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Abstract

Hematopoietic stem cells (HSCs) are probably the best-studied adult tissue-restricted stem cells. Although methods for flow
cytometric detection of phosphoproteins in hematopoeitic progenitors and mature cells are available, analogous protocols
for HSC are lacking. We present a robust method to study intracellular signaling in immunophenotypically-defined murine
HSC/progenitor cell (HPC)-enriched populations. Using this method, we uncover differences in the response dynamics of
several phosphoproteins representative of the Ras/MAP-Kinase(K), PI3K, mTOR and Jak/STAT pathways in HSC/HPCs
stimulated by Scf, Thpo, as well as several other important HSC/HPC agonists.
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Introduction

HSCs self-renew and give rise to all hematopoietic cells. Adult

murine HSCs can be prospectively enriched by their low expression

of multiple lineage markers (LIN2) including CD127, and high

expression of c-Kit (hereafter, Kit) and Sca-1, as well as several other

markers [1]. HSC with long-term (LT) repopulating activity (CD342)

can be further purified from short-term (ST)-HSC and multipotent

progenitors (MPP) (CD34+) using CD34 antibodies. MPPs give rise to

lineage-restricted progenitors with minimal self-renewal and more

restricted differentiation capacities, including common lymphoid

progenitors (CLPs; LIN2c-KitloSca-1loCD34+CD127+), lymphoid-

primed MPPs (LMPPs; LIN2c-Kit+Sca-1+CD34+Flt3+CD127+/2),

and common myeloid progenitors (CMPs) [1]. CMPs (LIN2c-

Kit+Sca-12CD34+FccRII/IIIloCD1272) yield granulocyte/mono-

cyte progenitors (GMPs: LIN2c-Kit+Sca-12CD34+FccRII/

III+CD1272) and megakaryocyte/erythroid progenitors (MEP-

s:LIN2c-Kit+Sca-12CD342FccRII/III2CD1272), which ultimately

give rise to all red and white blood cells, including platelets. The

LIN2c-Kit+Sca-1+ (LSK) fraction of the bone marrow (BM) is

enriched for HSCs and MPPs, whereas the LIN2c-Kit+Sca-12 (LK)

fraction contains CMPs, GMPs and MEPs [1].

Much progress has been made in determining the physiological

function of HSCs/HPCs. Less is known about their biochemical

responses to various agonists, largely because traditional ap-

proaches (e.g., immunoblotting) are not applicable to such rare

cells. Recently, murine HSC purified by Fluorescence-Activated

Cell Sorting (FACS) were stimulated ex vivo, and changes in their

phosphoprotein levels were visualized by immunofluoresence [2].

Although this approach provides some insights into HSC signaling

and also permits the analysis of protein subcellular localization, it

only allows analysis of one cellular population at a time and is

subject to the limitations of immunofluorescence (e.g., difficulties

in quantification, photobleaching, etc.). BM cells also have been

stimulated ex vivo, then fixed, permeabilized, immunostained for

surface and intracellular markers, and analyzed by FACS [3].

However, this method only permits analysis of the highly

heterogeneous LIN2Kit+ population. There is one report of

intracellular staining of LIN2 cells that were first surface-stained

for Sca-1 and Kit, and then fixed and saponin-permeabilized with

a commercial kit [4]. However, this permeabilization agent may

not be optimal for HSC/HPC signaling studies (see below).

We have optimized conditions to analyze signal transduction

pathways in phenotypically-defined HSC/HPC subsets. We

focused on two well-characterized agonists, stem cell factor (Scf)

and thrombopoietin (Thpo), as well as several other important

HSC/HPC growth factors and cytokines, and demonstrate robust

responses in several well-studied signaling pathways. Using our

approach we observed signaling cross-talk between the MEK and

mammalian target of rapamycin (mTOR) pathways, converging

on ribosomal protein S6 phosphorylation in HSC/HPC.

Results

Fixation conditions for retaining surface antigenicity of
sorted Lin2 cells

We sought a robust protocol for multi-parametric, quantitative

analysis of intracellular signaling in phenotypically-defined murine

stem/progenitor cell populations [5–7]. Previous studies showed
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that many extracellular proteins maintain sufficient antigenicity for

FACS after paraformaldehyde (PFA) fixation and alcohol-based

permeabilizaton [5], and established that alcohol- (or ketone-)

based permeabilization is superior to detergents for preserving

intracellular phosphoproteins [6]. A major barrier to applying

these methods to HSCs/HPCs arises from the requirement that

multiple lineage markers be used to enrich for the LIN2 HSC/

HPC compartment (Materials and Methods). Some important

extracellular antigens lose antigenicity after fixation/permeabiliza-

tion [5], and contamination of the LIN2 compartment with LIN+

cells rendered artifactually ‘‘LIN2’’ by fixation/permeabilization

could seriously confound analysis. We decided to enrich for HSC/

HPC by first removing LIN+ and dead cells (propidium iodide

[PI]+) by FACS (Figure 1A and B). We avoided positive selection

with HSC/HPC-specific antigens to limit potential antibody-

triggered signaling events [8]. LIN2 cells represent a minority of

murine BM (,15%), and we obtained this population at

reasonably high purity with an average yield of 5.756105 (6)

2.386105 cells/mouse (mean6standard deviation [SD]; n = 13

independent experiments; Figure 1B). A minimum of 16105

LIN2PI2 cells, comprising ,100 LSK and .200 LK cells after

fixation/permeabilization, is sufficient for analysis of signaling

events following brief ex vivo culture and agonist stimulation

(Figure 1A and data not shown).

We next sought conditions that preserve surface antigens on

HSC/HPC. Consistent with previous reports [3,5], Kit staining

was maintained after PFA fixation and permeabilization with

multiple agents (Figure 1C and S1). However, Sca-1 antigenicity

was destroyed after PFA fixation and methanol permeabilization

[3], and significantly reduced following PFA fixation and

permabilization with either ethanol, methanol, isopropranol,

Triton (0.50%), or two concentrations of saponin. Saponin

permeabilization also increased non-specific binding (Figure S1).

There was considerable retention of Sca-1 antigenicity on

LIN2Kit+ cells following acetone or 0.10% Triton treatment

(Figure 1C and S1), although the median fluorescent intensity

(MFI) of these cells relative to untreated or PFA-fixed cells was

reduced. After adjusting the gating to account for the reduced

MFI, a distinct population of LSK cells could still be identified.

Acetone was superior to Triton in preserving Sca-1 antigenicity (as

indicated by the significantly higher MFI) in the LIN2Kit+

population (Figure S1), and was reported previously to provide

superior preservation of intracellular phosphoprotein epitopes

(compared to detergents) [6]; thus, we used acetone in all

subsequent experiments.

Sca-1 staining on LIN2Kit+ cells was specific, as BM from

BALB/c mice, which express low/no levels of Sca-1 [9], showed a

substantially reduced LSK population compared to the C57BL/6

BM used above and in all other experiments (Figure 1C). The

percentage of cells retaining CD34 antigenicity (and the CD34

MFI) also was comparable in untreated and PFA-fixed/acetone-

permeabilized cells (Figure 1D), allowing discrimination of LT-

HSC (CD342) from ST-HSC/MPP (CD34+) [10] and GMP/

CMP (CD34+) from MEP (CD342)-enriched populations within

the LK compartment [11]. We also obtained satisfactory staining

for fms-like tyrosine kinase 3/fetal liver kinase 2 (Flt3/Flk2) and

CD48, either of which can further be used to discriminate between

HPCs, MPPs and LT/ST-HSC [12–14] (Figure S2, Materials and

Methods S1). However, we could not obtain conditions for

FccRII/III (PE-Cy7-conjugate of clone 93) staining, which would

allow discrimination of GMPs from CMPs, nor for CD150/Slam

(with either PE or PE-Cy7 conjugates of clone TC15-12F12.2),

which, like CD34 or Flk2/Flt3, also can discriminate LT-HSC

from MPPs (data not shown).

Detection of agonist-evoked changes in intracellular
phosphoproteins in HSC/HPC

We stimulated LSK, LK and LIN2Kit2Sca-12 (LDN) cells

with two agonists that have well-established roles in HSC/HPC

physiology, Scf or Thpo, and asked if intracellular phosphopro-

teins could be detected. The receptor for Scf, Kit, is expressed on

all HSC/HPC (see above), and the Thpo receptor, c-Mpl, is

expressed (at the mRNA level) in HSC/CMP/MEP but not GMP

[11]. Sorted LIN2/PI2 cells were cultured briefly in low serum-

containing media for ,1 hour (Figure 1A, Materials and

Methods), stimulated for 5 min with Scf (100 ng/ml) or Thpo

(50 ng/ml), fixed and permeabilized as above, stained simulta-

neously for surface and intracellular antigens, and analyzed by

flow cytometry (Figure 2A). As representatives of major cytokine

and growth factor signaling pathways, we probed for phosphor-

ylated(p)-ERK1/2 (Thr202/Tyr204), p-AKT (Ser473), p-ribo-

somal protein S6 (Ser235/236), p-STAT5 (Tyr694), and p-

STAT3 (Tyr705).

Following Scf treatment, robust pERK and pS6 responses were

observed in LSK and LK, but not LDN cells (Figure 2A;

quantified in Figure S3). The pERK response was specific, as it

was eliminated by pre-treating cells with the MEK inhibitor

UO126 (Figure 2A). S6 can be phosphorylated on Ser235/236 as

a consequence of mTOR or ERK activation [15]. Scf-evoked

phosphorylation of these residues at 5 min in either LSK or LK

cells was primarily UO126-, not rapamycin-sensitive, and

therefore MEK, rather than mTOR-dependent (Figure 2A). We

also observed a small, PI3K-dependent response, in pAKT

(Figure 2A). We failed to detect significant Scf-evoked increases

in STAT3 or STAT5 phosphorylation in any of the cell

populations examined (Figure 2A). Although this could indicate

a lower sensitivity for detecting pSTAT than other p-epitopes,

phosphorylation of both STAT proteins was detected in response

to Thpo, as well as several other agonists (see below).

Thpo also induced a strong increase in pERK and pS6 in LSK

cells. Unlike Scf, which affected LSK and LK populations equally,

Thpo-evoked responses were lower in LK cells (Figure 2A). Thpo

also evoked a small, but specific, increase in pAKT (Figure 2A).

Unlike Scf, Thpo induced significant increases in pSTAT5 and

pSTAT3 in LSK cells and in pSTAT5 alone in LK cells

(Figure 2A). Consistent with our findings, Thpo-evoked increases

in pAKT, pSTAT5 and pSTAT3 were observed previously in

LSK CD342 cells using immunofluorescence-based assays [2,16].

Treatment with either Scf or Thpo and/or various kinase

inhibitors had no effect on surface marker antigenicity in either

cell population (Figure S4).

We also assessed phosphoprotein responses to other agonists

commonly used ex vivo in HSC/HPC assays and culture

conditions. Flt3 ligand (Flt3L) evoked strong increases in pERK

and pS6 in most LSK cells and a minority of LK cells, and a

smaller response in pAKT levels in LSK cells (Figure 2B;

quantified in Figure S5). Like Scf, also a receptor tyrosine kinase

agonist, Flt3L failed to evoke detectable changes in STAT

phosphorylation (Figure 2B). Interleukin-3 (IL-3) elicited stronger

responses in LK cells than in LSK cells, and increased pERK, pS6,

and to a lesser extent pSTAT5 (Figure 2B and S5). Granulocyte/

macrophage colony-stimulating factor (Gm-csf) evoked small

increases in pERK, pS6 and pSTAT5, predominantly in LK

cells, consistent with Gm-csf receptor levels being detected in

GMP [17] (Figure 2B and S5). In both LSK and LK cells, IL-6

only evoked STAT3 phosphorylation with no changes in any of

the other phosphoproteins analyzed (Figure 2B and S5).

Using CD34 staining, we also analyzed signaling responses in

more refined LSK/LK subsets (Figure 3, S6, and S7). Scf evoked

Signal Transduction in HSC/HPC
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Figure 1. Surface marker expression in paraformaldedyde (PFA)-fixed (Fix), acetone-permeabilized (Perm) LIN2/PI2 cells. A,
Schematic showing approach for enriching HSC/HPC populations and analyzing intracellular (IC) and extracellular (surface) antigens. B, Murine BM
cells were stained with LIN markers and PI. ‘‘Primary Sort’’ indicates typical gates for LIN2/PI2 cells after debris and cell clumps were gated using
forward scatter/side scatter (FSC/SSC). ‘‘Re-analysis’’ represents cells analyzed for LIN/PI staining immediately after sorting. Numbers indicate
percentage (6) standard deviation (SD) (n = 5) of LIN/PI-stained BM cells before and after sorting. C, Cells were sorted as in (B), incubated in vitro at
37uC for ,1 hour in 2% FBS/IMDM, and either left untreated, fixed with 1.5% PFA without permeabilization, or fixed with PFA and subsequently
permeabilized with ice-cold ,100% acetone. Cells were then stained with Kit (APC-conjugate) and Sca-1 (PE-conjugate) antibodies and analyzed with
a flow cytometer. Shown are pseudocolor dot plots and gating schemes, along with staining of BM from BALB/c mice, which express low levels of
Sca-1 [9]. The percentage of the parental gate 6SD from 4 independent experiments is indicated. LK, LIN2Kit+Sca-12, LSK, LIN2Kit+,Sca-1+, LDN,
LIN2Kit2Sca-12. A minimum of 2,500 events was collected (not counting cells with high SSC and low FSC, gated as in panel (B), and hereafter, termed

Signal Transduction in HSC/HPC
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Figure 2. Differential responses of defined LIN2 populations to various agonists. A, LIN2/PI2 BM cells were sorted and incubated in vitro
in 2% FBS/IMDM for ,1 hour. Where indicated, cells were pre-incubated with inhibitors for 30 minutes–1 hour prior to stimulation for 5 minutes
with the indicated agonists (100 ng/ml Scf or 50 ng/ml Thpo). Cells were fixed immediately, permeabilized, washed several times and stained for
extracellular antigens (as in Figure 1) and the indicated phosphoproteins. Data are presented as the log of fluorescence intensity on the x-axis and the
% maximal value on the y-axis, and are representative of at least 2–3 independent experiments (See Figure S3 for quantification of the changes in MFI
in response to the various treatments). Minima of 3,700 and 1,300 FSC/SSC-gated events were collected for the Scf and Thpo experiments,
respectively. UO: 10 mM UO126 for 30 minutes, LY: 20 mM Ly294002 for 30 minutes, R: 100 nM rapamycin for 30 minutes, JI,:1 mM Jak inhibitor I for
1 hour. (See text and Materials and Methods for the specific phosphorylation sites interrogated on each phosphoprotein). B, Cells were treated with
the indicated agonists (50 ng/ml Flt3L, 10 ng/ml IL-3, 20 ng/ml Gm-csf, 20 ng/ml IL-6) for 5 minutes and processed as in (A). Data are displayed as in
(A) and are representative of at least 2 independent experiments. A minimum of 2,700 FSC/SSC-gated events was collected (See Figure S5 for
quantification of the responses to the various treatments).
doi:10.1371/journal.pone.0003776.g002

‘‘FSC/SSC-gated events’’). D, LIN2/PI2 cells were left untreated or fixed, permeabilized, and stained for Sca-1 and Kit (as above), as well as CD34
(Pacific Blue-conjugate). Shown are pseudocolor dot plots, contour plots, and the percentage of the parental gates (from one of several experiments).
A minimum of 1,500 FSC/SSC-gated events was collected. CD34 gates were set according to fluorescence minus one controls (data not shown). LT,
long-term HSC, MPP, multipotent progenitors, GMP, granulocyte/monocyte progenitors, CMP, common-myeloid progenitors, MEP, megakaryocyte/
erythroid progenitors.
doi:10.1371/journal.pone.0003776.g001
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Figure 3. Detection of phosphoproteins in CD34-defined LSK/LK subsets. A, Cells were treated as in Figure 2A and gated for CD34
expression and pERK (Thr202/Tyr204) levels. Contour plots and percentage of parental gates are shown from a representative experiment performed
at least twice. Minima of 6,000, 4,700, and 2,700 FSC/SSC-gated events were collected for the Scf, Thpo, and other agonist experiments, respectively.
Using CD34-gated HSC/HPC subsets permit analysis of signaling events in more discretely defined HSC/HPC populations. B, Cells were treated with
Thpo for 5 minutes, processed as described above, and stained simultaneously for surface markers, pS6 (Ser235/236), and pSTAT5 (Tyr694) in the
indicated LSK and LK subsets (gated as in Figure 1D). Data are representative of 2 independent experiments, with a minimum of 7,400 FSC/SSC-gated
events collected. Note the ability to simultaneously detect multiple phospho-epitopes in defined HSC/HPC subsets.
doi:10.1371/journal.pone.0003776.g003
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nearly uniform ERK phosphorylation in LSK and LK subsets. In

contrast, Thpo responses were more heterogeneous. Most LSK

cells increased pERK levels in response to Thpo, yet a substantial

minority of CD34+/CD342 LSK cells did not respond (Figure 3A).

The response to Thpo in LK cells was also heterogeneous, with

only minor fractions of CD34-positive and -negative cells showing

activation (Figure 3A). These findings are consistent with

expression of c-Mpl on CD34+ CMPs and CD342 MEPs [11].

Flt3L also evoked a heterogeneous response in LSK and LK cells.

In both, LSK and LK cells, elevated Flt3L-evoked pERK levels

were mostly detected in CD34+ cells, although some of these cells

showed no increase in pERK (Figure 3A and S2). IL-3-evoked

phosphorylation of ERK was equivalent in CD34+ and CD342

LSK cells, but was stronger in CD34+ LK cells (as opposed to

CD342 cells). In contrast, Gm-csf responses were more apparent

in LK cells, with a subset of CD34+ LK cells responding

(Figure 3A) [17]. Other phosphoprotein signaling responses

measured in LSK/LK CD34 subsets are presented in Figure S6

and S7. Finally, by using antibodies to pS6 and pSTAT5, we

found that several phosphoproteins can be quantified simulta-

neously in single cells from all of the LSK and LK CD34 subsets

tested (Figure 3B).

Kinetics of signaling events in HSC/HPC
Our initial analyses were performed to assess the selectivity and

sensitivity of our protocol and focused on an early time point

(5 minutes), which would presumably reveal strong responses and

be less influenced by pathway cross-talk. Subsequently, we

characterized later responses in several phosphoproteins. Scf-

evoked ERK phosphorylation (Thr202/Tyr204) was elevated

5 minutes post-stimulation, rapidly declined by 15 minutes and

remained at baseline levels for at least 30 minutes post-stimulation

in LSK and LK cells (Figure 4A and data not shown). We

observed similar kinetics of response in pERK in response to Thpo

(data not shown). Scf- and Thpo- evoked S6 phosphorylation

typically peaked by 5 minutes post-stimulation in both LSK and

LK cells, declined gradually starting at 15 minutes, and returned

to near-baseline levels at 30 minutes for Thpo and 1 hour for Scf

(Figure 4B). Scf-evoked pS6 responses were significantly higher

than Thpo-evoked responses in LSK and LK cells throughout the

time course (Figure 4B). The combination of Scf and Thpo did not

lead to an enhanced pS6 response relative to Scf treatment at most

time points in either LSK or LK cells (Figure 4B). However, S6

phosphorylation was sustained significantly in LSK, but not LK

cells, when both agonists were used compared to either agonist

alone (Figure 4B; Fold change in MFI at 60 minutes with

Scf+Thpo: 7.0762.14; Scf alone: 1.6260.13 p = 0.04; Thpo

alone: 1.4760.15, p = 0.04).

As noted above (Figure 2 and S3), pSTAT5 levels were higher

in Thpo-stimulated LSK cells, compared to Scf-stimulated cells.

These levels appeared to peak at 15 minutes post-Thpo stimula-

tion, and remained elevated slightly even at 60 minutes in LSK

cells (Figure 4B). Scf did not affect STAT5 phosphorylation

appreciably over this time course either alone or in combination

with Thpo treatment (Figure 4B).

Differential control of S6 phosphorylation at Ser235/236
in HSC/HPC

Scf-evoked phosphorylation of ribosomal protein S6 at Ser235/

236 at 5 minutes was completely sensitive to MEK inhibition and

insensitive to mTOR inhibition (Figure 2A and S3). However, S6

phosphorylation remained elevated at 15 minutes post-Scf addi-

tion, whereas pERK levels declined rapidly after 5 minutes

(Figure 4A and B). At 15 minutes post-Scf addition, pS6 levels

were both MEK- and mTOR-dependent in LSK and LK cells, as

the fold change in MFI for pS6 was reduced by either UO126 or

rapamycin pre-treatment. These data are similar to previously

reported results on mouse and human cell lines [15,18], and

provide proof of principle for the utility in pathway analysis of our

phosphoflow protocol in HSC/HPC-enriched populations.

Discussion

We have developed a protocol that utilizes the multi-parametric

and quantitative attributes of FACS to examine multiple phosphor-

ylation events at the single cell level in highly purified HSC/HPC

populations. Previous studies have only been able to analyze

signaling events in bulk hematopoietic progenitors by flow

cytometry [3] or one cellular parameter at a time by immunoflu-

orescence-based techniques [2]. Although still limited by low target

cell numbers and loss of a significant proportion of the starting

material post fixation/permeabilization and washing steps, our

protocol permits the simultaneous analysis of multiple cellular

(HSC, MPP, GMP/CMP, MEP), and intracellular parameters in

HSC/HPC, akin to studies of more mature hematopoietic cells [6].

Intracellular signaling networks in HSC/HPC have remained

largely unexplored territory, mostly due to the rarity of these cell

populations. Here we have analyzed signal transduction responses

to several HSC/HPC agonists, including Scf and Thpo, both of

which are important in vivo for HSC function and can promote

survival and enhance the proliferation of HSC/HPC ex vivo [2,19–

23]. Although Scf elicited rapid responses in some intracellular

pathways that we interrogated (Ras/MAPK, PI3K/AKT) in all of

the HSC/HPC cellular subsets we analyzed, Thpo stimulation

profiles were stronger in HSC/MPP (compared to GMP/CMP or

MEP) and consisted of the activation of a broader array of

intracellular pathways (Ras/MAPK, PI3K/AKT, JAK/STAT).

Other agonists, such as Flt3L, appeared to elicit stronger responses

in LSK compared to LK cells, whereas Gm-csf elicited stronger

responses in LK cells. These differences in response could reflect a

heterogeneous expression of receptors in LSK and LK cells, as

well as differences in the intrinsic sensitivity to these agonists

between populations. We detected a significant synergistic effect of

Scf and Thpo relative to either treatment alone on pS6 levels in

LSK, resulting in a sustained pS6 response (Figure 4B). It is

tempting to speculate that the reason for biological synergy (in

terms of colony formation or proliferation/survival of HSC/HPC)

previously observed between Scf and Thpo [2,19–21] reflects

sustained Ras/MAPK and mTOR signaling, although further

genetic- or pharmacology-based biological assays are required to

explore this point. Recent studies have demonstrated that both

Thpo and Kit are required to maintain the steady-state pool of

adult quiescent HSC [22,24]. While STAT5 plays a significant

role in HSC function [16,25,26], the role of members of the Ras/

MAPK or mTOR pathway in HSC biology remains largely

unexplored. Our data suggest that these pathways likely play a role

downstream of agonist stimulation in HSC/HPC.

We also simultaneously assessed responses in pS6/pSTAT5 in

CD34-LSK and LK subsets (Figure 3B). In all populations

analyzed, approximately half of the cells respond to Thpo

stimulation by elevating both pS6 and pSTAT5, but the rest only

elevate pS6 (Figure 3B). This could reflect the relative hypersen-

sitivity of the pathways downstream of Thpo leading to S6

phosphorylation over signaling to STAT5, lower sensitivity of our

conditions for detecting pSTAT5, or intrinsic heterogeneity in the

cell types present in these compartments. Regardless, the

physiological relevance of this heterogeneity in signaling responses

merits further investigation.

Signal Transduction in HSC/HPC
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Figure 4. Kinetic and pathway analysis in HSC/HPC subsets. A, Cells were treated with Scf for the indicated time in minutes (min) and
processed as above. Levels of pERK were monitored and normalized to untreated controls in the indicated populations (Fold D MFI). Data represent
the mean of two independent experiments 6SD. B, Cells were treated for various times (min) with the indicated agonists and levels of pS6 (Ser235/
236) and pSTAT5 (Tyr694) in the HSC/HPC subsets were quantified. Data are normalized to untreated controls in each indicated population (Fold D
MFI). Data points represent the average from 4 independent experiments (except for the Scf+Thpo 30 minute time point, which is from 3
experiments) shown 6SEM. (*P,.05). Red squares, Scf, blue triangles, Thpo, green circles, Scf+Thpo. C, Cells were treated with Scf and the indicated
inhibitors (Drug) over the depicted amount of time (min) and pS6 (Ser235/236) levels were monitored in LSK and LK cells. Levels of pS6 were
quantified as above, and the means of at least 4 independent experiments 6SEM are shown. (*P,.05, **P,.01). UO, UO126, R, Rapamycin.
doi:10.1371/journal.pone.0003776.g004
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Our approach can be used along with selective inhibitors to

examine pathway-dependencies. For example, our analysis of Scf-

evoked S6 phosphorylation in primary HSC/HPC is largely in

agreement with that of Roux et al. [15], who demonstrated that

serum-evoked S6 phosphorylation at Ser235/236 in human cell

lines (HEK 293) is dependent on an early MEK-dependent

pathway (through RSK) and a later MEK- and mTOR-dependent

pathway. Our data are also consistent with the Mek-inhibitor

sensitivity of Ser235/236 phospohorylation in mouse embryonic

fibroblasts doubly deficient for the mTOR downstream kinases

S6K1/2 [18]. Our results suggest a model in which Scf stimulation

leads to ERK activation that likely leads to RSK1/2 activation

and S6 phosphorylation at Ser235/236 at 5 minutes post

stimulation. At 15 minutes, S6 phosphorylation, is still partially

UO126- and rapamycin- sensitive, although levels of pERK have

returned to baseline at this time point. ERK activation also can

lead to TSC2 phosphorylation and inactivation [27]. Our data

suggests the intriguing possibility that ERK mediated TSC2

inactivation is required along with mTOR-dependent phosphor-

ylation of S6 to sustain high levels of pS6 in HSC/HPC. Direct

testing of this model will be possible with the availability of

appropriate phosphospecific antibodies.

Finally, our protocol should be amenable to the study of signal

transduction abnormalities in leukemia stem cells (LSC), as these

cells often share phenotypic similarities with normal HSC/HPC

[17,28]. The effects of drugs that may affect deregulated signal

transduction pathways in leukemia can be readily tested in cell

populations expressing surface epitopes examined in this study.

Materials and Methods

Antibodies, reagents
Lineage-specific antigens were stained with the following

antibodies, all conjugated to PE-Cy5: CD3e (145-2C11, BioLe-

gend, San Diego, CA), CD4 (RM4-5, eBioscience, San Diego,

CA), CD8a (53-6.7, BioLegend), CD19 (6D5, BioLegend),

CD45R (RA3-6B2, eBioscience), CD127 (A7R34, eBioscience),

Ly-6G (RB6-8C5, eBioscience), and Ter119 (TER119, BioLe-

gend). Antibodies against c-Kit (APC-conjugated, 2B8,

eBioscience), Sca-1 (PE-conjugated, D7, eBioscience) and CD34

(Pacific Blue conjugated, RAM34, eBioscience) were also used.

The following monoclonal antibodies were used to detect

intracellular phosphoproteins: pERK [Thr202/Tyr204] (Alexa

Fluor [Ax] 488-conjugated, E10, Cell Signaling, Danvers, MA),

pAKT [Ser 473] (Ax488-conjugated, 193H12, Cell Signaling),

pS6 [Ser235/236] (Ax488-conjugated, D57.2.2E, Cell Signaling),

pSTAT5 [Tyr694] (PE-Cy7- conjugated, 47, Becton Dickinson

[BD] Biosciences, San Jose, CA), and pSTAT3 [Tyr705] (Ax488-

conjugated, D3A7, Cell Signaling). UO126, Ly294002, and Jak

Inhibitor I were purchased from Calbiochem (La Jolla, CA).

Rapamycin was purchased from Cell Signaling. Recombinant

murine forms of Scf, Thpo, Flt3L, IL-3, Gm-csf and IL-6 were

purchased from Peprotech (Rocky Hill, NJ) and dissolved in

0.10% BSA/PBS. PFA was purchased from Electron Microscopy

Sciences (Hatfield, PA).

Cell preparation and FACS
BM was harvested from both limbs of 8–12-week-old C57BL/6

or BALB/c mice (Charles River Laboratories, Wilmington, MA)

euthanized by CO2 asphyxiation, followed by cervical dislocation,

flushed into cold 2% FBS/IMDM and passed through a 40 mm

cell strainer (BD Falcon). Cells were collected by centrifugation,

and red blood cells were lysed in 0.16 M NH4Cl on ice. Cells were

then washed, centrifuged, resuspended in 400 ml of cold 2% FBS/

IMDM, and stained with saturating levels of antibodies against the

above lineage markers for ,15 minutes on ice. After washing, cells

were passed through a 40 mm cell strainer into 5-ml polypropylene

round-bottom tubes (BD), and stained with 1 mg/ml PI (Invitro-

gen, Carlsbad, CA). LIN2/PI2 cells were purified using a

FACSAria (BD). All mouse studies were approved by our

Institutional Animal Care and Use Committee.

Cell treatment and staining
Cells were fixed, permeabilized, and stained essentially as

described previously, but using PFA fixation, followed by

permeabilization with acetone [5,6]. Sorted cells were placed into

Eppendorf tubes, pelleted at 6,000 rpm on a benchtop centrifuge,

and resuspended in 2% FBS/IMDM. A minimum of 16105 cells

was aliquoted into Eppendorf tubes. After fixation, permeabilizea-

tion, staining and several washes, there is considerable cell loss.

Staining the above minimum of cells ensures that adequate events

are acquired during re-analysis for statistically meaningful results

(e.g., ,100 LSK cells, .200–300 LK cells). Where indicated, cells

were treated with various drugs and/or agonists (5 minutes with

100 ng/ml Scf, 50 ng/ml Thpo, 50 ng/ml Flt3L, 10 ng/ml IL-3,

20 ng/ml Gm-csf, or 20 ng/ml IL-6) at 37uC in a humidified

incubator, and fixed immediately after the desired treatment times

in 1.5% paraformaldehyde (final concentration) for 10 minutes at

room temperature. Untreated (minus) cells were received 0.10%

BSA/PBS and vehicle (DMSO). Fixed cells were collected by

centrifugation at 6,000 rpm for 3 minutes, and resuspended in

,100% ice-cold acetone (Fisher Scientific, Pittsburgh, PA), added

drop-wise with simultaneous gentle vortexing. After ,10 minutes

on ice, cells were collected as above, washed twice with 1 ml of

PBS/0.50%BSA/0.02%NaN3, and aliquoted into the number of

Eppendorf tubes desired for intracellular stainings (100 ml each).

Cells were stained for 20 minutes at room temperature in the dark

with the indicated antibodies at the following final concentrations:

anti-Sca-1 (2 ng/ml), anti-Kit (4 ng/ml), anti-CD34 (2 ng/ml for

fix/perm cells; 5 ng/ml for untreated cells), anti-pERK (2 ng/ml),

anti-pAKT (0.5 ng/ml), anti-pS6 (0.1 ng/ml), anti-pSTAT5 (1:5 or

1:10; no concentration specified by supplier), and anti-pSTAT3

(4 ng/ml). Cells were then washed with 10 volumes of PBS/

0.50%BSA/0.02%NaN3, placed in 5-ml polystyrene round-

bottom tubes (BD) in 300 mL of PBS/0.50%BSA/0.02%NaN3,

and analyzed on an LSRII (BD). Compensation was calculated by

using whole BM cells stained with directly-conjugated anti-

CD45R antibodies (FITC, PE, PE-Cy5, APC, PE-Cy7, Pacific

Blue). Data were analyzed using FlowJo software (TreeStar,

Ashland, OR).

Statistical analysis
The statistical significance of differences between population

means was assessed by 2-tailed unpaired Student t test.

Supporting Information

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0003776.s001 (0.03 MB

DOC)

Figure S1 Effect of fixation/permeabilization conditions on Sca-

1 staining. A, Cells were either left untreated or fixed with PFA

without permeabilization, and subsequently stained for Kit and

Sca-1. B, Cells were treated as in (A), and permeabilized with the

indicated agents post-fixation. A mimimum of 1,400 FSC/SSC-

gated events was collected for each treatment. Saponin was

included in the permeabilization and wash/staining buffer when

used. C, The median fluorescence intensity (MFI) is shown for
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Sca-1 staining with a PE-conjugated antibody post-fixation with

PFA and permeabilization with the indicated agents. MFIs are

from the LIN-Kit+Sca-1+ gate. The MFI from PFA-fixed/

acetone-permeabilized cells was reduced compared to PFA-fixed

cells that were not permeabilized in the LIN-Kit+Sca-1+ gate.

Data are from a representative experiment.

Found at: doi:10.1371/journal.pone.0003776.s002 (0.99 MB TIF)

Figure S2 Flt3 and CD48 staining. A, Cells were left untreated

or fixed and permeabilized (fix/perm) with PFA and acetone,

respectively, and stained with FITC-conjugated Sca-1, APC-

conjugated c-Kit and PE-conjugated Flt3 antibodies. The

percentage of cells staining positive in each population subset for

Flt3 is indicated from one representative experiment. Notice the

fluorescence intensity of Flt3 post-fix/perm is reduced although

there is retention in percent positive cells relative to untreated

samples. B, Cells were treated as in (A) and stained with Pacific

Blue-conjugated CD48 and APC-conjugated c-Kit antibodies.

The percentage of cells staining positive in each population subset

for CD48 is indicated from one representative experiment

Found at: doi:10.1371/journal.pone.0003776.s003 (7.31 MB TIF)

Figure S3 Quantification of signaling changes in response to Scf

or Thpo in HSC/HPCs. The fold change (D) in MFI was

calculated by dividing the MFI of stimulated/drug-treated cells

with that of unstimulated cells. For each agonist, values are

normalized to unstimulated cells in individual cell subsets (LSK

values are relative to unstimulated LSK; LK values are relative to

unstimulated LK). Bar graphs represent the means from 2

independent experiments. Error bars indicate the SD. Abbrevia-

tions are as in Figure 2.

Found at: doi:10.1371/journal.pone.0003776.s004 (5.86 MB TIF)

Figure S4 No change in extracellular surface marker levels in

agonist/drug-treated HSC/HPC. Cells were treated as in Figure 2,

and the percentages of LSK, LK, and LDN cells (as in Figure 1)

were assessed. Data are representative of 2–3 independent

experiments, and percentage of the parental gate from 1

experiment is shown.

Found at: doi:10.1371/journal.pone.0003776.s005 (7.63 MB TIF)

Figure S5 Quantification of changes in MFI of phosphoprotein

epitopes in response to other agonists. The fold change (D) in MFI

was calculated by dividing the MFI of stimulated/drug-treated

cells with that of unstimulated cells as in Figure S3. Bar graphs

represent the means from 2 independent experiments. Error bars

indicate the SD. Abbreviations are as in Figure 2.

Found at: doi:10.1371/journal.pone.0003776.s006 (5.35 MB TIF)

Figure S6 Responses of CD34/phosphoprotein subsets to Scf or

Thpo stimulation. Cells were treated as in Figure 2, and gated for

the indicated cell surface and intracellular markers with or without

stimulation by the indicated agonists. Results are representative of

2–3 independent experiments, with the percentage of the parental

gates from 1 experiment indicated

Found at: doi:10.1371/journal.pone.0003776.s007 (6.79 MB TIF)

Figure S7 Responses of CD34/phosphoprotein subsets to other

agonists. Cells were treated as in Figure 2, and gated for the

indicated cell surface and intracellular markers with or without

stimulation by the indicated agonists. Results are representative of

2 independent experiments, with the percentage of the parental

gates from 1 experiment indicated. NC, No Change.

Found at: doi:10.1371/journal.pone.0003776.s008 (7.09 MB TIF)
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K-RasG12D expression induces hyperproliferation and aberrant signaling in

primary hematopoietic stem/progenitor cells. Blood 109: 3945–3952.

4. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D (2006) Total body

irradiation selectively induces murine hematopoietic stem cell senescence. Blood

107: 358–366.

5. Krutzik PO, Clutter MR, Nolan GP (2005) Coordinate analysis of murine

immune cell surface markers and intracellular phosphoproteins by flow

cytometry. J Immunol 175: 2366–2377.

6. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques

for flow cytometry: monitoring single cell signaling events. Cytometry A 55A:

61–70.

7. Perez OD, Nolan GP (2002) Simultaneous measurement of multiple active

kinase states using polychromatic flow cytometry. Nat Biotechnol 20: 155–162.

8. Gilnder JB, Walton WG, Gush K, Kirby SL (2007) Antibodies to stem cell

marker antigens reduce engraftment of hematopoietic stem cells. Stem Cells 25:

279–288.

9. Spangrude GJ, Brooks DM (1993) Mouse strain variability in the expression of

the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood 82:

3327–3332.

10. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohe-

matopoietic reconstitution by a single CD34-low/negative hematopoietic stem

cell. Science 273: 242–245.

11. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common

myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.

12. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I,
et al. (2001) Upregulation of Flt3 expression within the bone marrow

Lin(2)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-

renewal capacity. Immunity 15: 659–669.

13. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell
differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad

Sci U S A 198: 305–313.

14. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, et al. (2005) SLAM

family receptors distinguish hematopoietic stem and progenitor cells and reveal

endothelial niches for stem cells. Cell 121: 1109–1121.

15. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, et al. (2007) RAS/ERK
signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK

and stimulates cap-dependent translation. J Biol Chem 282: 14065–14064.

16. Kato Y, Iwama A, Tadokoro Y, Shimoda K, Minoguchi M, et al. (2005)

Selective activation of STAT5 unveils its role in stem cell self-renewal in normal

and leukemic hematopoiesis. J Exp Med 202: 169–179.
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