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Abstract

Background: Primary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic
steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected
individuals. Currently, there is no practical noninvasive technique to predict different pathological types of
glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was
investigated.

Methods: NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25),
membranous nephropathy (MN, n = 24), minimal change disease (MCD, n = 14) and IgA nephropathy (IgAN, n = 26), and
healthy controls (CON, n = 35). The acquired data were analyzed using principal component analysis (PCA) followed by
orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation
tests.

Results: FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with
good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose,
dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine,
phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and b-hydroxyisovalerate decreased. Additionally, FSGS patients had
lower urine N-methylnicotinamide levels compared with other glomerulopathies.

Conclusions: NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of
FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS.
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Introduction

Focal segmental glomerulosclerosis (FSGS) was first described in

kidney biopsy of adults with nephrotic syndrome by Fahr in 1925,

and in 1957 Rich observed that sclerosis classically start from the

corticomedullary junction before involving other parts of the renal

cortex in children with nephrotic syndrome (NS) [1–3]. FSGS is a

pathological entity which is characterized by idiopathic steroid-

resistant nephrotic syndrome (SRNS) and progression to end-stage

renal disease (ESRD) in the majority of affected individuals. The

current gold standard for the pathological diagnosis of FSGS is

renal biopsy, which is invasive and has poor repeatability in

monitoring progression of disease. Therefore, a noninvasive

approach for FSGS diagnosis is desirable. Regarding the

pathogenesis, several mechanisms have been found associated

with predisposing and progression of FSGS which include

podocyte depletion or changes [4–6], hemodynamics, hyperlipi-

demia, glomerular visceral epithelial cells (GVEC) damages,

cellular immunity and glomerular permeability factor (GPF), etc,

while the exact mechanisms of FSGS remains unknown. The

recent emergence of systems biology provides new insight into

diagnosis and pathogenesis of diseases.

Metabolomics is defined as ‘‘the quantitative measurement of

the dynamic multiparametric metabolic response of living systems

to pathophysiological stimuli or genetic modification’’ [7].

Metabolomics could be used in the diagnosis of critically ill
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patients [8], human bladder cancer [9], prostate cancer [10] and

so on. Any perturbation to a living system will cause fluctuation of

concentration or flux of endogenous metabolites. Therefore, we

suspected that there might be unique metabolic profile in patients

with FSGS. Under this assumption, we analyzed metabolites in

urine from patients with primary FSGS, speculated metabolic

profile of disease and further explored the underling mechanisms.

In the present study, we performed NMR-based metabolomics

to distinguish the distinct metabolic profile of primary FSGS from

other primary glomerulopathies [MN, MCD, and IgAN] and

healthy controls. Subsequently, we evaluated the potential

diagnostic value of this new approach in differential diagnosis of

primary glomerulopathies and gained novel insights into the

pathogenesis. Our study indicated several metabolic pathways

which involved in the pathogenesis of primary FSGS.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board of

the Ruijin Hospital, Shanghai Jiao Tong University School of

Medicine and was carried out according to the Principles in the

Helsinki Declaration II. The written informed consent was

obtained from each participant.

Selection and Description of Participants
All the participants with primary glomerulopathies (FSGS, MN,

IgAN and MCD) and healthy volunteers were recruited in Ruijin

Hospital, Shanghai Jiao Tong University School of Medicine. Two

experienced pathologists reviewed all the kidney biopsies. The

inclusion criteria are as follows: 1) Biopsy-proven primary

glomerulopathy; 2) Patients with new-diagnosed primary glomer-

ulopathy and haven’t received any drug therapy (ACE-I/ARB,

steroids, immunosuppressants, etc.); 3) Patients at CKD stages 1 to

4. The diagnosis and CKD stage were determined based on the

criteria of the National Kidney Foundation (NKF). The glomer-

ular filtration rate (GFR) was estimated by the equation from the

study ‘‘Modification of Diet in Renal Disease’’ (MDRD) [11]. The

exclusion criteria are as follows: 1) Obesity; 2) Reflux nephrop-

athy; 3) HIV-associated nephropathy; 4) Malignant cancers; 5)

Autoimmune diseases; 6) Infection; 7) Hereditary kidney diseases;

8) History of alcoholism and continued smoking.

Sample Collection and Preparation
All the participants were fasting and water deprivation after

8:00 pm on the day before renal biopsy. Urine and blood samples

were obtained before breakfast on the day of the renal biopsy.

Urine samples were collected at the second excretion in solid CO2-

cooled tubes (15 mL) containing 250 mL of 1% (w/v) sodium

azide. Aliquots of urine (500 mL) obtained from each participant

were centrifuged at 40006g for 10 min at 4uC and then stored at

280uC before NMR analysis. Blood was allowed to clot at room

temperature and centrifuged to separate the upper serum. Urine

samples were used in metabonomic analysis, and serum samples

were used in biochemistry examination.

An aliquot of urine (300 mL) was mixed with 300 mL of

phosphate buffer (0.2 M Na2HPO4/0.2 M NaH2PO4, pH 7.4) in

order to minimize pH variations. The mixture was vortexed for

2 min and then centrifuged at 12,000 rpm for 10 min at 4uC. The

supernatants (500 mL) were transferred into 5 mm NMR tubes

and then added 50 mL of D2O containing 0.01% sodium 3-

(trimethylsilyl) [2, 2, 3, 3-D4] propionate (TSP).

1H NMR Spectroscopy of Urine
1H NMR spectra were acquired at 25uC on a Varian Unity

INOVA 600 MHz spectrometer equipped with three RF channels

and a triple resonance z-axis pulsed-field gradient probe. For a

large of protein was present in urine samples of CKD patients,

transverse relaxation-edited spectra were recorded to attenuate the

broad NMR signals of slowly tumbling molecules with short T2

relaxation times and to retain signals of low-molecular weight

compounds. The water-suppressed Carr-Purcell-Meiboom-Gill

(CPMG) pulse sequence [RD-90u-(t-180u-t)n-ACQ] was used

here. A fixed total spin-spin relaxation delay 2 nt of 120 ms was

used. Water suppression irradiation was applied during the

relaxation delay (5 s). Typically, 128 FIDs were collected into

32,768 data points using a spectral width of 10 kHz with an

acquisition time of 1.64 s.

Statistical Methods
All 1D FIDs were multiplied by an exponential function of a

0.3 Hz line-broadening factor prior to Fourier transformation.

The NMR spectra were manually phased, and baseline corrected.

The chemical shifts were referenced to the methyl group of TSP at

d 0.00 for the spectra of urine. All the 1D NMR spectra were

carefully aligned by MestReNova software (Version 6.2, Mestrelab

Research S.L.). The spectral region of d 9.50-0.50 was segmented

into 3000 bins with a width of 0.003 ppm. The integrals from the

region of d 6.00-4.67were excluded to eliminate distorted baseline

from imperfect water saturation in all spectra. Urinary creatinine

is considered as a ‘‘house-keeping metabolite’’, integrals of bins in

every sample were subtracted by the level of bin including the

urinary creatinine. The integrals were normalized using the

approach of probabilistic quotient normalization to compensate

for differences in sample concentrations [12]. Subsequently, the

normalized integral values were variable autoscaled for orthogonal

partial least-squares discriminant analyses (OPLS-DA) by the

software package SIMCA-P+ (Version 12.0, Umetrics, Umeå,

Sweden). As a supervised approach, OPLS-DA between two

groups was calculated with the first predictive (t [1]) and one

orthogonal component (to [1]), however, the OPLS-DA model

with the five groups (CON, FSGS, MN, IgAN and MCD) were

autofitted. The terms R2 and Q2 were used to evaluate the quality

of OPLS-DA models. R2 are the fraction of variance in the data

explained by the model and indicates goodness of fit. Q2

represents the cross-validated explained variation and indicated

predictability. The standard 7-round cross validation and permu-

tation test (999 cycles) on the first predictive component was

carried out to measure the robustness of the model.

Variable importance in the projection (VIP) derived from the

OPLS-DA model ranks the importance of each variables for the

classification, and those variables with VIP.1.0 are initially

considered statistically significant in this model. The correlation

coefficients (r) of the variables relative to the first model score value

in the OPLS-DA model were also extracted from S-plot calculated

by Pearson correlation. Cutoff values of r with a significant level of

0.05 were used to identify variables that were responsible for the

discrimination of groups. Thus the integrals of metabolites which

were meeting VIP.1 and the correlation coefficients |r|.the

critical value of p = 0.05 may account for the discrimination.

To evaluate the predictive ability of the OPLS-DA models for

new samples, the predictive sets as no class samples will show in

the scatter plot of OPLS-DA training sets. The first predictive

component is used as the boundary, and the distribution of no

class samples are observed in the OPLS-DA score plots. The

sensitivity of the models is calculated from the ratio between true

positive and the total number of modeled FSGS spectra, whereas
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specificity is determined from the ratio between the true negative

and the total number of modeled control and other glomerulop-

athies spectra.

Univariate Statistics of Metabolites’ Integral
Group means of metabolites’ integral are expressed as the

mean6std. The median and interquartile range of metabolites in

each group is also showed. The analysis of the comparison of the

mean values among the FSGS, IgAN, MN, MCD, the subgroups

of FSGS and CON groups was performed utilizing one way

analysis of variance (ANOVA) (Bonferroni test for post hoc

multiple comparison). The statistical analysis was performed using

SPSS software (Version 17.0, SPSS, Inc.). p,0.1 was considered

statistically significant. The q value and FDR were established with

the ANOVA p values or the student’s ttest p value by the script has

been described in the supplementary material.

Results

1 Clinical Parameters
89 primary glomerulopathy patients (FSGS, n = 25; MN,

n = 24; IgAN, n = 26; MCD, n = 14) and 35 healthy controls were

enrolled. 61.4% patients were at CKD1, 15.7% at CKD2, 18.1%

at CKD3 and 4.8% at CKD4. The distribution of CKD stages in

different groups has no statistical significance. All the participants

enrolled in the present study were first-visit patients and no

patients had hypertension. Clinical parameters and the full lipid

profile were shown in Table 1 and Table 2 respectively. Patients

with MCD had the highest level of 24-hour urinary albumin

excretion compared with the patients with other glomerulopathies.

In addition, patients with MN and MCD had a higher level of

serum cholesterol and lower albumin than that in FSGS and

IgAN. Statistically, there were no significant differences for other

clinical parameters among different types of glomerulopathies

(Table 1, Table 2).

2 Results of NMR-based Metabolomics
2.1 Metabolic alterations in urine samples by 1H-NMR of

FSGS and CON. Figure 1 shows representative spectra from the

urine of FSGS patients and healthy controls. Visual inspection of

the spectra reveals the different excretive profiles in various urine

metabolites between FSGS and CON. Metabolites that were

commonly observed in the urine spectrum from the healthy

individuals and the patients with FSGS are creatinine (CRE),

hippurate (Hip), citrate (Cit), trimethylamine-N-oxide (TMAO),

dimethylamine (DMA), trimethylamine (TMA), pyruvate (Pyr),

glucose (Glc), taurine (Tau), 3-hydroxybutyrate (3-HB), 3-methyl-

histidine(3-me-His), N-acetyl groups from glycoproteins (NAC), 3-

hydroxyisovalerate (3-HIV), trigonelline (TRG), N-methylnicoti-

namide (NMN), 2-hydroxyisobutyrate (2-HIB), phenylacetylglyci-

ne(PAG), and amino acids such as alanine (Ala), isoleucine (Ile),

tyrosine (Tyr), valine (Val), glycine (Gly), glutamine (Glu),

glutamate (Gln), and formate (For). The integral value of most

significant metabolites in healthy control, FSGS, IgAN, MCD and

MN patients obtained from 1H NMR spectra was shown in Table

S1. The median and interquartile range of the metabolites in each

group was shown in Table S2.

2.2 Pattern recognition analysis between FSGS, MCD,

MN, IgAN and CON. For the NMR data of 89 patients and 35

healthy individuals, OPLS-DA was applied, and the scores plot

Table 1. Biochemical parameters of the subjects used in this study.

Pathology
Age
(years)

Gender
(F/M) BMI

SBP
(mm Hg)

DBP
(mm Hg)

GFR
(ml/min)

BUN
(mmol/l)

Alb
(g/L)

Glc
(mmol/l)

24 hrUprV
(mg)

Health 40.75616.23 18/17 23.562.8 116.8610.9 75.266.9 119.8617.6 4.8761.2& 41.8863.11 4.2960.42{ ,30

FSGS 40.09613.15 12/13 23.963.4 120.5611.9 77.569.4 94.1633.1* 6.262.15*{ 36.0567.76*{` 4.7360.88*#` 1095
(50–5769) *{`

IgAN 37.8611.74 13/13 22.462.7 124.2613.1 79.369.4 98.9622.3* 5.7662.58 34.964.67*{` 4.3660.47` 1171.5
(77–4574)*{`

MN 45.6611.52 14/10 23.461.9 116.7610.7 75.867.8 108.6645.3 4.7761.63& 2067.21* 4.860.71* 3155
(181–9502)*

MCD 30.11614.46 8/6 21.961.8 125.7612.5 78.368 101.1632.4* 4.8165.56 22.63611.2* 3.960.6{ 4849
(3196–5629)*{

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; GFR: glomerular filtration rate; BUN: blood urea nitrogen; Alb: albumin; Glc: glucose;
24 hrUprV: protein amount of 24 hours urine.
P*,0.05 versus healthy controls,
P&,0.05 versus FSGS,
P#,0.05 versus IgAN,
P{,0.05 versus MN,
P`,0.05 versus MCD.
doi:10.1371/journal.pone.0078531.t001

Table 2. Full lipid profile of different group (CON, FSGS, IgAN,
MN and MCD).

Pathology
TG
(mmol/L)

TC
(mmol/L) HDL LDL

Health 0.82
(0.56–1.7)

4.41
(3.11–5.91)

1.32
(0.92–1.75)

2.88
(1.35–4.28)

FSGS 2.21
(0.51–5.52)*

5.2
(3.83–10.12)*{`

1.26
(0.82–1.85)

3.34
(2.01–7.12)* `

IgAN 1.24
(0.45–8.17)*

4.92
(3.34–8.92)*{`

1.34
(0.81–2.38)

3.18
(1.41–5.5)* `

MN 2.46
(0.8–2.46)*

7.33
(3.29–14.5)*

1.36
(0.99–2.55)

4.86
(1.81–10.19)* `

MCD 2.66
(1.02–7.36)*

9.62
(3.93–13.89)*

1.75
(1.13–2.49)

6.82
(2.4–10.71)*

TG: triglyerides; TC: total cholesterol; HDL: high density lipoprotein; LDL: low
density lipoprotein.
P*,0.05 versus healthy controls,
P{,0.05 versus MN, P`,0.05 versus MCD.
doi:10.1371/journal.pone.0078531.t002
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(Figure 2) revealed diverse trends among patients in different

etiological groups. Healthy individuals were clustering to the top

section, MCD and MN segregated mainly to the bottom-left and

bottom-right sections, respectively. In spite of slight overlapping, a

separation was also achieved between FSGS and IgAN. The PLS-

DA model for different group was shown in Figure S1.

2.3 The separation of FSGS and CON. An orthogonal

projection to latent-structure (OPLS) analysis was run to

discriminate the FSGS patients from healthy people. The urine

spectra were well discriminated with the OPLS model with a Q2 of

0.776 and a R2 of 0.920 (Table 3), as shown in Figure 3A with the

good cross-validation of permutation tests (Figure 3B). The VIPs

and p(corr) extracted from the OPLS-DA plot and the values of p

and q obtained from one way ANOVA also revealed patients with

FSGS mainly characterized by high levels of Glc, DMA, TMA,

and decreased excretion of Pyr, Hip, PAG, Ile, Val, Tyr, Cit, 3-

HIV and 3-me-His (Table 4,5).

Because of the differences in proteinuria and eGFR between

FSGS patients and healthy controls, subgroup analysis was

performed to eliminate the influence of the two factors. According

to the proteinuria, FSGS patients were divided into two subgroups

(the cutoff value of proteinuria was 1500 mg/24 h); according to

the eGFR, FSGS patients were divided into another two

subgroups (CKD1+2 and CKD3+4). From the results of the

PCA and OPLS-DA scatter plots (Figure S2, Figure S3), healthy

controls could be distinguished from each subgroup while the

subgroups could not be distinguished from each other. In addition,

for the metabolites (Table S3), most of the metabolites are the

same with the Table 4. Therefore, the results of the subgroup

analysis indicted that proteinuria and eGFR partly contributed to

the discrimination and the underling pathogenesis of the disease

was considered the most important influential factor of the

metabolic profile.

2.4 The separation of FSGS and MN. To identify the

special metabolic characteristics of FSGS patients, the pairwise

OPLS-DA models were established among FSGS, MN, IgAN, and

MCD. The OPLS-DA scores plots showed a significant separation

between FSGS and MN groups (Figure 3 C, D, Table 3). The

model parameter for the explained variation R2 was 0.83 and the

predictive capability Q2 was 0.538 which suggested the robustness

of our model. On the basis of the VIPs, p(corr), p and q extracted

from the OPLS-DA models, patients with FSGS mainly excreted

higher levels of Hip, and Pyr, whereas patients with MN mainly

excreted higher levels of Cit, NMN, Glc, and Val. (Table 4,5).

2.5 The separation of FSGS and IgAN. A distinct

separation was observed between FSGS and IgAN (R2 = 0.777

and Q2 = 0.516) (Figure 3 E, F, Table 3). On the basis of the values

of VIPs, p(corr), p and q, the metabolites that predominantly

Figure 1. Representative 600 MHz 1H NMR spectra of urine from control people and patients with FSGS. All these marked metabolites
were the metabolite variables in the present work.
doi:10.1371/journal.pone.0078531.g001

Figure 2. OPLS-DA scores plot of urine 1H NMR spectra of
healthy controls and patients with FSGS, IgAN, MN and MCD.
doi:10.1371/journal.pone.0078531.g002
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contributed to the separation of the FSGS from the IgAN group

were higher levels of TMAO and Tau, and lower levels of NMN

and 3-HB, (Table 4,5).

2.6 The separation of FSGS and MCD. As it is indicated by

the R2 and Q2 parameters of the OPLS-DA model, 0.876 and

0.529 (Figure 3 G, H, Table 3) respectively, the separation

between FSGS and MCD was of high significant. On the basis of

the values of VIPs, p(corr), p and q the metabolites that

predominantly contributed to the separation of the FSGS from

the MCD group were higher levels of pyridine (PN), DMA, Pyr,

and lower levels of Glc, TRG and NMN (Table 4,5).

2.7 The prediction of OPLS-DA models. In the FSGS-

CON OPLS-DA model, the sensitivity and specificity were 96.3%

and 100% (Fig. 4A). In the FSGS-MN OPLS-DA model, the

sensitivity and specificity of FSGS prediction were 92.6% and

96.2%(Fig. 4B); In FSGS-IgAN prediction model, sensitivity and

specificity of FSGS prediction were 55.5% and 86.7% (Fig. 4C); In

FSGS-MCD OPLS-DA models, the sensitivity and specificity of

FSGS prediction were 81.4% and 86.7% (Fig. 4D).

Figure 3. OPLS-DA scores plot and validation of the OPLS-DA model using a permutation test of urine 1H NMR spectra of FSGS and
CON (A, B), FSGS and MN (C, D), FSGS and IgAN (E, F), FSGS and MCD (G, H).
doi:10.1371/journal.pone.0078531.g003

Table 3. The parameter values of OPLS-DA models.

OPLS-DA models R2 Q2

FSGS-CON 0.92 0.776

FSGS-MCD 0.876 0.529

FSGS-IgAN 0.777 0.516

FSGS-MN 0.83 0.538

doi:10.1371/journal.pone.0078531.t003
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Discussion

NMR-Based Metabolomics Distinguished FSGS from
Healthy Controls and Other Glomerulopathies

NMR-based metabolomics can provide global, rapid, robust

and reproducible metabolite profiles concerning toxicity-related

pathogenesis [13], without extensive processing of samples. The

emerging field of metabolomics promises immense potential for

early diagnosis, therapy monitoring and f pathogenesis of diseases.

In the field of nephrology, metabolomics has been efficiently and

successfully applied in renal transplantation [14], acute kidney

injury (AKI) [15], renal cell carcinoma [16] and diabetic

nephropathy (DN) [17]. But few studies have reported the

metabolic profile of glomerular diseases including FSGS.

Renal biopsy is considered the gold standard for diagnosis of

FSGS. But it has poor repeatability and many limitations in

monitoring progression of diseases. Clinically, biochemical pa-

rameters, such as Scr, BUN, 24 hrUprV, et al, can reflect the state

of glomerulopathies. But from the results of the clinical biochem-

istry (Table 1), FSGS cannot be distinguished from other

glomerulopathies only by biochemical parameters. To determine

whether NMR-based metabolomics can be used to distinguish

FSGS from other glomerulopathies and healthy controls, we

selected Orthogonal projections to latent structure-discriminate

analysis (OPLS-DA) as the chemometric approach to analyze

urinary metabolic profile of FSGS and other primary glomeru-

lopathies.

OPLS-DA is a type of supervised classification and regression

method merged with class-orthogonal methodology to augment

classification performance. It combines the strengths of PLS-DA

and soft independent modeling of class analogy (SIMCA)

classification [18]. OPLS-DA rotates the score matrix so that the

Table 4. The integral change trends in FSGS vs. CON, FSGS vs.MN, FSGS vs. IgAN, FSGS vs. MCD, and the values of q, p and FDR.

metabolites integral change trends

Average change of
FSGS vs. CON(p/q)

Average change of
FSGS vs.MN(p/q)

Average change of
FSGS vs. IgAN (p/q)

Average change of
FSGS vs. MCD (p/q)

Glc +77.9%(0.002,0.003) 230.6%(0.087,0.087) /(1.000,–) 234.6%(0.032,0.038)

Pyr 259.4%(0.000,0.000) +24.4%(0.077,0.077) /(1.000,–) +36.8%(0.005,0.015)

Val 221.1%(0.000,0.000) 216.2%(0.007,0.01) /(0.498,–) /(0.918,–)

Hip 276.0%(0.000,0.000) +107.6%(0.028,0.028) /(0.978,–) /(0.989,–)

DMA +18.6%(0.000, 0.000) /(0.270,–) /(0.966,–) +36.8%(0.020,0.030)

TMA +98.9%(0.010,0.011) /(1.000,–) /(1.000,–) /(1.000,–)

Ile 222.3%(0.003,0.004) /(0.746,–) /(1.000,–) /(1.000,–)

PAG 230.3%(0.025,0.025) /(1.000,–) /(1.000,–) /(1.000,–)

Cit 235.6%(0.000,0.000) 225.9%(0.041,0.041) /(0.660,–) /(0.776,–)

TMAO /(0.942,–) /(1.000,–) +39.1%(0.024,0.048) /(0.299,–)

NAC /(0.689,–) /(1.000,–) /(0.849,–) /(0.967,–)

PN /(0.746,–) /(0.750,–) /(0.944,–) +20.6%(0.071,0.071)

Ala /(1.000,–) /(1.000,–) /(0.996,–) /(1.000,–)

Tau /(0.194,–) /(0.907,–) +27.5%(0.081,0.081) /(0.803,–)

3-HB /(0.259,–) /(0.661,–) 232.5%(0.038,0.051) /(0.238,–)

NMN /(0.591,–) 242.5%(0.088,0.088) 247.2%(0.023,0.048) 260.4%(0.001,0.006)

TRG /(0.114,–) /(0.394,–) /(0.149,–) 247.8%(0.018,0.036)

Leu /(0.824,–) /(0.592,–) /(1.000,–) /(1.000,–)

IB /(0.226,–) /(1.000,–) /(1.000,–) /(1.000,–)

3-HIV 224.4%(0.001,0.002) /(0.811,–) /(0.784,–) /(0.876,–)

Lac /(1.000,–) /(1.000,–) /(1.000,–) /(1.000,–)

2-HIB /(1.000,–) /(1.000,–) /(1.000,–) /(1.000,–)

Lys /(0.197,–) /(0.970,–) /(1.000,–) /(1.000,–)

AA /(1.000,–) /(1.000,–) /(1.000,–) /(1.000,–)

Suc /(0.979,–) /(1.000,–) /(0.628,–) /(0.595,–)

Gln /(1.000,–) /(0.991,–) /(0.993,–) /(1.000,–)

Gly /(0.857,–) /(1.000,–) /(0.999,–) /(0.293,–)

Cr /(1.000,–) /(1.000,–) /(0.293,–) /(1.000,–)

3-me-His 245.3%(0.000,0.000) /(0.775,–) /(0.940,–) /(1.000,–)

Tyr 244.3%(0.000,0.000) /(0.771,–) /(1.000,–) /(1.000,–)

FDR 0.008 0.040 NA 0.017

The changes of metabolites with q and/or p value less than 0.10 are considered as statistical significance; NA means no FDR value been calculated; ‘‘–’’ stands for no q
value been calculated; The value of q and FDR were calculated using the function of fdr tool packages in the R environment (programming language).
doi:10.1371/journal.pone.0078531.t004
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class-orthogonal variation can be separated from the class-

predictive one [19] and it facilitates the overall model usability.

Carrola [20] et al analyzed urine samples from lung cancer

patients and control group by OPLS-DA. Very good discrimina-

tion between cancer and control groups was achieved by

multivariate modeling of urinary profiles, and by Monte Carlo

Cross Validation, the classification model showed 93% sensitivity,

94% specificity and an overall classification rate of 93.5%.

In this study, the score plot of OPLS-DA showed separation

trends among different groups of patients (Fig. 2). Exceptionally,

there were some overlaps between FSGS and IgAN. One possible

explanation was that some IgAN patients pathologically were

manifested by FSGS, which indicated similarities in metabolic

profile. In order to identify the special metabolic characteristics of

FSGS patients, the pairwise OPLS-DA models were established

among FSGS, MN, IgAN, MCD and healthy controls (Fig. 3). In

respective OPLS-DA models, FSGS can be separated from other

groups with high R2 and Q2, which indicated the high quality of

the model. In order to confirm our results, we furthermore test the

validation of every model. The FSGS-CON OPLS-DA model

showed 96.3% sensitivity and 100% specificity in differentiating

FSGS from healthy controls (Fig. 4A). In addition, the FSGS-MN,

FSGS-MCD and FSGS-IgAN OPLS-DA models also performed

good sensitivity and specificity (Fig. 4B, C,D). All the results

indicated that NMR-based metabolomics analyzed by OPLS-DA

is a potential non-invasive method for the differentiated diagnosis

of glomerulopathies. And the external validation study confirmed

the possibility of the clinical utility of the metabonomic platform in

diagnosing FSGS, as well as other glomerulopathies.

Metabolic Profile of FSGS Revealed by NMR-Based
Metabolomics

Urine composition could reflect kidney function because its

source of origin and metabolites might provide some clues for the

pathogenesis. For the composition in urine, we found several

possible metabolic pathways involving in the pathogenesis of

primary FSGS.

Pyr, Cit, Ile and Val decreased, and Glc increased in patients

with primary FSGS. Transporters for glucose and Krebs cycle

intermediates have been identified in the brush border membrane

of the tubuli [21,22]. Krebs cycle intermediates are imported from

urine by the sodium-dicarboxylate symporter NaDC-3 transporter

which is mostly located in the proximal tubular cells in the kidney

[23]. Additionally, glucose and Krebs cycle intermediates import-

ed from urine could be used as energy substrates by proximal

tubular cells [24]. In the present study, decreased Pyr, Cit, Ile, Val,

and Tyr, important intermediates of Krebs cycle, and increased

glucose indicated that the proximal tubular cells could not use

glucose as an energy substrate as usual and have to compensate by

importing more Krebs cycle intermediates from the urine in

patients with primary FSGS.

DMA and TMA increased in FSGS patients compared with

healthy controls. Increased level of DMA and TMA indicated the

up-regulation of the methylamine methylamine. During the

methylamine metabolism, semicarbazide-sensitive amine oxidase

(SSAO) mediated deamination occurs, which directly increase

oxidative stress, initiate endothelial injury and plaque formation

[25]. Additionally, DMA is one of the most important metabolites

of asymmetric dimethylarginine (ADMA) which is a competitive

inhibitor of nitric oxide synthase (NOS) and may decrease NO

availability [26]. ADMA could also contribute to oxidative stress

by causing endothelial nitric oxide synthase (eNOS) uncoupling

Table 5. Metabolite assignment of integral fragments statistically important for the separation of FSGS from CON, MN, IgAN and
MCD.

Metabolites FSGS vs CON FSGS vs MN FSGS vs IgAN FSGS vs MCD

VIP r VIP r VIP r VIP r

Glc 1.73 +0.56 1.30 20.38 / / 2.01 20.50

Pyr 1.66 20.64 1.8 +0.5 / / 1.67 +0.36

Val 1.56 20.47 1.64 20.43 / / / /

Hip 1.56 20.53 1.65 +0.43 / / / /

DMA 1.54 +0.49 / / / / 1.54 +0.49

TMA 1.44 +0.52 / / / / / /

Ile 1.37 20.45 / / / / / /

PAG 1.37 20.55 / / / / / /

Cit 1.07 20.31 1.37 20.34 / / / /

Ala / / 1.83 20.51 / / / /

NMN / / 1.62 20.42 2.22 20.45 1.76 20.39

TRG / / 1.24 20.39 1.79 20.38 1.27 20.34

TMAO / / / / 2.28 +0.52 / /

Tau / / / / 1.72 +0.37 1.58 +0.40

3-HB / / / / 1.61 20.33 / /

NAC / / / / 1.31 20.29 / /

PN / / / / / / 1.45 +0.33

The cutoff value of r is respectively 60.254, 60.282, 60.276 and 60.316.
‘‘/’’ means values of VIP,1 or | r |,| cutoff |.
doi:10.1371/journal.pone.0078531.t005
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[27]. In another study, Musante, et al, used complementary liquid

chromatography electron spray ionization tandem mass spectrom-

etry (LC-ESI-MS/MS) and biochemical methods to analyze the

serum from the patients with idiopathic FSGS, and demonstrated

that albumin oxidation seems to be specific for FSGS, suggesting

some pathogenetic implications [28]. In present study, increased

levels of DMA and TMA indicated the existence of oxidative stress

in FSGS patients.

In addition, levels of Hip decreased in patients with FSGS. Hip

is formed via the conjugation of benzoate with glycine, which

occurs in the kidney [29], liver [30] and intestine [31]. It is a

harmful uremic toxin, and the accumulation in blood is

responsible for a variety of pathological conditions. Active tubular

secretion is the primary route for elimination of Hip from the

plasma via the kidney and functional failure of this system causes

accumulation of it in blood [32,33]. In patients with uremia, level

of Hip in serum is markedly elevated [34]. In the present study,

decreased level of Hip in FSGS patients’ urine indicated the

dysfunction of tubular secretion.

Finally, urinary 3-me-His and PAG levels decreased in FSGS

patients, which indicated the decreased catabolism of muscle

protein and lipid. 3-me-His is an important constituent bounding

to the muscle proteins actin and myosin [35], and breakdown of

these proteins consequently results in urinary excretion of 3-

methylhistidine [36,37]. Previous studies have reported that

UPLC/MS-MS method is suitable for the determination of

urinary 3-methylhistidine to monitor muscle protein catabolism

[38]. PAG is an acyl glycine and it is a glycine conjugate of

phenylacetic acid, which is normally a minor metabolite of fatty

acids [39], so decreased level of PAG indicated the decreased

catabolism of lipid.

Compared with other primary glomerular diseases (Table 4),

levels of NMN decreased significantly in group of FSGS. NMN is

metabolites of nicotinic acid and nicotinamide in mammals [40].

Maiza, et al, demonstrated that NMN could be used to monitor

renal tubular excretion [41], which is secreted by proximal tubular

cells through organic cation transporters (OCTs) [42]. Therefore

decreased NMN indicated the dysfunction of tubular secretion

compared with other glomerulopathies.

Comparison among MCD, MN and IgAN, we also observed

several metabolites (Table S4) that are significant for separation.

The underlying mechanisms need to be further investigated by

other of metabolomics data.

Conclusions

NMR-based metabolomics and a multivariate statistical

technique can be successfully used to distinguish primary FSGS

from healthy controls and other glomerulopathies with high

sensitivity and specificity. It might be a potential method for

non-invasive diagnosis of primary FSGS as well as other

glomerulopathies. Furthermore, it can help to reveal the

underling possible mechanisms of diseases. Energy metabolism

disorder, oxidation stress, dysfunction of tubular secretion and

decreased catabolism of muscle protein and lipid are involved in

the pathogenesis of human primary FSGS. However, the

Figure 4. Prediction of the OPLS-DA model by non-class predictive sets. (A) FSGS-CON OPLS-DA model: sensitivity and specificity were
96.3% and 100%; (B) FSGS-MN OPLS-DA model: sensitivity and specificity were 92.6% and 96.2%; (C) FSGS-IgAN OPLS-DA model: sensitivity and
specificity were 55.5% and 86.7%; (D) FSGS-MCD OPLS-DA model: sensitivity and specificity were 81.4% and 86.7%.
doi:10.1371/journal.pone.0078531.g004
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application of metabolomics on the clinical work for the

diagnosis and differential diagnosis of different glomerulopathies

still requires further investigation.

Supporting Information

Figure S1 PLS-DA model for different group (CON,
FSGS, IgAN, MN, MCD).
(TIF)

Figure S2 PCA (A) and OPLS-DA (B) scatter plots of
CON (m) and the subgroups of FSGS patients (those with

the level of urine protein (Cup) higher (¤) than

1500 mg/24 h and lower (&) than 1500 mg/24 h).
OPLS-DA scatter plot of CON vs. a subgroup of FSGS patient

with the concentration of urine protein lower than 1500 mg/

24 h(C), OPLS-DA scatter plot of CON vs. a subgroup of FSGS

patient with the concentration of urine protein higher than

1500 mg/24 h (D).

(TIF)

Figure S3 PCA (A) and OPLS-DA (B) scatter plots of
CON (m) and the subgroups of FSGS patients

(CKD1+CKD2(&) and CKD3+CKD4(¤)). OPLS-DA scat-

ter plot of CON vs. CKD1+CKD2 of FSGS patient (C), OPLS-

DA scatter plot of CON vs. CKD3+CKD4 of FSGS patient (D).

(TIF)

Table S1 The integral value of most siginificant metab-
olites in healthy control (CON), FSGS, IgAN, MCD and
MN patients obtained from 1H NMR spectra.
(TIF)

Table S2 The median and interquartile range of
metabolites in each group.

(TIF)

Table S3 The integral change trends in subgroup
analysis and the values of q, p and FDR.

(TIF)

Table S4 The integral change trends in MN vs. CON,
IgAN vs. CON, MCD vs. CON, MN vs. IgAN, MN vs.
MCD, IgAN vs. MCD, and the values of q, p and FDR.

(TIF)
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