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Abstract

Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the
source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and
diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S.
Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and
determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources
collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin,
S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis
isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n=366). Twenty-one
of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid
changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome
synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due
to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid
PSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and
PSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range
of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (~4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when
compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be
useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during
future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004.
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Introduction identified micro-evolutionary differences that genetically link
clinical isolates, outbreak isolates found in foods, and their

) ‘ - o environmental counterparts in Salmonella [19-24], Escherichia coli
isolates assoma.tcd w.1th .a foodborne outbreak event is lmportgnt [25-27], Vibrio [28-30] as well as numerous other bacteria [31-
for successful investigation and eventual traceback to a specific

food or environmental source. However, clonally derived strains,
common within Salmonella enterica subsp. enterica serovar Enteritidis
(S. Enteritidis), confound epidemiological investigations because of
the limited genetic differentiation of these strains [1-9]. Existing
approaches often lack the resolution for separating tightly linked
bacterial isolates such as those originating from S. Enteritidis. In
response to such events, federal public health, academic and
industry food safety laboratories are exploring next-generation
sequencing (NGS) technologies to investigate complex and
challenging outbreak scenarios [10-18]. Recent examples in the
literature illustrate the ability of NGS to detect variation within
otherwise indistinguishable isolates [19-23]. These efforts have

The accurate subtyping and subsequent clustering of bacterial

37]. Our genomics laboratory and others have successfully applied
these NGS approaches to a case study of S. Montevideo in spiced
Italian-style meats [19-21] where it was determined that the
methods and results were reproducible. Moreover, extensive data
mining within these novel genomes should yield novel genetic
targets to augment investigations during outbreaks of highly clonal
Salmonella pathogens.

S. Enteritidis remains a significant pathogen and a substantial
threat to the food supply. It also represents one of the most
genetically homogeneous serotypes of Salmonella, and certain clonal
lineages remain intractable to differentiation by commonly used
conventional subtyping methods [38-46]. The unusual genetic
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homogeneity observed among certain lineages of S. Enteritidis
strains remains intriguing. Recent population genetic studies
suggest that most . Enteritidis strains belong to a single multilocus
genotype [4-6]. A subpopulation of this clone was shown to
associate more frequently with egg-related salmonellosis and
clinical illness [4]. Thus, specific requirements for colonization
and survival in infected poultry may select for only a few genotypes
of S. Enteritidis in the poultry environment. The random
amplification of polymorphic DNA (RAPD), real-time polymerase
chain reaction (RT-PCR), and Phage typing (P1) methods
[2,7,9,45,46] from diverse isolates within S. Enteritidis have
revealed only a limited amount of genetic variation. More
recently, more resolved discriminations of these salmonellae have
been reported using rapidly-evolving CRISPR elements [5,17].
Conversely, rather than targeting a subset or region of variation in
the S. Enteritidis chromosome, whole genome sequencing (WGS)
will capture all of the genetic variation that exists among these
highly clonal lineages. To date, only a few strains of S. Enteritidis
are available as complete genomes [47-48] along with close
relatives S. Gallinarum [11] and S. Gallinarum biovar Pullorum
[49]. These isolates have genome sizes around 4.7 mbp. The basic
pan genomes are described in these initial studies, but currently,
there are no published NCBI draft comparative genomes or
associated manuscripts describing variation within S. Enteritidis.
In this study, we describe the natural genetic variation within S.
Enteritidis isolates associated with a widespread egg contamination
event and retaining pulsed-field gel electrophoresis (PFGE) pattern
JEGXO01.0004 and analyze the comparative evolutionary genetics
within this important foodborne pathogen and several of its closest
relatives.

In 2010, the Centers for Disease Control and Prevention (CDC)
along with many state laboratories identified a nationwide increase
in S. Enteritidis isolates submitted to PulseNet (http://www.cdc.
gov/salmonella/enteritidis/). Epidemiological investigations sug-
gested that shell eggs were the most likely source of this increase.
FDA, CDC, and state partners conducted traceback investigations
and found many of the restaurants involved received shell eggs
from a single company (http://www.fda.gov/food/newsevents/
whatsnewinfood/ucm222684.htm). As a result, on August 13,
2010, one egg producer initiated a nationwide voluntary recall of
shell eggs that had been sold to distributors and wholesalers in 22
states and Mexico. A record 380 million shell eggs were recalled
under many different brand names. On August 19, a second egg
producer initiated an additional recall of eggs that went to grocery
stores, distributors, and wholesalers in 14 states. The second
producer shared a contaminated feed supply with the first and was
geographically nearby. In all, more than 500 million eggs were
involved during this nationwide recall.

The primary goal of this study was to examine the genetic
variability of isolates collected during the 2010 . Enteritidis shell
egg outbreak within the PFGE pattern JEGX01.0004, a pattern
comprising over 40% of all of the S. Enteritidis isolates submitted
to the national database. We also included several other isolates
with similar PFGE patterns to JEGX01.0004 found in the
assoclated egg-farm environment. We went on to describe the
genetic diversity and evolutionary history of 106 new draft
genomes for this virulent pathogen within this narrow but
important sampling of S. Enteritidis diversity. As a result, we
were able to provide new genetic targets useful for distinguishing S.
Enteritidis isolates otherwise indistinguishable by several current
methodologies. Once validated, these new SNP targets can be
interrogated using widely available DNA sequencing through
capillary electrophoresis (CE), short-read pyrosequencing, real-
time PCR, or mass spectrometry of PCR amplicons. Finally, this
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study evaluates the potential use of targeted genomic sequencing
with next generation sequencing (NGS) for rapidly resolving future
S. Enteritidis outbreaks in eggs.

Materials and Methods

Salmonella Enteritidis strains

A set of 67 food, environmental, and clinical S. Enteritidis
isolates collected from farms and egg sources linked to the 2010
egg contamination event was included for whole genome
sequencing. Specifically, 36 S. Enteritidis isolates, originating from
environmental swabs, were collected directly from various farm
sources implicated in the contamination event (e.g., egg wash
water). Four S. Enteritidis were isolated directly from shell eggs,
liquid eggs, or other egg-containing food sources known to be
contaminated during this time period. Two S. Enteritidis isolates
were obtained directly from chicken feed or components thereof at
the implicated farms. An additional 25 clinical isolates, collected
during the time of the egg contamination event (2010) and
retaining common PFGE patterns to the egg S. Enteritidis isolates,
were kindly provided by the Centers for Disease Control and
included for sequencing. In addition, 39 isolates, collected earlier
in time and unrelated to the contamination event, were added as
reference S. Enteritidis for the WGS analysis. These included 13
isolates with two-enzyme matching PFGE patterns, seven single-
enzyme matching patterns, indistinguishable in either the primary
(Xbal n = 3) or secondary (Blnl n =4) enzyme, and 19 isolates with
no common PFGE patterns to the contamination event. These
isolates also were used to further investigate the phylogenetic
utility of phage-typing. Included in this group of 39 were 10 of
unknown PT and, 14 of historical PT8 isolates. The remainder
were 15 isolates of §. Enteritidis from ten other diverged PT's such
as PT1, 21, 2, 4, 14b, 13, 13a, 23, 28 and 35. §. Enteritidis strains
were phage-typed by previously described methods [2] at the
National Microbiology Laboratory, Canadian Science Centre for
Human and Animal Health, Winnipeg, Manitoba, Canada.
Strains that reacted with phages but retained unrecognizable lytic
patterns were atypical and were designated atypical or RDNC
(reacts but does not conform). Specific PFGE pattern names, PTss,
and other metadata associated with the S. Enteritidis strains are
listed in Table 1 (PTs are included in the tree label names).

Growth of bacterial strains, and genomic and plasmid
DNA isolation

Genomic DNA was isolated from overnight cultures as follows:
each initial pure culture sample was taken from frozen stock,
plated on Trypticase Soy Agar, and incubated overnight at 37°C.
After incubation, cells were taken from the plate and inoculated
into Trypticase Soy Broth culture for DNA extraction. All samples
were representative cultures from a full-plate inoculation and were
not single colonies. Genomic DNA was extracted using Qiagen
DNeasy kits.

Library construction and genome sequencing

For this study, all S. Enteritidis isolates were shotgun sequenced
using the Roche 454 GS Titanium NGS technology [50]. This
platform provided longer read lengths relative to other sequencing
methods and has a relatively shorter time to generate raw
sequence information. Taxon sampling included one new isolate
each of S. Gallinarum and S. Gallinarum biovar Pullorum, two
isolates of S. Dublin and 106 new isolates of \S. Enteritidis including
a few isolates differing by PFGE patterns, and the majority of
isolates sharing the same PFGE pattern (Table 1). These Salmonella
serotypes have been considered to be close relatives traditionally.
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Figure 1. The number of assembled bases and N50 contig size listed for each of the sequenced isolates. Points are colored according to

the phages and plasmids that were found in the sequencing results.
doi:10.1371/journal.pone.0055254.g001

Each isolate was run on a quarter of a titanium plate that
produced roughly 250,000 reads per draft genome resulting in an
average genome coverage of about 20 x.

Genome assembly and annotation

De novo assemblies were created for each S. Enteritidis isolate
using the Roche Newbler run Assembly software (v. 2.6). All draft
genomes were annotated using NCBI’s Prokaryotic Genomes
Automatic Annotation Pipeline (PGAAP, [51]). Comparison of the
de novo assemblies against the complete genome for S. Enteritidis
strain 125109 (GenBank accession: AM933172) using Mauve [52]
identified several large contigs that did not map to the reference
genome: phage RE-2010 (Accession: HM7700079), plasmid
pOUIL114 (Accession: DQ115387, strain SL909), plasmid from
strain CDC_2010K_1729 (pSEEE1729_15), plasmid from strain
CDC_2010K-0956 (pSEEE0956_35), and plasmid from strain
607307-2 (pSEEE3072_19). The reference sequence used for
mapping reads was comprised of the complete S. Enteritidis
genome (AM933172, which includes the P125109 phage) plus the
5 additional elements previously described.

Comparative genomic analysis

SNPs were identified by mapping the 454 reads to the reference
genome using Roche Newbler runMapping software (v. 2.6). SNPs
were defined as positions where one or more isolates differed from
the reference sequence with coverage =4 x and with =95% of the
reads containing the SNP, excluding insertions and deletions
[indels] The alignments were then screened to find non-gap
phylogenetically informative nucleotide positions (i.e. minor allele
count =2). The mapped consensus base for each isolate at the
reference SNP positions were then concatenated in a multiple
FASTA file for phylogenetic analysis. The maximum likelihood
tree was constructed using GARLI [53] with 1000 bootstrap
replicates. All GARLI analyses were performed with the default
parameter settings and the GTR+I'+I nucleotide substitution
model. SNPs in single copy protein coding genes were identified
using the same criteria by mapping the isolate reads to the
annotated CDS regions in AM933172. Multiple alignments for
genes with SNPs were created using the UCLUST [54] software
package. There were 366 genes that met the SNP criteria that

PLOS ONE | www.plosone.org

were present in 95% or more of the 106 isolates. These 366 genes
represent a conservative estimate of the set of variable genes as we
have eliminated indels and CDS regions that could not be reliably
predicted and annotated. A phylogenetic tree also was built with
TNT [55] and characters were optimized onto the tree to assess
character evolution for several of the critical nodes on the tree
associated with the outbreak implicated farm isolates [56] as well
as for identifying SNPs specific to S. Enteritidis.

Phylogenetic analyses of the clonal S. Enteritidis data set
including multiple outgroups were performed on the concatenated
informative SNP matrix described above. Approximately 99% of
the sites in the SMB Salmonella genomes are phylogenetically
uninformative (i.e. showing no differences that provide clustering
information) and eliminating them dramatically reduces compu-
tation time and memory requirements. Additional, phylogenetic
analyses were performed on the set of 366 concatenated genes
containing informative SNPs.

Accessions
Whole genome shotgun accessions (WGS), bioproject accession
numbers are listed in Table 1.

Results

Genome size, order and conservation

New draft genomes are provided for 110 Salmonella isolates
including 106 S. Enteritidis, and four closely related outgroups,
two S. Dublin and one each of §. Gallinarum, and S. Gallinarum
biovar Pullorum (Table 1). While synteny and genome organiza-
tion were largely stable among these isolates, genome size
differences were observed due to variation in the presence or
absence of several phages and plasmids including phage RE-2010
[57], phage P125109 [11], plasmid pOU1114 [58], and several
newly observed plasmid mobile elements pSEEE1729_15,
pSEEE0956_35 and pSEEE3072_19 (Figs. 1 and 2, Table 1).
One of these, pOU1114, is a newly finished complete plasmid
known from partial data to reside within S. Enteritidis and its close
relative S. Dublin. pSEEE3072_19 is closely related to the
previously characterized S. Enteritidis plasmid pSENV [59].
Presence or absence of mobile elements in S. Enteritidis

January 2013 | Volume 8 | Issue 1 | e55254
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Figure 2. Circle plot showing general conservation of synteny among PFGE pattern JEGX01.0004 of Sa/monella Enteritidis, with
phage and plasmid differences listed for 9 representative isolates.

doi:10.1371/journal.pone.0055254.g002

contributed to a genome size ranging from 4.6 to 4.9 mbp, with S.
Dublin being relatively larger (~4.9 mbp) and S. Gallinarum
smaller (4.55 mbp) when compared to the S. Enteritidis genomes
collected here. A bimodal split centered on 4.7 mbp was noted,
which largely corresponds to mobile elements that partition
predictably between phylogenetic lineages (Table 1, Figures 1, 3).

Most clinical isolates are phylogenetically close to
isolates from two egg farms

A set of 106 ecologically diverse food, environmental, and
clinical S. Enteritidis strain isolates, associated with the time period
surrounding the 2010 egg contamination event, were included for
whole genome sequencing. Strains with expanding diversity and
representing three important levels for comparison were included
in the analysis. The first group of 60 strains represented a highly
homogeneous set of environmental, farm, food, and clinical S.
Enteritidis isolates sharing a common PFGE pattern and
temporally associated with the 2010 egg contamination event.

PLOS ONE | www.plosone.org 10

The second tier of 30 strains included a set of historical
environmental, food, and clinical S. Enteritidis isolates that
retained identical or highly similar PFGE patterns but were
unassociated with the 2010 egg contamination event, unrelated in
time, location or isolation source. Finally, the last group of 16
isolates was also unrelated to the 2010 egg event and included a
series of S. Enteritidis strains with more diverged PFGE patterns
and phage types away from the 2010 egg S. Enteritidis isolates.
These strains served largely as genetic references, effectively
allowing for a testing of the phylogenetic monophyly of the 2010
egg-associated S. Enteritidis isolates. As an example, these isolates
include other phage types such as P14, PT23, PT14b, and PT1
and date back over 50 years in time.

Phylogenetic analysis of these genomes revealed several
interesting observations. First, the S. Enteritidis PFGE Pattern
JEGXO01.0004 plus related strains and strains with similar PFGE
patterns formed a monophyletic group distinct from other
neighboring serovars S. Dublin, S. Gallinarum, and . Gallinarum

January 2013 | Volume 8 | Issue 1 | e55254
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100 Ent-USA-2010—env swab-SEEE9163
_EFm 1A-2010-env swab-SEEE307 6
Ent-1A-2010-env swab—SEE|

1007 EntPT13-MD- Chlcku‘l breast SE| ,_E3944 C6 7
—[P:m GA-SEEESB

Ent.PTI13-GA- chlcken -SEE13
Ent.PT23- GA SE 23

=0 0 e,
nt —ground turkey—SEE22 CS 2
Ent. PT8-NB-1978—clinical-SEEE1757 |
Ent PT13a-MD-1976-clinical-SEEE2651
Ent.PT13a-1A-2001—clinical-SEEE2558
100  Ent—1A-2010-env swab-SEEE7250 C4 ( 5)

100

Ent-1A—2010-env swab—SEEE4917

Ent-1A-2010-env swab-SEEE6437

Ent-USA—1981-SEEE2490

Ent.PT8-AZ-1977clinical - SEEE()4”4

Ent. PT8-TX~-1950—clinical-SEEE564

10— Ent. PT8-NM-1981-clinical- SI:I:I:ZG"S C3 7
Ent-USA-1976—clinical-SEEE3618

Ent-USA-1969—clinical-SEEE4941

Ent. PT8-RI-1977—clinical-SEEE1427

— Ent.PT8-SD-1977—clinical-SEEE2659

Ent-NC-SEEEL909

Ent PT8-IA—chicken breast—SEEE1831

Ent-NC-2010-meringue-SEEE1010
Ent-NC-2010-clinical-SEEE1018

Ent-PA-2010-clinical-SEEE1457

Ent—PA—2010-clinical-SEEE1455

Ent-USA-2004-chicken-SEEEN202

Ent—TN-2010-clinical-SEEE1795
Ent—TN-2010-clinical-SEEE 1791 C2 18
Ent. PT8-NC—chicken-SEEE5101

Ent-MN-2010-clinical-SEEE1575
Ent-1A-2010-env swab-SEEE7246
Ent-MN-2010-clinical-SEEE 1565
Ent-CA—-1969-clinical-SEEE 1441
Ent-MN-2010-climical-SEEE1580
Ent-MN-2010-clinical-SEEE 1566
Ent-1A-2010-env swab—SEEE6622
Ent-1A-2010-env swab—SEEE6670
Ent-1A-2010-env swab-SEEE6426
— Ent-NC-SEEEL913

{Ent-CA 2010-clinical-SEEE 1445

81

100

Ent-1A-2010—chicken feed—SEEE0631

Ent-OH-2010—env swab—SEEE5518
Ent—CA-2010-clinical-SEEE1543

Ent-OH-2010-env swab-SEEE9317

Ent—1A-2010-env swab—SEEE9058

99 Ent—OH—2010—clinical-SEEE0968

Ent-OH-2010-mexican meal-SEEE0899

Ent-CO-2010-clinical-SEEE1882

Ent—CO-2010-rattle snake cake-SEEE] 884

99 Ent-QH-2010-clinical-SEEE0956
Ent—OH-2010-clinical SI:l:léOSQS

nt—1A-2010-env swal E
[E I 70 0- b-SEEE0816
— Ent—-OH-2010-env swab—SEEE0316
- Ent—=WI-2010-clinical-SEEE1747
Ent-1A-2010-bulk bone meal-SEEE6709
Ent-NV-2010—clinical-SEEE1729
- Ent-OH-2010—env swab—SEEE0116
Ent-OH-2010-env swab—SEEE1616
100]F Ent-TX-2010-clinical-S 1
Ent-OH-2010-env swab 0268
I Ent—-OH-2010-env swab—SE| E13|9
Ent-OH-2010-env swab-SEEE1392

I—I:nt OH-2010-env swab-SEEE4018
nt-IA-2010-env swal E31
Ent-1A-2010— b-SEEE3139
F Ent-OH-2010-env swab-SEEE2217
}Ent*OH ~2010-env swab-SEEE4441

=l

Ent-OH-2010-env swab—SEEE4220
Ent-OH-2010-env swab—SEEE4481
Ent-TA-2010—clinical-SEEE 1558
Ent-CA—2010—clinical-SEEE1594
Ent-1A-2010-env swab—SEEE3089
Ent-1A-2010-env swab-SEEE0819
Ent-IA-2010—clinical-SEEE 1559
Ent-NV-2010-clinical-SEEE1725
Ent-1A-2010—fresh shelled eggs— SEFI:TDIS
- Ent-OH—2010—env swab-SELE62
LEnl—TX 2010~clinical— SEFEISOS
Ent-WI-2010-clinical- SEEE 1745
Ent-CA-2010-clinical-SEEE 1444
L—Enl OH-2010-env swab-SEEE0436
Ent-1A-2010-egg wash water-SEEE0166
T, Ent-OH-2010-env swab-SEEE117
0.0050 Ent-OH-2010-env swab-SEEE1618

‘ e,
5 - : % H nt-OH-2010-env swab-SEEE9845
inferred nucleotide substitutions/site Ent_OL-2010—omv swab—SEEE4647
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Figure 3. Phylogenetic tree based on the maximum-likelihood method implemented in GARLI. Numbers associated with branches
represent the percent of 1000 bootstrap replicates supporting the major clades C1 through C9. Acquisition of ALFRO0000000 putative plasmid

pSEEE1729_15 is defined by a star at the base of C1.
doi:10.1371/journal.pone.0055254.g003

biovar Pullorum. Previous comparative genomics studies [12,14—
17] have shown that S. Enteritidis, S. Dublin, S. Gallinarum biovar
Pullorum and S. Gallinarum form a natural group, a finding
supported by our results. Second, within S. Enteritidis, nine
lineages were defined from the tree (Figure 3). Genetic diversity
between different serovars included thousands of differences while
variability between the nine lineages of S. Enteritidis labeled C1—
C9, ranged only in the order of 100 to 600 nucleotide changes.
Within lineage variation was usually less than 100 bp with the
exception of lineage C7 which had over 200 bp of intra-clade
variability (Table 2).

Among the isolates compared, results for clinical isolates sorted
into each of the major lineages (Clades C1, C2, C3 and Cb5,
Figure 3) with most falling into clades C1 and C2. It is noteworthy
that no apparent increase in substitutions was observed for the
isolates that passed through patients compared to their environ-
mental clones. If there was an increase or expansion in genetic
diversity among the clinical isolates studied, compared to other
food and environmental S. Enteritidis collected in relation to the
2010 egg event, one would expect observed genetic diversity to
have been expressed as increased or longer branch lengths among
the terminal tree nodes leading to the 2010 clinical isolates in the
tree. In general, this was not observed. Albeit, several clinical
isolates (i.e., SEEE9845 and SEEE4647 both from Ohio) reflect
the accumulation of just a few additional SNPs in the tree as their
terminal branches project slightly from the base of the 2010 egg
1solates in clade 1. However, comparable subtle genetic variations
among environmental and egg isolates were also noted as well in
the tree indicating that no additional or overt pressure to change
was applied @ vivo for the clinical strains included here among the
2010 egg and environmental isolates. For example, environmental
isolates from Ohio (e.g., SEEE1117 and SEEE1618), also in clade
1, vary comparably in their branch lengths to the aforementioned
clinical isolates.

Clades C7, C8 and C9 contained a diversity of isolates from
unrelated and historical freezer stocks that were not connected to
the large shell egg outbreak (Table 1). Additionally, environmental
S. Enteritidis isolates taken from Farm 1 were found in clades C6
and C1, while environmental S. Enteritidis isolates from Farm 2

were observed in Clades C4, C2 and one isolate in C1. It is
important to note that in our S. Enteritidis strain tree presented
here, the phylogenomic data sort in a largely hierarchical fashion.
That 1s, 1solates associated with the 2010 S. Enteritidis egg event
do cluster most closely together with additional SNP diversity
providing higher resolution for related strains within the contam-
mation event. Additionally, nearly all of the reference isolates
retaining common PFGE patterns but unassociated with the egg
event sort adjacent to but outside of the 2010 S. Enteritidis egg,
clinical, and farm swarm of isolates. Surprisingly, however, several
of these genetically similar S. Enteritidis reference strains lacking
any temporal relatedness to the 2010 egg event do partition with
other egg isolates. One S. Enteritidis isolate from 2004, for
example, formed a sub-clade with two clinical isolates from
Tennessee within the larger clade 2 in the genome tree (Figure 3).
Also in clade 2, a historical S. Enteritidis isolate from California
(1441) sorted closely with two S. Enteritidis clinical isolates from
Minnesota collected from 2010 and during the egg event. The
substantial number of SNPS that partition strains within S.
Enteritidis clades 1 and 2 and examples of phylogenetic
homogeneity may point to additional source reservoirs of S.
Enteritidis contamination during the 2010 egg event.

It is important to note that many S. Enteritidis strains with
common phage-types are polyphyletic (do not sort into a single
group) in the whole-genome sequence tree. S. Enteritidis strains
designated as PT8, for example, are phylogenetically distributed
across clades 1, 2, 3, 5, 6, 7, and 8 suggesting that despite retaining
this common phenotypic feature, phage types are phylogenetically
distinct and diverged among their genome sequences. This
observation is not unexpected [9] given the intrinsic horizontal
movement of phage restriction across diverged strains of S. enterica.

Genetic variation defining S. Enteritidis

More than 50 genes vary with SNPs that define S. Enteritidis
separately from the outgroups compared in this study (Table 3).
For example, the multicopper oxidase gene, (cueO, locus tag
SENO0173), represents one gene with numerous genetic signatures
unique to §. Enteritidis strains. This gene and protein alighment
show a dozen SNP differences and three amino acid differences

PLOS ONE | www.plosone.org 12

Table 2. Pairwise SNP distances+/—SD between major lineages identified in the phylogenetic tree (C=clade).
Pairwise SNP distances
c1 c2 c3 ca cs c6 c7 cs c9
c1 30 (2)
c2 122 (10) 32 (2)
c3 172 (9) 162 (10) 72 (5)
ca 201 (12) 200 (14) 145 (11) 63 (8)
cs 176 (8) 175 (10) 122 (8) 152 (9) 117 (8)
c6 212 (1) 209 (13) 155 (11) 187 (11) 160 (9) 58 (6)
c7 272 (12) 270 (13) 215 (9) 246 (12) 216 (8) 225 (8) 205 (15)
cs 253 (10) 252 (14) 199 (8) 229 (12) 199 (10) 208 (7) 205 (10) 73 (6)
c9 546 (17) 542 (20) 487 (19) 518 (15) 493 (18) 550 (20) 495 (16) 479 (18) 79 (6)
doi:10.1371/journal.pone.0055254.t002
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Table 3. Variable genes observed that may define the serotype Salmonella Enteritidis.

Salmonella Enteritidis Evolutionary History

Variable genes observed that may define Salmonella Enteritidis.

Gene

Number Alignment

Protein
Alignment

Nt Pos

NT
Change

AA
Pos

AA
Change

Gene
Symbol

Locus
Tag

ReBlasted translated
proteins from Next Gen Data
against NCBI - Feature
Matches

1 10_input.aln

2 1014_input.aln

3 11_input.ain

4 1103_input.aln

5 1126_input.aln

6 1174_input.aln

7 1195_input.aln

8 122_input.aln

9 1256_input.aln

10 1314_input.aln

11 1335_input.aln

12 1345_input.aln

PLOS ONE | www.plosone.org

10_protein.fas

1014_protein.fas

11_protein.fas

1103_protein.fas

1126_protein.fas

1174_protein.fas

1195_protein.fas

122_protein.fas

1256_protein.fas

1314_protein.fas

1335_protein.fas

1345_protein.fas

1995

149

1078

263

184

332

22

899

263

262

227

T—G

C—>T

G—A

G—A

A—G

G—A

G—A

C—>T

T—-C

G/T—A

G—A

A—-/G

665

50

360

88

62

111

300

88

88

76

13

S—R

P—L

A>T

R—H

|-V

R—H

V—->M

A—V

V—A

N/Y—D

Q—R

E—-/G

bcfC

ppiA

mrcA

SeD_A0525

SEN2582

folK

safD

prpD

ygdK

SEN2998

SEN0986

sirC

SEN0022

SEN3299

SEN3319

SeD_A0525

SEN2582

SEN0188

SEN0284

SEN0353

SEN2829

SEN2998

SEN0986

SEN1265

ref|[YP_002242189.1| fimbrial
usher protein [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =873

ref|[YP_002245364.1| peptidyl-
prolyl cis-trans isomerase A
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =190

ref|YP_002245384.1]|
peptidoglycan synthetase
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =858

ref|YP_002214434.1| primosomal
replication protein N”
[Salmonella enterica subsp.
enterica serovar Dublin str.
CT_02021853]
ref|ZP_09767739.1|

ref|[YP_002244660.1| hypothetical
protein SEN2582 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]
Length=151

ref|[YP_002242350.1| 2-amino-4-
hydroxy-6-
hydroxymethyldihydropteridine
pyrophosphokinase str. P125109]
Length =159

ref|[YP_002242438.1| fimbrial
structural subunit [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =156

ref|[YP_002242503.1| 2-
methylcitrate dehydratase
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =483

ref|[YP_002244901.1| hypothetical
protein SEN2829 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =147

ref|[YP_002245065.1| hypothetical
protein SEN2998 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =136

ref|[YP_002243115.1| hypothetical
protein SEN0986 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =131

ref|[YP_002243370.1|
transcriptional regulator
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =129
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Table 3. Cont.

Salmonella Enteritidis Evolutionary History

Variable genes observed that may define Salmonella Enteritidis.

Number

Gene
Alignment

Protein
Alignment

NT
Nt Pos Change

AA
Pos

AA
Change

Gene
Symbol

Locus
Tag

ReBlasted translated
proteins from Next Gen Data
against NCBI - Feature
Matches

13

20

21

22

23

24

PLOS ONE | www.plosone.org

1439_input.aln

1450_input.aln

1504_input.aln

189_input.aln

208_input.aln

245_input.aln

304_input.aln

305_input.aln

310_input.aln

312_input.aln

32_input.aln

340_input.aln

1439_protein.fas

1450_protein.fas

1504_protein.fas

189_protein.fas

208_protein.fas

245_protein.fas

304_protein.fas

305_protein.fas

310_protein.fas

312_protein.fas

32_protein.fas

340_protein.fas

11 A—G

1 T—G

55 G/—A

346 C-T

110 G—T

164 C—>T

292 G—A

128 C->T/-

694 G—A

70 G—A

103 G—A

416 G—A

19

116

37

55

98

43

232

24

35

139

14

H—R

1-S

A—T/-

H-Y

R—L

A—V

D—N

P—L/-

D—N

D—N

D—N

G—D

trpR

sugE

SENO0159

dinF

tilS

argD

gldA

phnT

yhcG

SEN4339

STY4698

SENO0159

SEN4007

SeD_A0258

SEN3295

SEN3354

SEN0410

SEN3165

SPAB_05003 SPAB_05003

SEN3501

SEN4316

SEN3501

SEN4316

ref|[YP_002246355.1| Trp operon
repressor [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =108

ref[NP_458777.1| quaternary
ammonium compound-
resistance protein SugE
[Salmonella enterica subsp.
enterica serovar Typhi str. CT18]

ref|[YP_002242321.1| hypothetical
protein SENO159 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =94

>ref|]YP_002246043.1| DNA-
damage-inducible SOS response
protein [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109]

ref|[YP_002214197.1| tRNA(lle)-
lysidine synthetase [Salmonella
enterica subsp. enterica serovar
Dublin str. CT_02021853]
ref|ZP_09762840.1|

ref|[YP_002245360.1| bifunctional
N-succinyldiaminopimelate-
aminotransferase/acetylornithine
transaminase protein str.
P125109] Length =405

ref|[YP_002245419.1| glycerol
dehydrogenase [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =369

ref|[YP_002242560.1| 2-
aminoethylphosphonate
transporter ATP-binding protein
str. P125109] Length =369

reflYP_002245231.1| hypothetical
protein SEN3165 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =367

reflYP_001591127.1| hypothetical
protein SPAB_05003 [Salmonella
enterica subsp. enterica serovar

Paratyphi B str. SPB7]

Length =366

reflYP_002245567.1| hypothetical
protein SEN3501 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =651

ref|[YP_002246331.1| hypothetical
protein SEN4316 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =354
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Table 3. Cont.

Salmonella Enteritidis Evolutionary History

Variable genes observed that may define Salmonella Enteritidis.

Number

Gene
Alignment

Protein
Alignment

Nt Pos

NT
Change

AA
Pos

AA
Change

Gene
Symbol

Locus
Tag

ReBlasted translated
proteins from Next Gen Data
against NCBI - Feature
Matches

25

26

27

28

29

30

31

32

33

34

35

36
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348_input.aln

356_input.aln

467_input.aln

509_input.aln

529_input.aln

532_input.aln

539_input.aln

571_input.aln

589_input.aln

590_input.aln

61_input.aln

653_input.aln

348_protein.fas

356_protein.fas

467_protein.fas

509_protein.fas

529_protein.fas

532_protein.fas

539_protein.fas

571_protein.fas

589_protein.fas

590_protein.fas

61_protein.fas

653_protein.fas

1022

493

319

46

260

478

251

848

833

599

185

T

G—A

A—C

T-G

G(TG)—A

G—A

G—A

C-T

G—A

C—>T

[e=)

C—>T

165

107

87

160

113

84

283

278

200

62

15

S—F

D—N

I-L

F—V

R/C—H

A—>T

A—>T

P—L

G—E

A—V

T—l

P—L

SPAB_00445 SPAB_00445

galM

sinR

SENO0315

yihU

SEN1764

SEN1001

SENO0718

STM0304

SEN0315

SEN3811

SEN1764

SEN1001

SD3246_2037 SD3246_2037

SENO0539

SEN1713

cysl

fhuC

SEN0539

SEN1713

SEN2786

STM0192

ref|lYP_001586711.1|
phosphoribosylaminoimidazole
synthetase [Salmonella enterica
subsp. enterica serovar Paratyphi
B str. SPB7]

ref|[YP_002242862.1| aldose 1-
epimerase [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =346

ref|[NP_459302.1| transcriptional
regulator [Salmonella enterica
subsp. enterica serovar
Typhimurium str. LT2]
ref(ZP_03076991.1|

ref|[YP_002242465.1| hydrolase or
acyltransferase [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =304

ref|[YP_002245864.1|
oxidoreductase [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =298

ref|[YP_002243862.1|
oxidoreductase [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =282

ref|[YP_002243131.1| DNA-
binding protein [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =296

ref|ZP_09764523.1|
aminoglycoside resistance
protein [Salmonella enterica
subsp. enterica serovar Dublin
str. SD3246] Length =289

ref|[YP_002242687.1| AraC family
transcriptional regulator
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =284

ref|YP_002243813.1| DNA/RNA
non-specific endonuclease
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =284

ref|[YP_002244858.1| sulfite
reductase subunit beta
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =570

ref[INP_459197.1| iron-
hydroxamate transporter ATP-
binding subunit [Salmonella
enterica subsp. enterica serovar
Typhimurium str. LT2]
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Table 3. Cont.

Salmonella Enteritidis Evolutionary History

Variable genes observed that may define Salmonella Enteritidis.

Number

Gene
Alignment

Protein
Alignment

Nt Pos

NT
Change

AA
Pos

AA
Change

Gene
Symbol

Locus
Tag

ReBlasted translated
proteins from Next Gen Data
against NCBI - Feature
Matches

37

38

39

40

41

42

43

44

45

46

47

48

49
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686_input.aln

695_input.aln

709_input.aln

710_input.aln

727 _input.aln

757_input.aln

767_input.aln

77_input.aln

77_input.aln

77_input.aln

793_input.aln

796_input.aln

824 _input.aln

686_protein.fas

695_protein.fas

709_protein.fas

710_protein.fas

727_protein.fas

757_protein.fas

767_protein.fas

77_protein.fas

77_protein.fas

77_protein.fas

793_protein.fas

796_protein.fas

824_protein.fas

85

691

480

458

253

172

455

1025

1013

394

250

475

C—>T

G—A

G—T

G—A

C—>T

G—A

G—A

T-C

C—T

G—C

G—A

C—A

G—C

29

231

160

153

85

58

152

342

337

132

84

159

16

R—C

E—D

G—E

H—Y

D—N

G—E

L—S

P—L

E—Q

A—>T

N—K

V—L

SEN0716

fixA

SEN3371

stbE

SENO0801

yehV

sopE2

cueO

cueO

cueO

minC

yg95

SEN0992

SEN0716

SEN0076

SEN3371

SEN0319

SEN0801

STM2160

SEN1182

SEN0173

SEN0173

SENO0173

SEN1223

SEN2943

SEN0992

ref|YP_002242860.1| ABC
transporter ATP-binding protein
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =258

ref|[YP_002242240.1| electron
transfer flavoprotein FixA
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =256

ref|[YP_002245437.1| hypothetical
protein SEN3371 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =253

ref|[YP_002242469.1| fimbrial
chaperone protein [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =252

ref|[YP_002242941.1| electron
transfer flavoprotein subunit
beta [Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =249

ref[NP_461105.1| transcriptional
repressor [Salmonella enterica
subsp. enterica serovar
Typhimurium str. LT2]

ref|[YP_002243290.1| invasion-
associated secreted effector
protein (sopE2) str. P125109]
Length =240

ref|[YP_002242335.1| multicopper
oxidase [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =536

reflYP_002242335.1| multicopper
oxidase [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =536

ref|[YP_002242335.1| multicopper
oxidase [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =536

ref|[YP_002243330.1| septum
formation inhibitor [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =235

ref|[YP_002245012.1| hypothetical
protein SEN2943 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =234

ref|[YP_002243123.1| hypothetical
protein SEN0992 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =230
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Table 3. Cont.
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Variable genes observed that may define Salmonella Enteritidis.

NT
Change

Protein
Alignment

Gene

Number Alignment Nt Pos

AA
Pos

ReBlasted translated
proteins from Next Gen Data
against NCBI - Feature
Matches

AA
Change

Locus
Tag

Gene
Symbol

50 826_input.aln 826_protein.fas 152 A—G 51

51 864_input.aln 864_protein.fas 126 A—C 42

52 865_input.aln 865_protein.fas 40 G-T

53 882_input.aln 882_protein.fas 347 C—A

54 903_input.aln 903_protein.fas 580 G—A

55 970_input.aln 970_protein.fas 76 A—C 26

116

194

D—G SEN3064 reflYP_002245130.1| hypothetical
protein SEN3064 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =230

ref|[YP_002245097.1| hypothetical
protein SEN3030 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]

Length =223

ref|[YP_002246083.1| cytochrome
c-type biogenesis protein
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length =223

ref]YP_002242695.1|
dihydropteridine reductase
[Salmonella enterica subsp.
enterica serovar Enteritidis str.
P125109] Length=217

ref|[YP_002246112.1| hypothetical
protein SEN4080 [Salmonella
enterica subsp. enterica serovar
Enteritidis str. P125109]
Length=217

ref|lYP_002242275.1|
isopropylmalate isomerase small
subunit [Salmonella enterica
subsp. enterica serovar Enteritidis
str. P125109] Length =201

y9jQ

E-D ygiB SEN3030

A—S nrfC SEN4049

A—E nfnB SEN0548

V-l SEN4080 SEN4080

leuD SENO111

I-L

doi:10.1371/journal.pone.0055254.t003

that appear to be present in all S. Enteritidis examined. Serovar-
defining signature amino acid differences include E to Q (position
132), P to L (position 337), and L to S changes (position 342).
Other genes that vary with S. Enteritidis specific SNPs and amino
acid changes include: the fimbrial usher protein (b¢fC, locus tag
SEN0022); fimbrial structural subunit (s¢/D, locus tag SEN0284);
2-methylcitrate dehydratase (prpD, locus tag SEN0353); Trp
operon repressor (#pR, locus tag SEN4339); tRNA(Ile)-lysidine
synthetase gene (#(S, locus tag SeD_A0258); iron-hydroxamate
transporter ATP-binding subunit (fuC, locus tag STM0192); ABC
transporter ATP-binding protein (locus tag SEN0716); electron
transfer flavoprotein (fixA, locus tag SENO0076); and invasion-
assoclated secreted effector protein (sopE2, locus tag SEN1182) to
name a few (Table 3).

Genetic variation defining S. Enteritidis outbreak lineages

At least 366 genes varied among S. Enteritidis strains
comprising the egg-associated foodborne isolates, the farm
environmental samples, and temporally-associated clinical samples
(Table S1). Of the 366 genes that varied, 21 had nonsynonymous
changes that were optimized to one of the branches supporting
egg-associated clades C1, C2 or the shared lineage leading to C1
and C2 collectively (Table 4). These variable genes represent
micro-evolutionary changes that arose within this highly clonal
lineage of Salmonella persisting in the food supply and chicken farm
environment; thus they may play a role in the subsequent rapid
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subtyping of isolates in future food contamination events involving
S. Enteritidis pattern JEGX01.0004.

Specific genes associated with implicated farm isolates

Nucleotide substitutions in 17 genes, 11 of which were
nonsynonymous were identified at the node uniting isolates from
the two egg farms (Table 4). In addition, isolates obtained from
Farm 1 shared nonsynonymous changes in two genes SthB and
1yP. Farm 2 §. Enteritidis isolates shared substitutions in nine
genes, eight of which were nonsynonymous.

Discussion

Like other molecular epidemiology studies of Salmonella
employing genomic technologies [19-23], this work demonstrates
that comparative NGS methods can be employed to clearly
augment food contamination investigations by genetically linking
the implicated sources of contamination with farm and clinical
1solates. The genomic evidence herein corroborates epidemiolog-
ical conclusions from outbreak investigations based on statistical
analysis and source tracking leads. However, with NGS, one can
gain additional detailed micro-evolutionary knowledge within the
associated outbreak and reference isolates; thus providing addi-
tional evidence linking implicated farms to some of the clinical
isolates but not others initially associated with this foodborne
contamination. Moreover, the level of genetic resolution obtained
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using NGS methods permits a delimiting of the scope of an
outbreak in the context of an investigation even for the most
genetically homogeneous salmonellae (e.g., S. Enteritidis). In this
study, NGS data retrospectively supported the decision to recall a
half a billion shell eggs by revealing numerous nucleotide and
amino acid changes (SNPs) found in both eggs and from hen
houses; the changes were also shared with some food and clinical
isolates. It is noteworthy that the comparative NGS results
reported here provided additional resolution, with new genomic
data, that some clinical isolates collected during the time of the egg
contamination event and with the same PFGE Pattern
JEGXO01.0004 may not be linked to the implicated farm isolates
studied. That is, while most of the strains collected during this time
period and sharing a common PFGE pattern fall into clades 1 and
2 (Figure 3) with the egg and farm isolates, several strains known to
be unrelated to the outbreak, including historical isolates from
2004, interrupt these lineages, indicating additional potential
sources of contamination.

Data mining associated with these novel genomes should
provide new genetic targets for tool development in public health
laboratories and that will augment investigations during highly
clonal outbreaks of Salmonella pathogens. Akin to earlier findings of
NGS-based differentiation of S. Montevideo isolates associated
with pepper and spiced meats [19-21], the signature genetic
differences uncovered here will provide additional insight into
what will likely remain a common pattern of S. Enteritidis
associated with the food supply. This bolus of unique genetic
identifiers yielded from whole-genome sequencing clearly earmark
NGS as a valuable tool for augmenting future molecular
epidemiology investigations both for rapidly distinguishing distinct
serotypes and PFGE types as well as providing markers that can
differentiate highly clonal outbreak lineages into insightful isolate
sublineages.

By using a targeted comparative genomic approach that
spanned nearly the entire genomic complement of the highly
homogeneous S. Enteritidis variants included here (i.e., PFGE
pattern JEGXO01.0004), a robust genotyping SNP panel was
compiled that not only discriminated this S. Enteritidis clone from
other closely related strains but also fully resolved member isolates
within this cluster. This is an important alternative to other
methods that have been examined for surveying genomic diversity
among foodborne pathogenic strains. One such approach uses
NGS to examine diversity among a pooled isolate set instead of on
pure cultures, but as expected, this approach is far less robust. As
an example, a recent genotyping panel for 0157 STECs revealed
lower diversity among the isolates using the selected NGS-based
genotyping panel than a two-enzyme PFGE method [60].
Specifically, the authors reported finding over 16,000 variable
SNPs, but by pooling STEC isolates and sequencing at low
coverage, critical SNPs defining major lineages and sublineages
went undetected in this analysis. This was likely due to the failure
of the “pooling” approach to link signature SNPs back to a
particular source genome. While strain “pooling” may be a faster
way to collect SNP data, it may not be an optimal method when
discriminating a specific lineage of strains or an isolate cluster of
interest. In contrast, comparative genomics approaches rely on
high-coverage draft genomes coupled with rigorous phylogenetic
analyses and character optimization to resolve accurate evolution-
ary and genetic relatedness among closely related strains. With
such information, individual SNPs can be evaluated in an
evolutionary context (i.e., whether they define lineages or
represent homoplasy due to convergent gains or character
reversals). Indeed, a targeted phylogenetic approach produces a
robust genotyping panel because the resultant SNPs can be
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carefully chosen to represent diversity among targeted isolates
while omitting uninformative SNPs [19-21]. Conversely, “pool-
ing” strategies might work better within clonal outbreak lineages
where hundreds not thousands of SNPs are present.

Mobile elements, such as phages and plasmids, are often the
most promiscuous portions of the bacterial genome including
Salmonella [61]. The mobilome, as it is often collectively referred,
appears to be regularly rearranging among closely related clonal
lineages of Salmonella [19,21]. As expected, S. Enteritidis shows a
similar susceptibility to loss and gain of these elements [62], as do
other members of the FEnterobactericeae. In addition to seeing
variability among these elements, several new plasmids were
discovered, suggesting that additional mobile elements were
previously undescribed across the Salmonella genome. Recent
examples of new phages and plasmids are being published
regularly [63-64]. It is becoming apparent that a renewed effort
to describe and identify the complete mobilomes of newly
sequenced isolates should be undertaken, especially for pathogenic
strains that persist and emanate from the environment. From these
data, it would appear that mobility of these elements is not
restricted to close members. At least one of the newly discovered
Salmonella plasmids (pSEEE1729_15) had its closest BLAST match
to an E. coli 0157:H7 strain EC4115 [26], suggesting that parts of
the mobilome may be transferred from other related enterobac-
terial species. Moreover, observations of this nature clearly
broaden the possibility of new acquisitions into the S. Enteritidis
pan genome [62].

Natural selection has been reported in other Salmonella isolates
and appears to be a major component of the evolution of this
pathogen [18,22]. Some of the genes that vary are found on the
mobilome, such as the putative phage terminase gene, supporting
the notion that there are actively evolving genes on some mobile
elements. This strategy for evolution could provide a scenario
whereby highly selected genes could be shaped by natural selection
and then easily distributed among the various members of a
serotype and other more distant lineages through mobile genetic
elements.

Some investigators are beginning to search for genetic
determinants for survival and virulence of S. Enteritidis in
chickens, mice, and cell culture models. Through observing which
genes varied in environmental farm and clinical isolates, such
insight was sought in the hopes of identifying potential contrib-
uting factors to outbreaks. One study linked SNP variability in a
stress response gene (7poS) to isolates able to infect poultry [8]. We
observed nonsynonymous variability in a gene (phoP) that has been
demonstrated to be a regulator of 7p0S [65,66] and that gene
varied uniquely in the lineage defining Clades 1 and 2 (Table 4).
The phoP gene also is thought to be important to S. Enteritidis
virulence based on evidence from a mouse model [67]. This
change was observed in the SNPs listed in Table 4, which are a
conservative subset of variable SNPs and genes, although these
SNPs were chosen for potential diagnostic utility and not for a full
description of comparative genomics purposes within these
isolates.

Another recent hypothesis for the genes involved in salmonel-
losis, focuses on the ABC transporter genes and the ability of
pathogens to acquire nutrients for survival during host infection
[68,69]. Our study shows variability in an ABC transporter for
methionine specific for clades 1 and 2 (Table 4). The S. Enteritidis
model that Osborne et al. [68] tested for i vivo with an ABC
transporter of alanine is similar to the natural variability for a
similar gene in the implicated farm and associated clinical isolates.
If this model, affirmed in cell culture studies, holds in chickens,
then infections in chickens and eggs in 2010 may be related to the
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ability of S. Enteritidis to survive in a poultry host due to the
enhanced access to methionine. The ABC transporters have been
hypothesized to be an important new acquisition for all of
subspecies I Salmonella enterica [15]. Perhaps the ABC transporter
gene gave Salmonella subspecies I an overall enhanced ability to
survive in a warm blooded vertebrate host, and later mutations of
the gene allow some serotypes to have special affinity for one host
over another. It is common to see serotype specific Salmonella that
are more common to one host, such as . Kentucky in cattle and .
Enteritidis in poultry and eggs. Another nonsynonymous gene
change observed is in the threonine/serine transporter tdcC gene
(Table 4), demonstrating that several transporter genes are
evolving within these critical isolates.

Salmonella’s ability to gain access to another valuable resource
such as metals, like Fe, Mn, and Zn, may help give this foodborne
pathogen a competitive edge in the vertebrate gut [70]. Variability
in genes related to metal acquisition may help Salmonella bypass a
process called nutritional immunity. We see another nonsynon-
ymous change unique to the outbreak-associated isolates in a
ferrochelatase gene (hemH), lending support to this hypothesis.
Another hypothesis, argues that diversification within the Sa/mo-
nella fimbriae gene clusters has been implicated as a source for
virulence [71] through possible host specific intestinal adhesion
mechanisms. At least three genes from gene complexes (b¢/C, safD,
and stbE) show unique amino acid changes that may define S.
Enteritidis (Table 3) and one fibrial gene (fimD) shows a unique
amino acid change leading to clades 1 and 2 (Table 4).

The nonsynonymous changes that we see among genes that
vary for clades 1 and 2 suggest that there may not be a single cause
for increased risk of infection and outbreak stemming from
chickens and shell eggs. Rather a combination of several of these
genetic factors that raise the risks for Salmonella invasion may be
causing contaminations in the food supply today. The fact that 5 of
the 21 nonsynonymous changes varying among the outbreak
isolates (Table 3) are putatively involved in virulence-based
pathways strongly suggest that there may be multiple and
potentially synergistic causes to the expanding rate of S. Enteritidis
populations. This also suggests that the other genes (T'able 3 and 4)
that vary in S. Enteritidis should be carefully examined and
experimentally tested, as more of these are likely to be associated
with an increase in virulence and infection [67,69,71].

Based on both PCR and sequencing evidence, numerous studies
have found little genetic variation within §. Enteritidis [6-9]. Our
genomic diversity estimates for the S. Enteritidis PFGE Pattern
JEGXO01.0004 examined in this study are consistent with other
diversity comparisons described between two S. Enteritidis isolates
of phage type 13 [7]. This variation was observed both as SNP
variation among 366 genes as well as the presence and absence of
numerous phages and plasmids among these close relatives. This
genetic variability was used to define the most variable genes and
to assess population and phylogenetic evolutionary patterns for
these important foodborne pathogens. In this study, our compar-
ative genomics approach allowed us to cluster clinical isolates
within the context of their environmental source, farm isolates,
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