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Abstract

White matter microstructure and volume show synchronous developmental patterns in children. White matter volume
increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality,
also increases with age. Development of white matter volume and development of white matter microstructure seem to go
hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of
white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion
parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals).
Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most
pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced
white matter volume (heritability ,85%), surface area (,85%), and fractional anisotropy (locally 7% to 50%) at both ages.
Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = –0.62) and this
relationship was driven by environmental factors. In children who showed the most pronounced white matter growth,
fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process
of both expansion and fiber optimization.
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Introduction

During development, the composition of the brain changes

substantially. After a remarkable increase in white matter volume

in the first few years of life, both gray and white matter of the brain

have been found to steadily increase during childhood, using

conventional anatomical magnetic resonance imaging. While gray

matter volume starts to decrease around the start of puberty, white

matter volume continues to increase well into adulthood [1–3].

Indeed, at the age when thinning of the cortex has already started

[4–5], white matter expands considerably. The biological

processes that underlie these white matter changes are still largely

unknown.

With diffusion tensor imaging (DTI;[6]) the white matter of the

brain can be studied in more detail compared to conventional

magnetic resonance brain imaging. DTI quantifies diffusion of

water molecules in the brain. In white matter bundles, water

diffuses more easily in the direction parallel to axons (axial

diffusivity) than in the direction perpendicular to axons (radial

diffusivity). Fractional anisotropy [7] is a combination of these two

and represents microstructural directionality, or so-called ‘fiber

integrity’. White matter microstructural development, as measured

with DTI, shows a pattern parallel to the development of white

matter volume. Numerous studies have been carried out to

investigate age-related changes in diffusion properties in childhood

and adolescence. Despite differences in methodology and diffusion

parameters that were studied, these studies all indicate that

anisotropy increases with age during development, with the fastest

increases in infancy and young childhood ([8–9]; see [10–12] for

reviews on earlier studies). These cross-sectional findings have

been replicated in three recent longitudinal studies ([13] age 16–

21; [14] age 14–19; [15] age 5–32). To summarize, the develop-

ment of white matter volume and of white matter microstructure

follow the same pattern and seem to go hand in hand.

Small to moderate associations between white matter volume

and diffusion in the brain in adolescents were found in a single

study that employed a cross-sectional design [16]. So far, the

etiology of these associations has not been studied. In our study, we

explored the development of white matter in children using a

longitudinal design with a 3-year test-retest interval. We studied

local changes in white matter volume and in white matter

microstructure in a sample of twins between the age of 9 and

12 years using magnetic resonance brain imaging. The following

questions were addressed: 1) How do white matter volume and

white matter microstructure change between the ages of 9 and 12?
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Are these quantities and/or their changes related? 2) What is the

heritability of white matter volume, white matter microstructure

and their changes? If these are associated, are these relationships

genetic or environmental in nature?

Materials and Methods

Subjects
Participating in this study were 108 twin families. Twins were

first recruited at 9 years of age through the Netherlands Twin

Registry [17]. At the first measurement at age 9 (mean 9.2, sd

0.11 years), 203 twin subjects (88 monozygotic twin subjects,

43 complete pairs and 115 dizygotic twin subjects, 53 complete

pairs - 101 males, 102 females) underwent an extensive MRI

protocol, as was described before [18–19]. Exclusion criteria

consisted of having a pacemaker, any metal material in the head

and a known history of any psychiatric illness or major medical

condition. Psychiatric and medical status was confirmed through a

medical questionnaire filled in by the parents at the time of MRI

scanning. Three years later, 126 twin subjects returned at age 12

(mean 12.1, sd 0.24 years) (59 monozygotic twins, 25 complete

pairs and 67 dizygotic twin subjects, 27 complete pairs - 64 males,

62 females). Mean scanning interval was 2.9 (0.2) years. Zygosity

of same-sex twins was determined based on DNA polymorphisms,

using 8–11 highly polymorphic di-, tri- and tetranucloide genetic

markers. Handedness was determined according to the Edinburgh

Handedness Inventory. At baseline 84% of the sample was right-

handed; at follow-up 83%. Both parents and children gave written

informed consent to participate in the study. The study was

approved by the Central Committee on Research involving

Human Subjects of the Netherlands (CCMO) and was in

agreement with the Declaration of Helsinki (Edinburgh amend-

ments).

MRI Acquisition and Preprocessing
Magnetic resonance imaging and post-processing of the data

was done at the University Medical Center, Utrecht. For both

measurements, structural magnetic resonance images were made

on a 1.5 Tesla Philips Achieva scanner (Philips, Best, the

Netherlands) using the same protocol. A three-dimensional T1-

weighted scan (Spoiled Gradient Echo; TE = 4.6 ms; TR = 30 ms;

flip angle 30u; 160–180 contiguous coronal slices of 1.2 mm; in-

plane resolution 161 mm2; acquisition matrix 2566256) of the

whole head was made of each subject. To increase signal to noise

ratio, two Single Shot Echo Planar Imaging (SS-EPI) DTI scans

were acquired (32 diffusion-weighted volumes with diffusion

weighting b = 1000 s/mm2 and 32 non-collinear diffusion gradi-

ent directions; 8 diffusion-unweighted (b = 0 s/mm2) scans;

TE = 88 ms; TR = 9822 ms; parallel imaging SENSE factor 2.5;

flip angle 90u; 60 transverse slices of 2.5 mm, no gap, FOV

240 mm; 1286128 reconstruction matrix; 96696 acquisition

matrix, no cardiac gating). The DTI scans were combined and

corrected for geometric distortions [20], but due to the use of

parallel imaging with a short echo time at 1.5 Tesla, susceptibility

distortions are expected to be minimal. Subsequently, the diffusion

pattern in each voxel was fitted to a tensor matrix using a robust

M-estimator [21], providing three eigenvectors (representing the

three principal directions of diffusion) and corresponding eigen-

values (l1.l2<l3, in white matter). Fractional anisotropy values

were calculated in each voxel as a measure of microstructural

directionality from the eigenvalues [7]. Further, axial/longitudinal

(l1) and radial/transverse ((l2+l3)/2) diffusivity were computed.

To obtain white matter volume and mean white matter

fractional anisotropy, gray and white matter were segmented

from the T1-weighted images using a partial volume segmentation

[22]. Reliable gray and white matter segmentations were available

in 187 children at baseline, and 117 children at follow-up. A pure

white matter mask was created by selecting all voxels that were

classified as having at least 90% white matter content. For

computation of the mean fractional anisotropy in pure white

matter, the b0 scan was registered to the T1-weighted scan using a

rigid transformation (no scaling), based on optimization of a

mutual information metric [23]. Possible local DTI distortions

therefore may be expected to have limited influence on the

registration. Diffusion parameters were warped on the T1-

weighted scan using this rigid transformation and mean fractional

anisotropy in pure white matter was computed by averaging over

the voxels in the pure white matter mask.

Deformation Based Morphometry
To study morphological changes between baseline and follow-

up, the deformation fields of the T1-weighted images from

baseline to follow-up were computed using a combination of linear

and non-linear transformations [24] with increasing precision up

to the scanning resolution. The determinants of the Jacobian

matrix J of this these deformation fields were computed, which

were used to assess expansion or contraction of tissue. The

determinant maps were warped into model space, again with a

precision up to scanning resolution. The model brain was created

using the T1-weighted images from the follow-up measurement,

(analogous to [25]). Voxels were resampled to a resolution of

26262.4 mm3. Each voxel was tested for volumetric change

(either expansion or contraction, |J|?1). A correction for multiple

comparisons was applied according to the false discovery rate

(FDR; [26]) at a 0.05 level.

Fiber Tractography
Analogous to the analysis at the baseline measurement [19] we

created average fiber tracts for the whole group containing scans

for both measurements, to study parts of the fiber tract that are

common to most subjects [27–28]. First, all possible fiber tracts in

the brain were reconstructed in individual space using the FACT

algorithm (Fiber Assignment by Continuous Tracking; [29]), with

8 seedpoints per voxel (taking the corners of small cubes inside a

voxel as seed points, placed such that the smaller cubes form a

regular grid), a fractional anisotropy threshold of 0.1 and maximal

angle of 45u. These settings were chosen to perform rather liberal

fiber tracking. Subsequent fiber averaging removes superfluous

tracts. Per subject, all reconstructed tracts were superimposed with

axial diffusivity, radial diffusivity and fractional anisotropy values.

Next, for each subject, the complete set of tracts – which was

reconstructed in native space – was warped into model space using

a nonlinear transformation. For each subject this nonlinear

transformation was obtained by concatenating the (linear)

transformation that registers the b0 image to the T1-weighted

image (in native space) with the (nonlinear) transformation that

warps the T1-weighted image to the model brain. Finally, multiple

regions of interest (ROIs) were defined in model space allowing us

to select 14 different major fiber tracts for each subject: the arcuate

fasciculi, uncinate fasciculi, fornices, cinguli, inferior longitudinal

fasciculi and inferior fronto-occipital fasciculi bilaterally, and the

genu and splenium of the corpus callosum [28][30].

Creation of Average Fibers
For each individual separately, we created an average fiber

bundle at group level for the 14 major fiber tracts as described in

[28]. In short, for each fiber bundle, the middle points of all fibers

in the bundle were determined and the (spatial) average served as a
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starting point for the average fiber. Subsequently, the nth

coordinate of the average fiber was computed as the spatial

average of the points in the fiber bundle at distance 2n mm from

the starting point. The individual average fibers were smoothed

and resampled to their original resolution. As tracking results may

vary per individual, the individual average fibers bundles

(combining all children at both measurements) were averaged

again. Because the outer ends of fiber bundles may differ per

individual close to gray matter, we ignored parts of this average

fiber to which less than 25% of the sample contributed. This

procedure created a (spatial) average fiber bundle at group level.

Now, for each individual and each fiber bundle, the fiber bundles

were projected onto their respective group averages. If the

individual fiber tracking results were too far (.1 cm) from the

average fiber, we considered this measurement to be unreliable.

Therefore, not all fiber bundles could be traced in all children (see

Tables 2–4 for exact numbers). Mean fractional anisotropy, axial

diffusivity and radial diffusivity along these bundles was obtained

per subject. For the comparison of white matter volumetric

measures and DTI quantities, masks of fiber bundles were created

in model space as follows: For each individual, voxels in model

space were flagged according to whether the individual average

fiber bundle passed through these voxels. These individual masks

were summed and were subsequently used to create weighted

averages per individual of the Jacobian in this fiber bundle.

Surface Area Measures
White matter surface area was computed using a custom version

of the CLASP algorithm, designed at the McConnell Brain

Imaging Centre, Montreal [31–32], which started from the gray

and white matter segments created by our own algorithm as

described above. A 3D surface consisting of 40962 vertices was

fitted to the white matter/gray matter interface, which created the

inner surface of the cortex, i.e. the white matter surface [31].

Region-of-Interests (ROIs) were automatically segmented using

the automated anatomical labelling (AAL) atlas [33] resulting in

78 ROIs (39 for both left and right hemispheres). Total, lobular

and regional white matter surface area was computed for each

individual.

Statistical analysis
Changes over time were evaluated using paired t-tests. Absolute

and relative change measures over time were computed for white

matter volume, white matter surface area and mean fractional

anisotropy in pure white matter. Pearson’s correlations were used

when studying the associations between these change measures. In

all non-genetic analyses, the degrees of freedom were adjusted to

account for familial dependencies in the data, using the number of

families instead of the number of children as the sample size.

Twin Data - Structural Equation Modeling
Twin data can be used to estimate the respective contributions

of genetic and unique environmental influences on a certain trait

[34], as well as on the covariance between traits [35]. Genetic

influence cause biological relatives to resemble each other, as do

environmental influences that are shared by family members.

Environmental factors that are not shared cause differences among

family members. As monozygotic (MZ) twins share (almost) 100%

of their segregating genes and dizygotic (DZ) twins share on

average 50% of their segregating genes, a higher correlation

between members of MZ twin pairs than between members of DZ

twin pairs indicates that genes, rather than shared environment,

play a role in explaining the resemblance between co-twins. The

proportion of variance that can be attributed to genetic factors is

called heritability. Amongst the assumptions of the twin design are

the equal environment assumption (MZ twin pairs are not treated

differently by their environment than DZ pairs) and random

mating (in this case, parents did not choose their mates based on

brain size or fractional anisotropy) [34].

Heritability estimates for white matter volume, white matter

surface area and mean fractional anisotropy in pure white matter

were obtained by structural equation modeling of data obtained at

age 9 and age 12 years. A bivariate genetic model specified traits

at both ages to be influences by additive genetic factors and by

unique environment (for a detailed description of such a model,

see e.g [36]). Heritability estimates of fractional anisotropy in fiber

bundles were obtained through a (multivariate) Cholesky decom-

position [37] analogous to the analysis at baseline [19]. To limit

the amount of variables in one analysis, we performed three

separate analyses: one for callosal fibers (genu and splenium of

corpus callosum), one for fibers in the left hemisphere (left arcuate,

cingulum, fornix, IFO, ILF, and uncinate) and one for fibers in the

right hemisphere (right arcuate, cingulum, fornix, IFO, ILF, and

uncinate). All three analyses included both baseline and follow-up

measures. Confidence intervals for heritability estimates were

obtained through maximum likelihood estimation, with lower and

upper bound being the point for which the log-likelihood changes

more than 2.71.

Next, observed correlations between change measures over time

were investigated to determine whether they are genetic or

environmental in origin: larger cross-twin cross-trait correlations in

MZ twins compared to DZ twins indicate that the association is

driven by genetic sources. Genetic (rg) and environmental (re)

correlations, representing the amount of overlap between genetic

and environmental factors that influence both traits, were derived

from the bivariate model [25]. All genetic analyses were performed

in Mx [38]. All genetic analyses included sex and handedness as

fixed effects on the means.

Post-hoc Analysis: Histogram Comparisons
It can be suggested that the inverse relationship found between

white matter growth and fractional anisotropy increase may be the

results of segmentation: it could be the case that in children that

showed to most pronounced volumetric white matter growth,

more regions of crossing fibers are included in the white matter

mask. This would results in a lower mean fractional anisotropy. To

test this, we selected two groups of children with ‘‘extreme’’

volumetric white matter changes: one consisting of children with a

relatively large volumetric growth (.mean+1 s.d.) (13 children)

and one of children with a relatively small volumetric white matter

growth (,mean–1 s.d.) (14 children). Instead of selecting white

matter in individual space, we warped all images to the model

brain, on which we selected pure white matter. Fractional

anisotropy was therefore measured in the same areas and

differences cannot originate from the individual segmentations.

Then we computed FA histograms in the pure white matter mask.

If the above were true, an increase in low FA values should be

observed in the group of children with relatively large white matter

growth.

Results

There were no differences in sex, handedness, age at baseline/

follow-up or zygosity between children that were measured twice

and children who participated only once (p’s.0.17). See Table 1

for demographics.

White Matter Development in Early Puberty
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Volumetric White Matter Growth
White matter volume of the total brain increased on average

from 512.9 ml (s.d. 57.9) to 543.9 ml (s.d. 63.3) (6.0%, p,0.001)

between baseline and follow-up. Locally, the deformation-based

analysis revealed large significant clusters of white matter tissue

expansion (|J|.1) in which many major fiber bundles are visible

(|t|.2.37, FDR corrected). These include areas covering the

corpus callosum, the cortical spinal tracts, the cerebellar peduncle,

bilateral cinguli, bilateral superior longitudinal fasciculi (including

the arcuate fasciculi), bilateral fornices, bilateral inferior longitu-

dinal fasciculi/posterior thalamic radiation, bilateral inferior

fronto-occiptal fasciculi, and bilateral uncinate fasciculi (Figure 1).

Tissue contraction occurs in gray matter at the gray/white matter

interface and around the ventricles, see Figure S1.

Averaging the Jacobians over the fiber bundles, lengthening and

thickening of the bundles was found (|J|.1, p’s,1610–6), with

the most pronounced expansion in the left arcuate fasciculus

(|J| = 1.08), and the splenium of the corpus callosum (|J| = 1.08)

and the least prominent expansion in the left and right cinguli

(|J| = 1.02 for both).

Microstructural White Matter Changes
In all 14 fiber tracts, fractional anisotropy increased (on average

between 1.3% and 6.9%, Table 2; Figure 2) (p’s,0.012). In most

fibers, the increase in fractional anisotropy is due to both an

increase in axial diffusivity and a decrease in radial diffusivity

(Tables 3 and 4). A notable exception is the genu of the corpus

callosum where the increase in fractional anisotropy seems mainly

driven by an increase in axial diffusivity. Following the pattern

observed in individual fiber bundles, mean fractional anisotropy in

pure white matter increased from 0.40 to 0.41 (3.0%, p,0.001).

This increase can be attributed to a decrease in radial diffusivity.

The Relation between White Matter Volume and
Fractional Anisotropy

There was no significant correlation between white matter

volume and mean fractional anisotropy in pure white matter at

either baseline or follow-up, or between white matter volume and

mean pure white matter radial or axial diffusivity (p’s.0.21).

However, there was a strong negative correlation between the

relative volumetric white matter growth and the relative fractional

anisotropy increase (rp = –0.62, p,0.001, see Figure 3). This

correlation is a reflection of the associations between the relative

volumetric white matter change and relative radial diffusivity

change (rp = 0.45, p,0.001) and relative axial diffusivity change

(rp = –0.47, p,0.001). Next, we investigated the relation between

the baseline measurement and subsequent changes. The baseline

measurement of white matter volume predicted the relative

increase in fractional anisotropy over time (rp = 0.27, p = 0.013).

Similarly, mean fractional anisotropy at age 9 predicted the

relative increase in white matter volume.

White Matter Surface Area Expansion and the Relation to
Fractional Anisotropy

White matter surface area increased by 1.7% (p,0.001)

between ages 9 and 12. Surface area expansion was larger in the

left hemisphere than in the right hemisphere (p = 0.03). Relative

white matter volume increase correlated with relative white matter

surface area expansion (rp = 0.89; p,0.001). At a lobar level, all

lobar white matter surface areas, apart from the occipital surface

area bilaterally, increased significantly (p’s,0.02, frontal left 1.7%,

frontal right 1.2%, parietal left 2.2%, parietal right 2.1%, temporal

left 2.1%, temporal right 1.1%, occipital left 0.7%, occipital 0.5%).

Figure 4 displays the percentage change in white matter surface

area per anatomical cortical region.

Sex Differences
Boys had a larger white matter volume than girls at both age 9

and 12 (p’s,0.001). There were no differences in absolute or

Table 1. Sample characteristics of the full sample (left) and of the subset of children for which longitudinal data was available
(right).

Full sample Longitudinal sample p-value

Age 9 Age 12 Age 9 Age 12

Number of twin subjects 203 126 121 121

(MZ / DZ) (88/115) (59/87) (57/64) (57/64) 0.20

Mean age 9.2 12.1 9.2 12.1 0.17 (age 9)

(sd) in years (0.11) (0.24) (0.11) (0.25) 0.68 (age 12)

Sex (boy/girl) 101/102 64/62 63/58 63/58 0.33

Handedness (R/non-R) 171/32 105/21 101/20 101/20 0.85

Mean FA in pure WM 0.401 0.413 0.401 0.414 0.59 (age 9)

(sd) */** (0.02) (0.02) (0.02) (0.02) 0.69 (age 12)

Mean WM volume 512.9 543.8 517.3 544.3 0.24 (age 9)

(sd) in ml */** (57.9) (63.3) (59.7) (62.3) 0.83 (age 12)

Mean WM surface area 1908.6 1940.1 1913.5 1939.6 0.67 (age 9)

(sd) in cm2 */** (177.7) (179.4) (182.8) (180.5) 0.94 (age 12)

MZ = monozygotic, DZ = dizygotic, FA = fractional anisotropy, R = right-handed, WM = white matter.
*White matter was segmented reliably in 187 children at baseline, and 117 children at follow-up.
**105 children had reliable white matter segmentations and DTI measurements at both time-points. The last column displays p-values of the differences in sample
characteristics for children who participated only once, versus children who participated twice.
doi:10.1371/journal.pone.0032316.t001
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relative volumetric white matter increase between boys and girls

(p’s.0.30). Sex also had no significant effect on local volumetric

change, as was measured with deformation based morphometry.

There were no differences in global or lobular white matter

surface expansion between boys and girls. Locally, girls had a

larger expansion in the right inferior temporal area (p = 0.006) and

right medial-orbito frontal area (p = 0.04) and right paracentral

lobule (p = 0.003). Considering white matter microstructure, girls

had a slightly higher mean fractional anisotropy in pure white

matter than boys at age 9 (0.405 versus 0.397, p = 0.022), but this

difference disappeared at age 12. There was no difference in

absolute or relative mean fractional anisotropy in pure white

matter increase between boys and girls (p’s.0.21). The relation-

ship between fractional anisotropy increase and white matter

volumetric increase did not change when correcting for sex, nor

when considering boys and girls separately.

Genetic Analyses
Genetic influences were found for white matter volume (86%/

85%), white matter surface area (83%/85%) and microstructural

measures (7–54%/15–49%) at baseline and follow-up (see

Table 5). Relative change in white matter volume and surface

area, and relative change in fractional anisotropy over the three-

year interval were not significantly influenced by genes. Instead,

the correlation between relative white matter change and relative

pure white matter fractional anisotropy change was completely

explained by environmental factors (re = –0.67; confidence

interval (–0.80, –0.48)), influencing both white matter growth

and fractional anisotropy changes.

Figure 1. Significant tissue expansion: Significant Jacobian values . 1 overlaid on the model brain. Values range from 1.02 (purple) to
1.30 (bright red). Expansion was observed in regions covering the arcuate fasciculus (E), cerebellar penduncle (A), cinguli (C) , corpus callosum (B,C),
cortical spinal tract (B,F), uncinate fasciculus (D) and on the gray matter / cerebral spinal fluid boundary (A-F), the latter likely representing brain
growth. For visualization purposes, values were resampled to model brain resolution.
doi:10.1371/journal.pone.0032316.g001

Table 2. Fractional anisotropy in 9 and 12 year old children.

N 9 years 12 years p Change

Pure white
matter

105 0.40 (0.03) 0.41 (0.02) ,0.0001 +3.0%

Arcuate L 117 0.48 (0.03) 0.50 (0.03) ,0.0001 +4.6%

Arcuate R 99 0.48 (0.03) 0.50 (0.03) ,0.0001 +5.3%

Cingulum L 83 0.50 (0.06) 0.52 (0.05) 0.0120 +3.2%

Cingulum R 74 0.45 (0.06) 0.48 (0.06) ,0.0001 +6.9%

Fornix L 114 0.34 (0.03) 0.36 (0.03) ,0.0001 +4.9%

Fornix R 111 0.34 (0.03) 0.35 (0.03) ,0.0001 +4.7%

Genu 121 0.61 (0.03) 0.62 (0.03) 0.0052 +1.3%

IFO L 120 0.51 (0.03) 0.52 (0.03) 0.0002 +2.6%

IFO R 121 0.48 (0.03) 0.50 (0.03) ,0.0001 +3.7%

ILF L 121 0.48 (0.03) 0.49 (0.03) ,0.0001 +3.1%

ILF R 121 0.48 (0.03) 0.49 (0.03) ,0.0001 +4.2%

Splenium 121 0.60 (0.04) 0.63 (0.04) ,0.0001 +5.5%

Uncinate L 113 0.45 (0.03) 0.46 (0.03) ,0.0001 +3.1%

Uncinate R 120 0.43 (0.03) 0.45 (0.03) ,0.0001 +3.2%

Means and standard deviations are given from the longitudinal sample only.
L = left, R = right, ILF = inferior longitudinal fasciculus, IFO = inferior fronto-
occipital fasciculus. P-values are the result of paired t-tests comparing fractional
anisotropy at 9 and 12 years. N represents the number of children included in
the paired t-test.
doi:10.1371/journal.pone.0032316.t002
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Post-hoc Analysis: Histogram Comparisons
Figure 5 shows histograms at age 9 and age 12 for children with

relatively large, and relatively small white matter growth. As can

be seen from this Figure, in neither group, the amount of voxels

with low fractional anisotropy (possibly representing regions of

crossing fibers) substantially differs between ages. A difference in

mean white matter fractional anisotropy arises from a shift in the

histogram to the right. This shift is larger in the group of children

with relatively small volumetric white matter increase.

Discussion

In this study we explored the local and global changes in white

matter of the brain and how these changes are associated in

children between 9 and 12 years of age. We find that white matter

volume increases (on average 6.0%), white matter surface area

expands (on average 1.7%), and thickening and lengthening of

fiber bundles occurs, during this three-year period. All fiber

bundles showed an increase in their fractional anisotropy with

increasing age (1.3% to 6.9%). Genes influence white matter

volume (.80%), white matter surface (.80%) and fractional

anisotropy in fiber bundles (up to 54%). The developmental changes

in white matter volume and microstructure were explained by

some (unknown) unique environmental factor.

We found white matter surface area expansion in the frontal,

parietal and temporal lobes, between 9 and 12 years of age. Our

findings at two specific ages helps to localize, in both space and

time, the increase in white matter volume [1] , mean surface area

[39] and expansion of fiber bundles [40–41] that have been shown

to occur in childhood and adolescence. Simultanously, fractional

Figure 2. Increases of relative fractional anisotropy between the ages of 9 and 12, projected onto the group average fiber bundle.
Left, top and right view. For visualization purposes, values were smoothed along the bundle using LOESS [59].
doi:10.1371/journal.pone.0032316.g002

Table 3. Longitudinal diffusivity (l1; x 10
ˆ23 mm2/s) in 9 and

12 year old children.

N 9 years 12 years p Change

Pure white
matter

105 1.139 (0.032) 1.143 (0.028) 0.227 +0.4%

Arcuate L 117 1.199 (0.052) 1.199 (0.044) 0.752 –0.1%

Arcuate R 99 1.180 (0.051) 1.193 (0.055) 0.014 +1.2%

Cingulum L 83 1.209 (0.085) 1.245 (0.079) 0.001 +3.0%

Cingulum R 74 1.163 (0.078) 1.210 (0.093) ,0.001 +4.0%

Fornix L 114 1.360 (0.119) 1.372 (0.136) 0.389 +0.9%

Fornix R 111 1.375 (0.195) 1.387 (0.156) 0.575 +0.8%

Genu 121 1.351 (0.063) 1.390 (0.045) ,0.001 +2.8%

IFO L 120 1.251 (0.054) 1.269 (0.046) 0.002 +1.4%

IFO R 121 1.229 (0.055) 1.267 (0.048) ,0.001 +2.2%

ILF L 121 1.314 (0.074) 1.323 (0.061) 0.152 +0.8%

ILF R 121 1.318 (0.068) 1.336 (0.057) 0.002 +1.4%

Splenium 121 1.582 (0.086) 1.612 (0.084) ,0.001 +2.2%

Uncinate L 113 1.185 (0.050) 1.203 (0.039) 0.001 +1.5%

Uncinate R 120 1.177 (0.050) 1.199 (0.044) ,0.001 +1.9%

Means and standard deviations are given from the longitudinal sample only.
L = left, R = right, ILF = inferior longitudinal fasciculus, IFO = inferior fronto-
occipital fasciculus. P-values are the result of paired t-tests comparing l1 at 9
and 12 years. N represents the number of children included in the paired t-test.
doi:10.1371/journal.pone.0032316.t003

Table 4. Radial diffusivity (l23;610–3 mm2/s) in 9 and 12 year
old children.

N 9 years 12 years p Change

Pure white matter 105 0.596 (0.021) 0.584 (0.018) ,0.001 –2.1%

Arcuate L 117 0.542 (0.028) 0.520 (0.027) ,0.001 –4.0%

Arcuate R 99 0.535 (0.028) 0.516 (0.027) ,0.001 –4.0%

Cingulum L 83 0.506 (0.044) 0.503 (0.037) 0.459 –0.6%

Cingulum R 74 0.544 (0.053) 0.533 (0.045) 0.010 –2.6%

Fornix L 114 0.811 (0.088) 0.789 (0.098) 0.030 –2.7%

Fornix R 111 0.830 (0.135) 0.813 (0.105) 0.278 –1.9%

Genu 121 0.433 (0.037) 0.439 (0.030 0.067 –1.3%

IFO L 120 0.531 (0.033) 0.520 (0.028) 0.001 –1.9%

IFO R 121 0.552 (0.034) 0.541 (0.027) ,0.001 –1.9%

ILF L 121 0.591 (0.040) 0.577 (0.045) 0.003 –2.3%

ILF R 121 0.597 (0.045) 0.579 (0.040) ,0.001 –3.0%

Splenium 121 0.547 (0.069) 0.513 (0.061) ,0.001 –6.3%

Uncinate L 113 0.563 (0.031) 0.555 (0.025) 0.002 –1.6%

Uncinate R 120 0.574 (0.030) 0.568 (0.026) 0.008 –1.0%

Means and standard deviations are given from the longitudinal sample only.
L = left, R = right, ILF = inferior longitudinal fasciculus, IFO = inferior fronto-
occipital fasciculus. P-values are the result of paired t-tests comparing l23 at 9
and 12 years. N represents the number of children included in the paired t-
tests.
doi:10.1371/journal.pone.0032316.t004
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anisotropy increased in all the 14 major fiber bundles that we

studied. Different rates of maturation have been suggested for

different fiber bundles (e.g. [15][42–43]) Our narrow age range

makes it possible to pinpoint the changes that occur in a very

specific time window. However, it does not allow for testing

developmental trajectories over longer age-periods. The increases

in fractional anisotropy found in our study are overall more

widespread than those that have been found in voxel-based

longitudinal studies in late adolescence and young adulthood [13–

14]. As these studies were done in somewhat older samples (age

ranges [16–21] and [14–19], respectively), it is possible that white

matter microstructure is developing at a rather global level in

children at the brink of puberty and that only later, during

puberty, differentiation in the developmental pattern occurs.

However, the recent longitudinal tract-based study in subjects

aged 5–32 years, showed an age-related increase in 10 of the

major fiber bundles [15] which is in line with our findings. Thus,

we conclude that widespread age-related increases in fractional

anisotropy occur between 9 and 12–years of age, although the

extent is more prominent in some fiber bundles than in others.

The left arcuate fasciculus was the most prominently expanding

fiber bundle of the 14 cortico-cortical fiber bundles between 9 and

12 years of age. Since the arcuate fasciculus is a bundle that is

involved in language processing and young children have great

potential to acquire new languages, we may speculate that the

strengthening of the arcuate fasciculus is related to a stabilization of

language skills. Indeed, the ability to acquire new languages

diminishes fast after the age of 10 [44]. In addition, in the present

study, prominent expansion was found in the splenium of the corpus

callosum. The splenium contains the tracts involved in visual-spatial

processing, which may be expected to develop early in life.

Nevertheless, other studies too show prominent expansion in late

childhood and young adolescence [45] and increases in fractional

anisotropy until early adolescence [9]. It may be that the expansion

occurring in our sample is related to bimanual coordination: during

adolescence, both bimanual task performance and fractional

anisotropy in the splenium increases [46].

Most likely, the continued expansion of white matter in

childhood represents an increase in connectivity and reorganiza-

tion throughout the brain. Based on post-mortem studies [47–48]

the increase in white matter volume is usually attributed to an

increase in myelin (but see [49]), thus representing an improve-

ment in the speed of connections between anatomically distant

brain areas. Our results indicate that white matter growth and

fractional anisotropy increase cannot both be solely linked to

myelination. While fractional anisotropy correlates with the

thickness of myelin sheet [50–51], other factors such as

Figure 3. The relationship between changes in pure white
matter fractional anisotropy and changes in white matter
volume in the three-year interval.
doi:10.1371/journal.pone.0032316.g003

Figure 4. Relative white matter surface area expansion of AAL regions in the left and right hemisphere. Please note that expansion is
based (and projected on) AAL regions rather than representing continuous expansion. *Areas in which girls had larger expansion than boys.
doi:10.1371/journal.pone.0032316.g004
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compactness and organization of fiber bundles, and axonal

diameter and density play a more prominent role (e.g. [52–55]).

In the mouse-model of the shiverer mouse that lacks myelin,

fractional anisotropy is less affected by dysmyelination than other

diffusion parameters, such as the trace [56]. Although we can only

speculate as to the underlying physiological processes underlying

Table 5. Heritability and unique environmental influences for white matter volume, mean fractional anisotropy in pure white
matter, white matter surface area and fractional anisotropy in fiber bundles at ages 9 and 12.

9 years 12 years

Heritability (%)
Unique environment
(%) Heritability (%) Unique environment (%)

White matter volume 86 [78–92] 14 [8–22] 85 [73–92] 15 [8–27]

Mean pure white matter FA 24 [1–49] 76 [51–99] 33 [3–59] 67 [41–97]

White matter surface area 83 [71–89] 17 [11–29] 86 [74–92] 14 [8–26]

FA Arcuate L 54 [32–71] 46 [29–68] 42 [16–64] 58 [36–84]

FA Arcuate R 34 [9–58] 66 [42–91] 31 [6–58] 69 [42–94]

FA cingulum L 51 [24–71] 49 [29–76] 36 [9–61] 64 [39–91]

FA cingulum R 54 [28–71] 46 [29–72] 35 [13–58] 65 [42–87]

FA fornix L 18 [3–41] 82 [59–97] 29 [6–53] 71 [47–94]

FA fornix R 21 [5–40] 79 [60–95] 39 [13–62] 61 [38–87]

FA genu 28 [5–51] 72 [49–95] 38 [9–61] 62 [39–91]

FA ILF L 28 [7–50] 72 [50–93] 21 [2–47] 79 [53–98]

FA ILF R 37 [12–61] 63 [39–88] 49 [19–70] 51 [30–81]

FA IFO L 7 [0–27] 93 [73–100] 15 [1–38] 85 [62–99]

FA IFO R 22 [3–48] 78 [52–97] 35 [6–62] 65 [38–94]

FA splenium 42 [21–60] 58 [40–79] 42 [19–61] 58 [39–81]

FA uncinate L 22 [3–45] 78 [55–97] 44 [15–67] 56 [33–85]

FA uncinate R 27 [2–51] 73 [49–98] 37 [10–62] 63 [38–90]

Values in brackets are 95% confidence intervals. Common environmental influences did not play a role in explaining variation in fiber bundles (based on both the Akaike
criterion and Chi-square differences): only the results from the model incorporating genetic and unique environmental influences are displayed here. FA = fractional
anisotropy, L = left, R = right, ILF = inferior longitudinal fasciculus, IFO = inferior fronto-occipital fasciculus.
doi:10.1371/journal.pone.0032316.t005

Figure 5. Histograms of fractional anisotropy in pure white matter at age 9 and age 12. In the 14 children with relatively large volumetric
white matter growth mean fractional anisotropy was 0.43 at both ages. In 13 children with relatively small volumetric white matter growth, mean
fractional anisotropy increased from 0.41 to 0.44.
doi:10.1371/journal.pone.0032316.g005
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the development of white matter volume and microstructure, we

hypothesize that the thickening of fiber bundles is not only the

result from an increase of myelination, but also from an increase of

axonal diameter and/or changes in the extracellular space. The

latter two may negatively influence fractional anisotropy and their

effects may temper the possible increase in fractional anisotropy

due to increased myelination. Indeed, in pubertal rats, fractional

anisotropy is positively correlated with the area of myelin sheath,

but negatively with the extracellular space [51]. Thus, the negative

correlation between white matter growth and fractional anisotropy

increase indicates that (at least) two different biological processes

occur during white matter development. Myelination is likely one

of them, but other processes influencing coherence of axonal

bundles must also play a role. Future studies are warranted to

investigate the relation between changes in white matter volume/

surface area and fractional anisotropy at a local level.

White matter volume in 8 and 9 year old children is highly

heritable [18][57]. We show here for the first time that white

matter surface area is also strongly influenced by genes. There are

only two studies investigating genetic influences in white matter

microstructure during puberty and adolescence: our previous

study in the same cohort of 9-year olds showed moderate genetic

influences in several of the major fiber bundles [19]. A recent

cross-sectional study comparing adolescents (12 and 16 year olds)

to adults showed larger influences of genetic factors on fractional

anisotropy in the younger group, indicating that heritability of

white matter microstructure decreases with age, or environment

increases its influence during life [58]. In our longitudinal study we

did not find this decrease in heritability, possibly due to our

younger age, and much shorter time interval. The developmental

changes in white matter volume and microstructure were

explained by some (unknown) unique environmental factor.

Whereas unique environmental factors always include measure-

ment error, the existence of an environmental correlation (and the

fact that both measurements were obtained from a different scan)

shows that there must be some external factor influencing both

white matter growth and increase in anisotropy of fiber bundles.

Considering the growing importance of the unique environment

on children once they reach puberty, the white matter changes

may reflect adaptation of the brain at this age.
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