ligands, including 59PPP-ssRNA, short dsRNA,

full-length genomes of RNA viruses, and poly-uridine motifs

within 59PPP genome termini have been reported to activate

RIG-I [6,14,15,16,17,18]. Since the effect of length, sequence,

secondary structure, and 59PPP of ssRNA on binding and

activation have not been fully characterized, we investigated these

structural features using several vRNA and cRNA species

generated from the 59 and 39 UTR of influenza virus NS1 gene

segment by in vitro transcription (IVT). Our findings indicated that

RNA sequences found within the NS1 segment of the influenza

viral genome were capable of inducing IFN-b in vitro based on their

specific sequences and structures. In addition, U/A-rich elements

within the genome had the ability to induce IFN-b in a 59PPP-

independent manner. Our findings have demonstrated that RIG-I

has evolved to interact with multiple U/A-rich RNA motifs

commonly found in the UTRs of many diverse RNA viruses, thus

facilitating its role as a key pathogen sensor against a broad range

of viruses.

Results

Nucleotide sequence-dependent interferon induction
The ends of the eight influenza A virus genomic RNA segments

are highly conserved but only the shorter segments appear to

provide optimal substrates for recognition by RIG-I [17].

Although the importance of the 59PPP group for RIG-I binding

is well established, the role of additional ligand characteristics is

less clear. To investigate the potential contributions of the

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32661



nucleotide sequence and structure of these regions to the activation

of the innate immune system, we designed and examined several

derivatives of the termini of genomic and viral RNAs from the

shortest influenza A virus segment. These small influenza-derived

ribonucleotide sequences were made by IVT and were used either

with the naturally occurring 59PPP modification intact, or without

the 59PPP, which was removed with CIP treatment or replaced

with a cap analog. The sequence and the predicted secondary

structure of the RNA species used in this study are shown in Fig. 1.

After transfection into A549 cells, two sequences from the 59

end of the cRNA (59UTR cRNA and its complement, 39UTR

vRNA) efficiently induced IFN-b message (Fig. 2a and b) at levels

comparable to a previously reported sequence, IVT 9.2 RNA,

which serves as a positive control in our experiments [20,21]. As

expected, the stimulatory activities of these RNAs were highly

dependent on 59PPP, since the levels of IFN-b mRNA were 10–20

fold lower in cells transfected with CIP-treated or capped RNA

products. The nucleotide compositions of these two sequences are

distinct and complementary and the predicted secondary struc-

tures depict two stem loops (SL) with 2 base pair (bp) stems and 4

base loops on opposite ends of the molecules. Despite these

differences, both these RNAs induced similar levels of IFN- b
mRNA.

Since previous reports suggest that U/A-rich sequences are

important for RIG-I recognition of RNA [15], mutations were

introduced into two stretches of A nucleotides that are found

within the 59UTR cRNA (Figure S1a). The Loop Mutant and Tail

Mutant had very similar total nucleotide compositions (differing by

only a single A to G substitution) and identical SL structures. They

also differed from the parental construct in sequence and

nucleotide composition but had the same secondary structure. In

spite of these similarities, the Loop Mutant lost the ability to

activate IFN-b whereas the Tail Mutant did not. Loss of activity

was also seen in both Loop and Tail Mutants A and B which

lacked the A nucleotides in the loop structure (Figure S1b and 1c).

These results suggested that A residues in the loop, but not in the

tail, were important for signaling. Thus, it appeared that although

RIG-I recognized ligands with diverse sequences, for a given

ligand, internal sequence motifs were important.

59PPP-independent interferon induction
In contrast to all of the shorter 59UTR RNAs, sequences

derived from the larger 39 UTR cRNA of NS1 (172 nt) and its

complementary sequence (59 UTR vRNA) resulted in only a

partial decrease in IFN-b mRNA levels in the absence of the

59PPP, exhibiting levels that were still much greater than the

positive control IVT 9.2 RNA with a triphosphate (Fig. 3a and b).

Interestingly, the longer 172 nt RNA gave up to 3-fold greater

induction of IFN-b mRNA than the positive control in contrast to

the shorter RNA species which induced IFN-b to levels similar to

the positive control (Fig. 3b vs Fig. 2b). Since these constructs were

large, we focused on the terminal U/A-rich region in the context

of both the cRNA and vRNA (Fig. 4a). Surprisingly, the smaller

U/A-rich constructs showed complete 59PPP independence of

IFN-b mRNA induction (Fig. 4b). Like the 59 cRNA sequences,

these two 39 cRNA sequences differed from each other in

nucleotide composition and loop position. They also differed from

the 59 cRNA sequences in that they contained a much higher

percentage of U and A residues (,75% vs. ,50%). This sequence

feature has previously been identified with RIG-I PAMPs but not

with the ability to signal in the absence of 59PPP [15].

This surprising result led us to investigate the nature of our

RIG-I ligands in more detail. Recent reports have indicated that

IVT can result in the addition of non-templated complementary

bases at the 39 ends of transcripts [22,23], although the efficiency

of this copy-back mechanism appears to vary by template [24].

Visualization of templates used in this study by agarose gel

electrophoresis showed primarily single bands (Fig. 5a). More

sensitive examination of the IVT-produced U/A-rich vRNA by

MALDI-TOF mass spectrometry indicated the presence of species

that differed in size by approximately 1–3 nucleotides but no

evidence of more extensive duplication (Fig. 5b). As a third

approach to determine whether or not the single-stranded IVT

RNAs contained base-paired regions, each of the six influenza

sequences used above were resolved on acrylamide gels and

transferred to a nitrocellulose membrane. After blotting with a

dsRNA-specific antibody, only the double stranded control RNA

was recognized, indicating that any base pairing of the IVT-

produced RNAs was minimal and below the limits of detection of

the antibody. (Fig. 5c).

Based on the sequence dependence seen for the 59UTR cRNA,

we performed mutational analysis on the U/A-rich cRNA and

vRNA sequences and evaluated the consequences for IFN-b
mRNA production. We substituted either all U nucleotides, or just

a stretch of 6 conserved U residues, with C residues. The

substitutions and their effect on the predicted RNA secondary

structure is shown in Figure S2a. These changes did not eliminate

IFN-b mRNA induction by RNAs containing a triphosphate as

was seen with the mutations in the context of the 59 UTR of the

cRNA (Figure S2b). However, the mutated RNAs lost their ability

to induce IFN-b mRNA transcription independent of the 59PPP

(Figure S2c).

Figure 1. Schematic representation of RNAs used in this study. The influenza A virus segment 8 cRNA is shown with NS1 and NS2/NEP coding
sequences boxed. The extended lines represent the 59 and 39 non-coding sequences. Bars (not drawn to scale) indicate sequences (see Materials and
Methods) used to generate in vitro transcribed (IVT) RNAs.
doi:10.1371/journal.pone.0032661.g001

RIG-I Binds Untranslated Influenza Genomic RNA
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59PPP-independent activation of RIG-I
To ensure that IFN-b gene induction of these RNAs was

mediated through RIG-I, we used two different approaches. First,

we used a conformational dependent antibody that only

recognized the RNA-bound form of RIG-I (T. Fujita, unpublished

data). 24 hours after transfection of the appropriate RNAs, cells

were fixed and stained. Although all cells expressing constructs

containing a triphosphorylated 59 end contained RNA-bound

RIG-I (Fig. 6, Panels c, e, g, and i), only constructs from the 39

cRNA UTR were also able to bind RIG-I in the absence of the

59PPP moiety (Fig. 6, Panels h and j). These findings were

confirmed by siRNA-mediated silencing of RIG-I. Because RIG-I

and PKR are interferon stimulated genes, protein levels are

relatively low in untreated cells, compared with transfected cells

(Fig. 7a). After transfection with any of the IFN-b-inducing

constructs from Fig. 2, increased levels of each of these proteins

was observed. Pretreatment of cells with siRNAs directed against

either PKR or RIG-I effectively reduced, but did not completely

inhibit the levels of their respective target but did not substantially

affect the amount of the non-targeted protein (Fig. 7a). Further-

more, siRNA against RIG-I, but not PKR, reduced, but did not

completely inhibit IFN-b induction by 39UTR cRNA, 59 UTR

vRNA, and U/A rich cRNA and vRNA species (Fig. 7b and 7c).

Similar results were also found when these experiments were

performed using capped RNAs (Figure S3a and b). Taken

together, these results suggest that the signaling cascades leading

to IFN-b mRNA induction by the RNAs used in this study are

initiated by RIG-I.

One possibility to explain the ability of the 59PPP-independent

ligands to continue to signal after removal of the triphosphate

group is that these ligands have a higher affinity for RIG-I than

59PPP-dependent ligands. Since previous reports have shown that

removal of the 59PPP group from many RNA species decreases

binding affinity for RIG-I (25,26), it is also possible that the 59PPP-

independent ligands do not show a similar affinity loss upon

capping or dephosphorylation. To test these possibilities, we first

determined the binding affinity of purified full-length RIG-I and a

well-characterized fluorescein-labeled RNA molecule (FL-rU15).

The dissociation constant was calculated from changes in the

emission of polarized light that result from RIG-I/ligand binding

obtained using a Beacon 2000 system (Invitrogen). RIG-I/FL-

rU15 was then mixed with varying amounts of the unlabeled

RNAs of interest and binding affinities determined from the

competition with the labeled ligand (Table 1).

Figure 2. 59 PPP-independent induction of IFN-b by small influenza-derived RNA sequences. (A) The secondary structures of the IVT RNAs
were predicted using the program mfold (v3.2). (B) A549 cells were transfected with 3 mg of in vitro transcribed RNAs from the 59 end of the cRNA/39
end of the vRNA sequence of NS1 gene. 24 hr post-transfection, RNA was extracted to determine the levels of IFN-b by qRTPCR. The data are shown
as folds over the mock control. Hatched bar, filled bar and empty bars represent untreated, CIP-treated and capped RNAs.
doi:10.1371/journal.pone.0032661.g002
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Although the binding affinities of the 59PPP-independent vRNAs

(U/A-rich and 59UTR) are higher than the affinity of the 59PPP-

dependent 39UTR vRNA (,30 nM vs 90 nM, see Table 1), this

relationship does not hold for the cRNAs. Thus a universal higher

affinity for the independent vs dependent ligands is not observed.

Likewise, the second possibility noted above is also not supported

since a decrease in binding affinity accompanied the loss of the

59PPP group for all RNAs tested, including the U/A-rich and

constructs that still fully activated RIG-I when the 59PPP was

removed. However, it should be noted that the affinities of the

59PPP-independent ligands remained relatively high suggesting that

the residual affinity, likely mediated by the U/A-rich regions,

remained sufficient for productive RIG-I interaction and activation.

Discussion

To date, several structural studies have examined the interface

between the C-terminal domain of RIG-I with and without bound

RNA ligands [25,26,27,28]. The most convincing data suggest

that the primary contacts are between conserved residues in the

protein and both the terminal 59PPP group and the phosphodie-

ster backbone near the 59 end of the RNA molecule rather than

Figure 3. Induction of IFN-b message is triphosphate independent. (A) The secondary structures of the IVT-RNAs shown were predicted by
the program mfold (v3.2). (B) A549 cells were transfected with 3 mg of UTR RNA from the 39 end of the cRNA or 59 end of the vRNA and RNA was
isolated 24 hr post-transfection to determine IFN-b levels by qRT-PCR. The data are shown as fold increases over levels in mock transfected cells. Error
bars represent the standard deviation of triplicate qRT-PCR runs using RNAs from one of three representative experiments. Hatched bar, filled bar and
empty bars represent untreated, CIP-treated and capped RNAs.
doi:10.1371/journal.pone.0032661.g003
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the nitrogenous bases. Thus, it is not readily apparent from the

structures how to explain the observed sequence dependence seen

here. One possibility is that other regions of RIG-I that contact the

ligand, such as the helicase domain, do so in a sequence-

dependent manner. However, at this time, no structures for the

complete RIG-I molecule are available to confirm or refute this. A

second possibility is that different ligand sequences do not affect

RIG-I binding directly, but instead modify structural rearrange-

ments or biochemical activities of RIG-I, such as ATPase or

helicase activity, that are required for full signaling capabilities.

Additional studies into the exact nature of the sequence

requirements for each of these features of RIG-I activation will

be required to distinguish between these and other hypotheses.

By examining the untranslated regions from the influenza

genome that are highly conserved, both among different influenza

viruses and genome segments of a single virus we have identified

several sequences capable of activating RIG-I and inducing IFN-b
transcription. These ligands vary by both sequence and predicted

structure and illustrate the promiscuity of the RIG-I sensor,

consistent with its ability to target a wide variety of viral infections.

For these specific examples, we have also identified required

sequence motifs that contribute to the ability of these ligands to

interact with RIG-I in the absence of the normally critical 59PPP

group. Further investigation of this phenomenon is likely to increase

the efficiency and ease of production and decrease the costs

associated with designing synthetic RIG-I-based antiviral therapies.

Figure 4. Smaller U/A rich IVT RNAs from the cRNA and vRNA UTRs are also triphosphate independent. (A) The secondary structures of
the IVT-RNAs used are presented. (B) A549 cells were transfected with U/A-rich cRNA and vRNA. 24 hours post-transfection, RNA was isolated to
determine IFN-b mRNA levels by qRT-PCR. The data are shown as fold increases over levels in mock transfected cells. Hatched bar, filled bar and
empty bars represent untreated, CIP-treated and capped RNAs. Error bars represent the standard deviation of triplicate qRT-PCR runs using RNAs
from one of three representative experiments.
doi:10.1371/journal.pone.0032661.g004
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Materials and Methods

Cell lines
Human lung epithelial cells (A549) were grown in DMEM (Life

Technologies) supplemented with 10% FBS, 100 units/mL

penicillin, and 100 mg/mL streptomycin.

Preparation of RNA
In vitro transcribed RNA was prepared using the Ambion

MEGAscript T7 High Yield Transcription kit according to the

manufacturer’s instructions. Templates were prepared by anneal-

ing complementary DNA oligos containing a T7 promoter

followed by the desired target sequence. Transcription reactions

proceeded for 4–16 hrs with no difference in biological activity.

Following the reaction, the DNA template was digested with

DNase I (NEB, Ipswitch, MA) and the RNA purified and isolated

using TRIzol (Invitrogen, Carlsbad, CA), followed by ethanol

precipitation. Capped RNA was produced either by replacing

the GTP in the transcription reaction with a 12:1 ratio of

m7G(59)PPP(59)G cap analog:GTP or by using the ScriptCap m7G

Capping System (EPICENTRE Biotechnologies, Madison, WI)

according to the manufacturer’s instructions. CIP-ssRNA was

made by removing the functional 59PPP end with calf intestinal

alkaline phosphatase (CIP, NEB) treatment.

Functional analysis
For transfections of A549 cells, 3 mg of RNA was used to

transfect each well of a 6 well tissue culture plate using

Lipofectamine 2000 (Invitrogen) as the transfection reagent. At

designated time points, protein and RNA were harvested from

duplicate wells for Western and qRT-PCR analyses. Total protein

was separated on a 4–15% SDS-PAGE gel and the separated

proteins were transferred to a nitrocellulose membrane. Western

blots were performed using commercial antibodies purchased from

Sigma (actin), Santa Cruz Biotechnology (RIG-I,), and Cell

Signaling (PKR). The relative amount of intracellular RNA for

each gene of interest was quantified by qRT-PCR on a Stratagene

Mx3000P (Stratagene, La Jolla, CA.), using the Superscript III

Platinum SYBR Green One-Step qRT-PCR kit (Invitrogen)

according to the manufacture’s protocol, and expressed as a fold

change. Primers used are available upon request.

RNA secondary structure prediction
Secondary structures were predicted using the RNA secondary

structure predicting program, mfold v3.2 [19].

Microscopy
A549 (16104) cells were plated on Nunc LabTek II (Thermo-

Fisher, Rochester, NY) chambered slide flasks in DMEM with

10%FBS, penicillin-streptomycin, and L-Glutamine. A549 cells

were transfected with one mg of each RNA species using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Cells were fixed

24 hours post-transfection using 4% paraformaldehyde and

permeabilized using a 0.2% saponin/0.1% BSA/PBS buffer.

Cells were blocked using CAS block (Invitrogen) overnight and

probed with a conformational dependent RIG-I polyclonal

antibody generated by Dr. Fujita, AlexaFluor goat anti-rabbit

549, and Hoechst 33342 (Invitrogen). Cells were visualized using a

Zeiss fluorescent microscope with an axiocam HRM apotome

attachment using AxioVision software (Carl Zeiss, USA).

Figure 5. Homogeneity of IVT RNAs. (A) Denaturing agarose gels of in vitro transcribed RNAs show products running as single bands. (B) U/A-rich
vRNA was prepared by IVT and subjected to mass determination by MALDI-TOF mass spectroscopy. A single peak was observed spanning ,1 kDa
(13.8 k–14.8 k) and corresponding to the expected mass +/2 ,1–3 nucleotides. (C) To determine if the in vitro transcribed RNAs are ssRNA or ds NA,
RNA samples were resolved on TAE PAGE, transferred onto nylon membrane and probed for dsRNA using dsRNA specific antibodies as described in
Material and Methods. None of the in vitro transcribed RNAs nor the 41-nt long chemically synthesized ssRNA complementary strands were detected
by the dsRNA-specific antibody. Only annealed 41 bp dsRNA was detected by the dsRNA-specific antibody.
doi:10.1371/journal.pone.0032661.g005
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RNA competition assay
Binding of RIG-I to labeled RNA was measured by a change

in polarization (DmP) on a Beacon 2000 fluorescence polariza-

tion system (Invitrogen). RIG-I (0–1000 nM) and 0.1 nM 39-

fluorescein-labeled rU15 (FL-rU15) were mixed in binding

reaction buffer (50 mM HEPES, pH 7.5, 50 mM NaCl, 5 mM

MgCl2 and 0.5 mM Tris[2-carboxyethyl] phosphine) and

incubated for 30 s at 25uC. Experiments were performed in

reduced light and data were plotted using KaleidaGraph

(Synergy Software).

In RNA competition assays, 0.1 nM FL-rU15 was pre-

incubated briefly with 100 nM RIG-I in 50 mM HEPES,

pH 7.5, 100 mM NaCl, 5 mM MgCl2 and 10 mM BME at room

temperature (final volume was 100 ml), and then 10–1000 nM of

various competitor RNAs was added. The solution was incubated

at 25uC for 30 s before each measurement.

Characterization of in vitro transcribed RNA
In vitro transcribed RNA samples (30 mg) were resolved on a 5%

acrylamide gel at 90 mA for 2 hr in TAE buffer in the presence of

RNase inhibitor (RNasin; Promega, USA) (10 U/ml). A 41-nt long

chemically synthesized ssRNA (complementary strands) and its

annealed 41 bp dsRNA product were used as controls. RNA was

transferred to nylon membrane using electrophoretic transfer

apparatus. The nucleic acids were not denatured prior to or after

the transfer. After the transfer was complete, RNAs on the membrane

was cross-linked by Stratagene cross-linker. Membrane was blocked

using 5% BSA in TBS in the presence of RNase inhibitor for 3 hr and

incubated with anti-dsRNA antibodies (http://www.engscicons.de/

monoclonal2005_eng/J2_desc2005.htm) (2 mg/ml) overnight at 4 C.

Antibody signals were detected by chemiluminescence using

secondary antibodies conjugated to horseradish peroxidase and an

ECL detection kit (Amersham Biosciences, Inc., NJ, USA).

Figure 6. 59 PPP-independent activation of RIG-I. A549 cells were transfected with 1 mg of the indicated IVT RNAs as in Figure 2. After 24 hrs,
the cells were fixed with 4% paraformaldehyde and permeabilized with a 0.2% saponin/0.1% BSA/PBS buffer. Cells were blocked using CAS overnight
and probed with a conformational dependent rabbit RIG-I polyclonal primary antibody that detects the RNA-bound form of RIG-I in the cytosol and
followed by staining with AlexaFluor goat anti-rabbit 549 (stains red) and Hoechst 33342 (stains nucleus blue). Cells were visualized using a Zeiss
fluorescent microscope with an axiocam HRM apotome attachment using AxioVision software.
doi:10.1371/journal.pone.0032661.g006
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MALDI-TOF-MS of IVT RNA was performed using an

Ultraflex III mass spectrometer (Bruker Daltonics, Billarica, MA)

operated in positive linear mode. The matrix was made up of 1:1

(v/v) mixture of 15 mg/ml of ammonium citrate in 0.1%

trifluoroacetic acid/30% acetonitrile/water and 80 mg/ml of

29,49,69-trihydroxyacetophenone monohydrate in ethanol. The

sample was mixed 1:8 with the matrix and analyzed with external

calibration using synthetic oligodeoxyribonucleotides.

Supporting Information

Figure S1 Induction of IFN-b message by IVT RNAs is
sequence dependent. (A) The secondary structures of the 59

UTR cRNA RNAs after base substitutions within the A rich

regions were predicted using mfold (v3.2). (B) and (C) A549 cells

were transfected with the RNA constructs shown and RNA was

isolated 24 hr post-transfection. IFN-b mRNA levels were

quantified using qRT-PCR. Error bars represent the standard

Figure 7. Induction of IFN and IFN-stimulated genes is inhibited by reduction of RIG-I but not PKR. A549cells were first transfected with
the siRNAs against RIG-I or PKR(3 mg)as shown or mock transfected. 24 hr later, the cells were transfected again with the indicated IVT RNAs (3 mg)
and processed 24 hr later for RNA as well as protein. Protein lysates are used to determine the levels of PKR and RIG-I proteins by western blot
analyses and RNA is used to determine the levels of mRNA for IFN-b. (A) Western blots using the indicated antibodies of protein extracts from treated
cells are shown. (B) and (C) IFN-b mRNA levels were measured using qRT-PCR. Error bars represent the standard deviation of triplicate qRT-PCR runs
using RNAs from one of three representative experiments.
doi:10.1371/journal.pone.0032661.g007
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deviation of triplicate qRT-PCR runs using RNAs from one of

three representative experiments.

(TIF)

Figure S2 59PPP-independent induction of IFN-b mes-
sage is sequence dependent. (A) The secondary structures of

the U/A-rich regions or mutant RNAs after base substitutions as

predicted by the program mfold (v3.2) are shown. (B) and (C) A549

cells were transfected with the indicated IVT RNAs and RNA was

isolated 24 hr post-transfection to quantitate IFN-b message by

qRT-PCR. Error bars represent the standard deviation of

triplicate qRT-PCR runs using RNAs from one of three

representative experiments.

(TIF)

Figure S3 Induction of IFN and IFN-stimulated genes is
inhibited by reduction of RIG-I but not PKR using IVT
capped RNAs. (A) A549 cells were transfected with the siRNAs

shown or mock transfected. 24 hr later, cells were transfected

again with the indicated IVT RNAs and the cells were processed

24 hr post-secondary transfection. (B) Protein lystaes were used to

determine the levels of RIG-I and PKR by western blot analysis.

(C) RNA isolated from A549 cells was used to measure IFN-b
mRNA levels by qRT-PCR. Error bars represent the standard

deviation of triplicate qRT-PCR runs using RNAs from one of

three representative experiments.

(TIF)
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Table 1. Kd (nM) of RIG-I to RNA from NS1.

NS1-vRNA 59-PPP capped

39-UTR (27 nt) 90630 160±38

U/A-rich (41 nt) 3165 119612

59-UTR (172 nt) 3268 73630

NS1-cRNA 59-PPP capped

59-UTR (27 nt) 52611 187±50

U/A-rich (41 nt) 5669 93626

39-UTR (172 nt) 2664 88621

Affinities were measured using a fluorescence polarization assay. Values
represent the mean 6 standard deviation of at least two independent
experiments. The RNA molecules with the lowest affinities (in bold) neither
bound RIG-I in vivo (Fig. 6) nor induced IFN expression (Fig. 2).
doi:10.1371/journal.pone.0032661.t001
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