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Abstract

Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate
statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson
model (NPMP) is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using
the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to
December 2009 in 28 villages in Southern Benin. A NPMP regression model with ‘‘village’’ as random effect is used to test
statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages
were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts
of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and
overdispersed with important proportion of zeros (75%). The NPMP model had a good aptitude to predict the observed
values and showed that: i) proximity to freshwater body, market gardening, and high levels of rain were associated with
high vector density; ii) water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28
villages could then be ranked according to the mean vector number as estimated by the random part of the model after
adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study
area. The villages were ranked according to the mean vector density after taking into account the most important
covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to
each setting.
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Introduction

Malaria is still a major public health issue in Sub-Saharan

Africa. In 2010, this region bore 91% of the global disease death

burden estimated to 655,000 deaths [1]. Studying the risk of vector

transmission is at the basis of every survey about the importance of

malaria in a given zone. The overarching goal of vector control is

to decrease the transmission of the malaria parasite Plasmodium spp

to humans by mosquito vectors of the genus Anopheles. Among the

recommendation of the World Health Organization (WHO) to

fight malaria, the deployment of long-lasting insecticidal mosquito

nets (LLIN) and indoor residual spraying (IRS) at national scale

has shown important reductions of malaria burden although

evidences of malaria resurgence have been recorded in several

African countries [1,2].

The most common indicator to evaluate vector control

interventions such as LLIN and IRS relies on malaria transmission

through estimation of the Entomological Inoculation Rate (EIR).

EIR is the product of the Human Biting Rate (HBR; number of

bites of malaria vectors per human per unit time) and the

prevalence of Plasmodium infection in mosquitoes. HBR is usually

measured using the Human Landing Catches (HLC) counting

technique that is the method of reference to quantify the human-

vector contact [3].

In 28 villages of Southern Benin, a recent cluster randomized

controlled trial (RCT) aiming at comparing the efficacy of

combined LLIN and carbamate IRS or carbamate-treated plastic

sheeting (CTPS) with a background of LLIN coverage did not

show benefits of the combination for reducing HBR and EIR [4].

In the study area, high variations in the density of malaria vectors

were observed in time and space [5] and there were many

localities with zero mosquitoes collected during several nights.

The most ancient and popular statistical distribution used to

describe count data is the Poisson distribution that assumes

equidispersion of the counts. However, in real datasets, these

counts are often overdispersed [6–8] and there are various means

to demonstrate it [9–11]. Among the causes of overdispersion is
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the excess of zeros. Within the context of malaria vectors counts,

the excess of zeros may result from the absence of mosquitoes at

some locations (houses, village…) or during some period of time

(dry season, cold temperatures…).

To deal with such overdispersed data with excess zeros, Johnson

and Kotz [12] introduced the zero-inflated Poisson model (ZIP);

i.e., a Poisson mixture model that combines a point mass at zero

with a Poisson count distribution. Later, Lambert [13] extended

this model to allow for covariates. Another way to deal with count

overdispersion is the use of the negative binomial (NB) model or,

better, the zero-inflated negative binomial (ZINB) model con-

structed on the same principle as that of the ZIP.

Besides these well-known models, other finite mixture distribu-

tion models have been proposed (e.g., McLachlan and Peel [14])

and have been the object of numerous applications. In fact, these

models extend the previous ones; instead of considering a mixture

of two distributions as with the ZIP or the ZINB, they consider a

mixture of three or more Poisson or NB distributions. In addition,

a non-parametric approach of the maximum likelihood introduced

by Aitkin [15] has shown to be an excellent tool to allow for

overdispersion. An extension of this approach by the same author

[16] allowed its application to repeated measurements. Thus, a

non-parametric mixture of Poisson model (NPMP) seems adapted

to take into account the frequent changes in vector counts in

various sites of a study zone.

In the present work, we assessed the ability of Poisson, NB, ZIP,

ZINB and NPMP to fit the distribution of counts of malaria

vectors measured in 28 villages in southern Benin where a clinical

trial was implemented to evaluate the efficacy of vector control

interventions for malaria prevention [4]. Using a multivariate

NPMP, we introduced a classification of the villages based on the

mean vector density after adjustment for a set of environmental

and climatic covariates. Then, we assessed the relationship

between this classification and the vector interventions imple-

mented in the villages. The results of this work will help design

site-specific malaria vectors sampling.

Methods

Mosquito collection
The data analyzed in the present study stem from mosquito

collections carried out every 6 weeks between January and

December 2009 (i.e. 8 surveys) in 28 villages of the sanitary region

of Ouidah-Kpomassè-Tori (OKT) in South Benin. Of the 58

villages screened at the baseline, 28 were enrolled. The other

villages were excluded because they did not fulfill inclusion criteria

i.e. distance between two villages .2 km, population size between

250 and 500 inhabitants with non-isolated habitations and absence

of any local health care centre.

Entomological surveys were performed using the HLC

technique, on two successive nights (22:00 to 06:00) at four sites

(both indoor and outdoor) per village. Collectors were hourly

rotated along collection sites and/or position (indoor/outdoor).

Malaria vectors collected on humans were identified using

morphological keys [17]. Only Anopheles gambiae and Anopheles

funestus mosquito counts were considered in the present work

because these are the main malaria vectors in West Africa [18–20]

and practically the only present in the study area [5].

These villages were divided into four groups (seven villages per

group) where four different vector control measures were

implemented (see Corbel et al. [4] for details): i) targeted-coverage

LLIN (TLLINs) destined to protect pregnant women and children

,6 years old (the reference group); ii) universal-coverage LLIN

destined to protect sleeping units (ULLINs), iii) TLLINs plus full

IRS of carbamate every eight months (TLLIN+IRS), and ULLIN

plus full CTPS taped to the upper part of the walls

(ULLIN+CTPS).

Ethics statement
The IRD (Institut de Recherche pour le Développement) Ethics

Committee and the National Research Ethics Committee of Benin

approved the study (CNPERS, reference number IRB00006860).

The study was also registered with Current Controlled Trials,

number ISRCTN07404145. All necessary permits were obtained

for the described field studies. No mosquito collection was done

without the approval of the village chief, the owner and occupants

of the collection house. Mosquito collectors gave their written

informed consent and were treated free of charge for malaria

presumed illness throughout the study.

Demographic, geographic and environmental data
The following data were collected: the average distance (in km)

from each village to the nearest freshwater body (Toho lake), the

presence of market gardening 2 km around each village, the

presence of cattle farms inside the village, the presence of water

conveyance in the village, and the population density. The layout

(or structure) of each village was described by the distribution of its

clusters of houses, these clusters being separated by vegetated

strips. Two modalities were then considered: single-cluster vs.

multi-cluster villages. Daily rainfall data from 8 weather stations

were spatially interpolated to compute the cumulated rainfall (in

mm) and the number of rainy days in each village during the 15

days preceding each survey. The Normalized Difference Vegeta-

tion Index (NDVI) was derived from a ‘‘Satellite pour l’Observa-

tion de la Terre (SPOT-5)’’ satellite image acquired on 12/28/

2003. The mean NDVI was computed in a buffer area of 50 m

diameter around each mosquito collection site (house).

Checking overdispersion and excess of zero in the data
The mean-variance relationship regarding the number of

collected malaria vectors was analyzed graphically to explore data

dispersion. A linear relationship of slope 1 (variances equal to

means) indicated a Poisson distribution without overdispersion

whereas a linear relationship with slope .1 or a quadratic

relationship indicated overdispersion. We also assess the ‘‘excess of

zero’’ through a graphical representation of the distribution of

vector counts.

Approximation of the distribution of the data
The approximations of the distribution of the number of

collected malaria vectors by the Poisson, ZIP, NB, ZINB and

NPMP distributions were compared using the maximum likeli-

hood (ML) estimation. Poisson, ZIP, NB and ZINB models were

fitted using the function nlm [21,22] in the ‘R’ software version

2.14.0. Parameters of the NPMP model were estimated with the

function alldist [15,23] which used an EM algorithm [24]. In this

approach, the dispersion of the data is described by a probability

law that does not take into account the hierarchical structure of the

data. This is thus a ‘‘marginal’’ model. A graphical representation

of comparison results is used to show the counts as well as the

predictions given by each of the above-cited distributions.

Multivariate Analysis
Given the hierarchical structure of the data collection system,

another NPMP model was considered to allow for various

components of the variance of the counts. In this model, the

counts of malaria vectors were assessed according to environmen-

Mixture Model for Malaria Vectors Density
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tal and climatic covariates with the ‘‘village’’ as a random effect. It

is thus a ‘‘conditional’’ model (on ‘‘village’’). The latter model

allows for the following variables: average distance to Toho lake (in

km), water conveyance (0 = absence, 1 = presence), market gar-

dening (0 = absence, 1 = presence), cattle farms inside the village

(0 = absence, 1 = presence), the layout of the village (0 = multi-

cluster, 1 = single-cluster), population density (inhabitants per

100 m2), both the mean cumulated rainfall over the 8 surveys

(in mm) and the deviation from this mean at each survey, both the

mean cumulated number of rainy days over the 8 surveys and the

deviation from this mean at each survey, both the averaged NDVI

over the 4 collection houses per village and the deviation from this

average for each house and, finally, the specific collection site

(0 = inside of the house, 1 = outside of the house).

According to the current recommendation for the use of

hierarchical models, each covariate was centered on its mean

before introduction into the model [25]. Variable ‘‘survey’’ was

introduced into the model as a fixed effect. Mosquito collections

made inside or outside each house of each village were considered

as repeated measurements within that village.

In the NPMP conditional model, the number of malaria

vectorsyig collected at a given site of a given village g during a

given night i is supposed, conditionally to ‘‘the village’’, to follow a

mixture of four Poisson distribution. Each Poisson distribution has

a mean mig so that log (mig)~gig~xigbzfig. Note that xig is

the vector of values taken by the covariates, b the corresponding

fixed effects, fig the random intercept specific to each village so

that fig~ac, with probabilities pc [25]. The values taken by ac

are called ‘‘latent variables’’; c indicating each latent class, here

fixed to fourc[ 1,2,3,4f g. Hence, the density function of the model

can be expressed as f (yig)~
P4

c~1

pcfc(yig) where fc is the density

function of a Poisson distribution with mean mig. Thus, a non-

parametric mixture model may also be called ‘‘latent class model’’.

The four values exp(ac) (one value for each latent class) are the

predicted mean numbers of malaria vectors collected whenever all

the model covariates, centered on their means, are equal to zero.

Function allvc [16,23], a variant of alldist adapted for

hierarchical data, was used for the latter model implementation in

R software.

Assessing the impact of vector control strategies
For each village, a posteriori probability of belonging to each

class after adjustment on all the covariates is estimated by the

NPMP conditional model. Here, ‘‘a posteriori probability’’ means

the conditional probability for a village to belong to a given class,

given the data. For a village g and a latent classk, this probability

can be expressed: pkg~
pkP(yg kj )

P4

c~1

pcP(yg cj )

. In this expression, ygis the

Figure 1. Means and standard deviations of the number of mosquitoes collected per site and per night at each of the 28 villages of
the study.
doi:10.1371/journal.pone.0050452.g001
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vector of observations in the village g and P(yg cj ) the probability

of yg assuming membership in class c.

Hence, each village is assigned to one of the classes based on the

maximum of the a posteriori probabilities (MAP). This provides a

classification of the villages according to the average number of

malaria vectors collected at a given site over a given night after

adjustment on all the covariates.

In order to assess the impact of TLLIN, ULLIN, UL-

LIN+CTPS and TLLIN+IRS vector control strategies, the village

grouping for implementation of these vector control strategies and

the classification resulting from the NPMP conditional model were

compared using a Kruskall-Wallis test.

About the number of the latent classes
The relevance of a NPMP model also called Poisson latent

classes model, be it marginal or conditional, depends jointly on its

ability to provide a close distribution to that of the observed counts

and on its ability to assign each count one of the classes.

Essentially, two criteria contributed to the choice of the number of

classes: the closeness of the predicted values to the observed ones,

Figure 2. Mean-variance diagrams of the number of malaria vectors collected per village (Panel A), per mission (Panel B), and per
village-mission (Panel C). Panel D shows a bar diagram of the distribution of mosquito counts at each collection site (the scale of the X-axis was
limited to 14). On panels A, B and C: the dotted lines represent a linear link between the means and the variance (variance~a|mean with a = 7.4,
6.48 and 5.9 respectively); the curves represent a quadratic link between mean and variance (variance~meanzb|mean2 with b = 4.4, 8.9 and 1.1
respectively).
doi:10.1371/journal.pone.0050452.g002

Mixture Model for Malaria Vectors Density
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which is the deviance expressed under the form of a Bayesian

Information Criterion [26]; and, the ability of the model to assign

each count one of the classes, which is expressed by the Entropy

[27]. The Integrated Complete-data Likelihood (ICL-BIC) [28] is

a combination of these two criteria; precisely, the BIC plus two

times the entropy. Hence, the number of classes chosen for a latent

class model is the one that maximizes the likelihood with low

entropy equivalent to a minimum ICL-BIC.

Results

Entomological Data
Total of 2,994 malaria vectors were collected during 3,584

human-nights of mosquito collection. This corresponded to an

average HBR of 0.835 bites per human per night. Among these

vectors, 1,872 belonged to the An. gambiae complex and 1,122

belonged to the funestus Group. The density of anopheline collected

changed over space and time (Figure 1). Indeed, the mean HBR in

OKT ranged from 0.070 to 4.219 bites per human per night when

the standard deviation ranged from 0.286 to 5.812. In most

villages, high standard deviations corresponded to high means and

between surveys the number of malaria vectors collected varied.

Study of the dispersion
Village, survey, and village-survey mean numbers of malaria

vector collected per night on humans were plotted with their

corresponding variances in Figures 2A, 2B and 2C respectively.

The assumption of mean-variance equality of the Poisson

distribution was not met. Indeed, the variances were much higher

than the means and the slopes of the linear relationships were .1

showing even quadratic relationships. This indicates overdisper-

sion of the data.

Figure 3. Observed and expected proportions of mosquito counts according to Poisson, ZIP, NPMP and NB distributions.
doi:10.1371/journal.pone.0050452.g003

Mixture Model for Malaria Vectors Density
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Distribution analysis
Frequency plot of the collected malaria vectors is shown in

Figure 2D. The cases for which zero malaria vectors were

collected represented 74.7% of the total. Table 1 shows the

parameters for Poisson, ZIP, NPMP (the marginal model), NB and

ZINB distributions. Based on the Poisson distribution with a mean

Table 1. Parameters and deviance as estimated by the Poisson, ZIP, NPMP, NB and ZINB models.

Parameters

Distribution Mean (SE) Proportion (SE) Dispersion parameter 22logL

Standard Poisson 0.835 (0.015) 1 (-) 13492.470

Zero-inflated Poisson (ZIP) 9229.370

Zero-class 0 (-) 0.736 (0.008)

Poisson 3.169 (0.062) 0.264 (0.008)

Poisson mixture model with 4 latent classes
(NPMP)

7591.700

Low 0 (761026) 0.630 (-)

Median-low 0.923 (0.029) 0.296 (-)

Median-high 6.555 (0.161) 0.070 (-)

High class 24.480 (1.281) 0.004 (-)

Negative Binomial (NB) 0.835 (0.038) 1 (-) 0.156 (0.007) 7581.856

Zero-inflated negative binomial (ZINB) 7581.856

Zero-class 0 (-) 3.661026(1.761025)

NB 0.835 (0.038) 0.999 (1.761025) 0.156 (0.007)

22logL: 22 times the log-likelihood
doi:10.1371/journal.pone.0050452.t001

Figure 4. Changes in the values of the Bayesian Information Criterion (BIC), the entropy, and the Integrated Complete-data
Likelihood (ICL-BIC) according to the number of latent classes.
doi:10.1371/journal.pone.0050452.g004
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of 0.835, we would expect 43.4% of zero (Figure 3A) which is

significantly lower than that observed in the dataset. In contrast,

ZIP, NB and NPMP models well predicted the proportion of zero

(respectively 74.7%, 74.9%, and 74.7%; Figure 3). Excluding the

sites where no anopheline were collected, the ZIP model estimated

the mean number of collected anopheline per site per night at 3

but this does not solve the problem of data overdispersion. The

NPMP model suggested that, in the study area, the sites where the

anopheline counts over a single night would be generally high

(mean 24.48) were rather rare (nearly 0.4%). However, the model

estimated at 63% and 30%, respectively, the proportions of counts

with 0 and 1 as the mean number of collected anopheline per

night. The dispersion parameter estimated by the NB model was

0.156 indicating high overdispersion. Since the NB model allows

for the excess of zeros, the proportion of zeros estimated by the

ZINB model is nearly null. The NB and the ZINB models are

therefore equivalent.

There were a significant decrease of the model deviance when a

ZIP model was used instead of the standard Poisson model and

also when the NPMP was used instead of the ZIP model (Table 1).

The NB and ZINB fitted the data as well as the NPMP (deviance

were not significantly different). Figure 3 shows the bar diagrams

and the expected density probability curves of the counts with the

Poisson, ZIP, NPMP and NB models. The curves relative to the

NB and to the NPMP models are very similar and fit well the

observed data distribution. Conversely, the curve relative to the

standard Poisson model does not fit the observed frequency of

counts between 0 and 10. Aside from the proportion of zeros, the

ZIP model was not able to reproduce the observed proportions of

counts ranging from 1 to 10.

Choosing the number of latent classes
Figure 4 shows for the NPMP model conditional on ‘‘village’’,

the progress of the BIC, the entropy, and the ICL-BIC according

to the number of classes. Starting from 4 classes, the BIC became

very low. The entropy augmented together with the number of

classes. Their combination ICL-BIC was at its minimum with 4

classes. Therefore, the model with 4 latent classes was used to

assess the number of malaria vector caught on humans according

to climatic and environmental factors.

Multivariate Poisson mixture analysis
Table 2 shows the relative risk of the fixed effects as estimated

by the model. Presence of market gardening, population density,

mean cumulated rainfall over the 8 surveys, mean cumulated

number of rainy days over the 8 surveys and outdoor position were

positively associated with the number of malaria vectors caught on

human. On the other hand, distance to a freshwater body,

presence of water conveyance, presence of cattle, single-cluster

village houses, mean NDVI and deviation at each survey from

mean cumulated number of rainy days over the 8 surveys were

negatively associated with the number of malaria vectors caught

on human.

Table 3 shows the random effects of the model. These are the

predicted mean number of collected malaria vectors per night for

each of the four latent classes when all the covariates are at their

mean values. This table shows also the final classification of the

villages according to their respective MAP. The mean number of

malaria vectors collected ranged from 0.050 vectors per human

per night in the 1st class (with only one village: Hekandji) to 0.713

in the 4th class (with 8 villages).

A Kruskal-Wallis test did not show a significant association

between villages classification obtained from the model and the

villages grouping for vector control strategies (Chi2 = 2.029, p-

value = 0.566). Thus, according to HBR, a significant difference in

term of impact of vector control strategies (TLLIN, ULLIN,

ULLIN+CTPS and TLLIN+IRS) is not showed.

Discussion

Knowledge of malaria vector density in a given area is often

needed for implementing and evaluating vector control interven-

Table 2. Estimations of the relationships between mosquito density and various geographical and environmental factors in OKT
region according to the conditional NPMP model.

Level and covariate Relative Risk (95% CI)

Village

Distance to a freshwater body (per additional km) 0.885 (0.871–0.899)

Presence of water conveyance (Yes vs. No) 0.411 (0.348–0.485)

Presence of market gardening (Yes vs. No) 1.146 (1.016–1.292)

Presence of cattle (Yes vs. No) 0.817 (0.700–0.954)

Layout of the village (single- vs. multi-cluster) 0.466 (0.377–0.574)

Population density (per additional inhabitant/100 m2) 1.335 (1.079–1.651)

Mean rain quantity over all surveys (per additional mm) 1.325 (1.292–1.359)

Mean number of rainy days over all surveys (per additional day) 2.148 (1.675–2.754)

Mean NDVI (per additional grade) 0.849 (0.827–0.872)

House

Deviation from the mean NDVI of the village (per additional grade) 0.990 (0.978–1.003)

Collection site (outside vs. inside) 1.182 (1.100–1.270)

Mission

Deviation* from the mean rain quantity (per additional mm) 0.993 (0.989–0.997)

Deviation* from the mean number of rainy days (per additional day) 0.902 (0.827–0.984)

*Difference between the mean value over all surveys and the value at a given survey
doi:10.1371/journal.pone.0050452.t002
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tions. This requires vector counts at several sites of the area and

statistical analyses of these counts.

McCullagh and Nelder [29] asserted that whenever the variable

of interest is a count, its distribution is often an overdispersed

Poisson distribution. The present data are another illustration of

this assertion. The first part of this work aimed at comparing

which distribution among Poisson, NB, ZIP, ZINB and NPMP

better fit on counts of malaria vectors recorded using the HLC

technique. Both NB and NPMP models dealt with the excess of

zero, with overdispersion and provided the best predictions of the

distribution of the observed data. However, unlike NB model, the

NPMP does not do any further assumption about the distribution

of the means of malaria vectors counts. Besides, the hierarchical

structure of the observed data was taken into account by a NPMP

model conditional on ‘‘village’’. Based on a posterior probability

criterion, the NPMP model allowed ranking the villages in four

latent classes according to the mean of vector density after

adjustment on environmental and climatic covariates. The optimal

number of latent classes was established on conventional criteria.

Furthermore, the part each covariate played in the variability of

malaria vector density in the area was estimated by the fixed

effects of the model. However, the present study could not take

into account all the possible hierarchical levels of the data because

of the limits of software R in dealing with latent classes. Indeed,

function allvc of package ‘‘npmlreg’’ cannot deal with more than

two levels. We considered thus the catches at all sites of the same

village as repeated measurements of the same variable. Therefore,

we were not able to take into account the possible correlation

between the counts from houses within the same village [30].

‘‘Human bait’’ is another level that could induce correlation in the

data but there is no sufficient information about all mosquito

collectors. Besides, the rotation of the collectors during data

collection reduces considerably such a correlation. ‘‘Season’’ could

be another possible level of correlation; it was taken into account

through rainfall data which is the main seasonal factor in the

context of malaria vector density.

Moreover, the numbers of collected vectors during the 8 surveys

are assumed to be uncorrelated although one may speculate about

a correlation structure along time. Nevertheless, the correlation

between mosquito counts from successive surveys is deemed to be

very low because the time span between two successive surveys is 6

weeks whereas the lifespan of the vectors is only 3 to 4 weeks.

Studying the correlation between counts from two nights during

the same survey may reveal interesting results.

Table 3. Classification of the 28 villages according to the maximum a posteriori probability (MAP) of belonging to each class after
adjustment on all other covariates.

Village Latent class Mean number of mosquitoes
Proportion
of villages MAP

Hekandji 1 0.050 0.036 0.992

Aidjedo 2 0.137 0.218 0.997

Assogbenou 1

Ayidohoue 0.990

Dokanmey 0.998

Hounkponouhoue 1

Abenihoue 1

Adjame 3 0.324 0.466 1

Amoulehoue 1

Adjahassa 0.924

Kindjitokpa 1

Vidjinnagnimon 1

Guezohoue 1

Hla 1

Agokon 0.968

Dekponhoue 0.998

Lokohoue 1

Todo 1

Wanho 1

Zoume 0.994

Agouako 4 0.713 0.280 0.775

Hinmadou 0.925

Manguevie 0.925

Satre 0.925

Soko 0.925

Tanto 0.925

Tokoli 0.925

Agadon 0.925

doi:10.1371/journal.pone.0050452.t003
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In southern Benin, both spatial and temporal heterogeneities in

vector densities were mentioned by Djènontin et al. [5]. This can

be explained by some factors we found associated with the density

of malaria vectors. Firstly, cumulated rainfalls during the 15 days

preceding the catches were positively associated with vector

density as previously reported in Benin [30]. Moreover, the mean

number (over all surveys) of rainy days was positively associated

with the vector density whereas the deviation at each survey from

this mean was negatively associated with the vector density. This

suggested that high frequency of rainy events might flush out

vectors breeding sites [31]. The vector density was lower in villages

with water supply; this could be due to the absence of water

storages that could have provided breeding sites for malaria

vectors [32,33]. Moreover, the presence of irrigated market

gardening could have provided breeding sites [34,35] and then,

increased the density of vectors in villages closed to this activity as

previously observed in Benin [36]. Permanent freshwaters of the

Toho Lake could also have provided breeding sites for both An.

funestus and An. gambiae [37–39] that are both present in our study

area [5]. This explains why the vector density decreased when

moving away from freshwater bodies as showed by Amek et al.

[40] in Western Kenya. The presence of cattle was negatively

correlated with vector density suggested that a part of the vector

population could have bite on cattle instead of human. More

vectors were caught in multi-cluster villages than in single-cluster

villages. This might indicate that a multi-cluster village layout

might increase the attractiveness of the village for malaria vectors

because of the extra vegetation surrounding houses. Thus, the

attractiveness of a multi-cluster village may be higher than that of

a single-cluster village of same size. Catches were also more

abundant outside than inside the houses. This indicates an

exophagic behavior of malaria vectors in the study area. As

suggested by two studies in the OKT region [4,41], a part of the

exophagic population of vectors could have avoided indoor

residual insecticides.

One unexpected finding of the present study was that the NDVI

was negatively correlated with the density of malaria vectors. This

finding contrasts with several studies that used satellite imagery at

a lower resolution [42,43] but agrees with a study carried out in

Burkina Faso that used the same SPOT images than ours [44]. In

this study, the authors found a negative relationship between the

larval productivity in ponds and the NDVI calculated from high

resolution SPOT images. Indeed, a high NDVI might reflect the

presence of submerged vegetation or water covered with

vegetation that are usually related to very high Anopheles larval

densities [44–46]. Moreover, the NDVI usually decreases with

freshwater and unvegetated surfaces likely to provide breeding

sites for the malaria vectors [37,47]. Nevertheless, the discussion

about the NDVI effect can be more complex because of the co-

existence in the region of two major malaria vectors with different

breeding-site requirements.

In this work, villages were ranked into four classes of increasing

mean malaria vector density but we were not able to find any

relationship between this grouping structure and the vector control

intervention implemented in the village. This confirms the finding

of Corbel et al. [4] who demonstrated with the same data, that

vector density was not significantly different between treatment

arms (TLLIN, ULLIN, TLLIN+IRS, and ULLIN+CTPS).

In conclusion, we found that the NPMP model was useful to

assess the relationships between vectors density and villages or

environmental characteristics. It might therefore be an efficient

tool to compute risk maps of the host-vector contact. Moreover,

the NPMP model provided a classification of the villages after

taking into account some covariates. Such a classification could be

used at a pre-study step to improve the study design of mosquito

collection and adapt the sampling effort according to the village

characteristics, especially in region with high spatial and temporal

heterogeneities of mosquito density, like in the OKT region.

Furthermore, NPMP model could help in the study design of RCT

when a stratified sampling is needed. The same model may be

adapted and used in other settings for the study of the distribution

of vectors of other diseases.
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