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Abstract

Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism
(SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13–14 in addition to the well
established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease
severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006
well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five
measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends
towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the
CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found
no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.
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Introduction

Many familial and population based studies have demonstrated

the role of genetic factors in susceptibility to multiple sclerosis

(MS). By far the most important and consistently replicated genetic

risk factor associated with MS is the HLA- DRB1*1501-

DQB1*0602 (HLA-DR15) haplotype [1] which carries an odds

ratio of between 2.0 and 3.5 for MS [2].

In the last two years, a series of genome-wide association studies

have identified other SNPs that are associated with multiple sclerosis.

Some of the recent discoveries are polymorphisms in genes for

interleukin 2 receptor alpha (IL2RA), interleukin 7 receptor (IL7R), C-

type lectin, family 16, member A (CLEC16A), ribosomal protein L5

(RPL5)/EV15 locus, CD40, and rs703842 on chromosome 12

[1,3,4,5,6]. Individually, these SNPs contribute a small proportion to

overall MS risk, with allelic odds ratios of between 1.1–1.3 [1,3,4,5,6].

As well as influencing MS risk, the HLA-DR15 haplotype has

been reported to reduce the age of MS onset in MS patients in a

number of large, independent studies from Scandinavia and

Britain [2,7,8,9,10] although this was not replicated in a large US

study [11]. Interestingly, in one of these studies [2], the HLA-

DR15 allele was significantly more frequent in patients with

definite MS than in patients with possible or probable MS (defined

according to the Poser criteria) which may be a proxy for severity.

In another study HLA-DR2 (which includes the HLA-DR15 risk

allele), was associated with increased risk of a more severe course

of disease [12]. In addition HLA-DR15 positivity has been

associated with increased lesion load at MS onset [13]. At the most

benign end of the wide phenotypic MS spectrum, it may be an

entirely subclinical disease, exemplified in twin studies, in which

13% percent of asymptomatic monozygotic twins and 9% of

asymptomatic dizygotic twins of MS index cases exhibited cerebral

MRI lesions typical of MS [14]. It is therefore possible that MS

susceptibility alleles actually represent determinants of severity,

acting at the mildest end of the MS spectrum, by increasing the

likelihood of clinically overt disease and thus, diagnosis. If this
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were the case, and if genetic modulation of MS severity were

present across the clinical spectrum of disease, one might also be

able to detect an influence of risk SNPs on MS phenotype,

manifesting as an increased disease severity in MS patients

carrying the risk SNPs.

In order to test this hypothesis, we have chosen to examine the

potential contribution of the susceptibility SNPs in IL2RA, IL7R,

CLEC16A, RPL5, CD40, CD58 and the Chr12 loci to MS severity,

using a well-defined cohort of 1006 patients with relapsing-

remitting and secondary progressive MS from Australia. MS

clinical outcome measures used in this study included age of onset,

time interval from the first demyelinating event (FDE) to first

relapse, and MS Severity Score (MSSS). Cerebral atrophy was

assessed using a validated linear cerebral MRI measure, the

intercaudate ratio (ICR), for 755 patients. In addition, cognitive

testing using the symbol digit modalities test (SDT) was available

for 869 patients.

Materials and Methods

Patients
The ethics committees involved were the Melbourne Health

Human Research and Ethics Committee (HREC) (lead commit-

tee), Eastern Health HREC, Box Hill, Austin and Repatriation

Hospitals HREC, Heidelberg, Barwon Health HREC, Geelong,

St Vincent’s Hospital HREC, Fitzroy, Ballarat Base Hospital

HREC, Ballarat, Gippsland Base Hospital HREC, Sale (all in

Victoria), Albury Base Hospital HREC, Albury, (NSW) and the

Tasmania Health and Medical HREC (Tasmania). The ethics

committees approved the project and signed informed consent was

obtained from all participants.

A total of 1006 patients with relapsing-remitting (RRMS) and

secondary progressive MS (SPMS) were recruited from Victorian

and Tasmania in South-Eastern Australia between 2002 and 2004

[4,15,16].

All of the patients were assessed by six MS specialist

neurologists. Clinical information including the age of onset, sex,

time interval between first demyelinating event and first relapse,

number of relapses and disease course of patients was collected.

Disability in patients was determined using the Kurtzke Expanded

Disability Status Scale (EDSS) The EDSS is a 10-point disease

severity score with half-point increments which itself is derived

from 9 ratings for individual neurological domains, including

visual, brainstem, motor, sensory, cerebellar, bladder/bowel and

cognitive function, and walking distance [17]. The EDSS was used

in combination with disease duration to calculate the MS Severity

Score (MSSS) with reference to the global MSSS table. The MSSS

table essentially ranks individuals from lowest EDSS to highest

EDSS for a given disease duration, and expresses this as a decile

rank between 0 (least affected) and 10 (most severely affected) [18].

Cognitive disability was also assessed in 869 patients using the

symbol digit modalities test (SDT) of the Wechsler Adult

Intelligence Scale-revised [19]. SDT scores were adjusted for

disease duration.

Age of onset was defined as the age at which the patient

experienced their first demyelinating event and the interval

between first demyelinating event and first relapse was determined

from patient recall facilitated by a detailed questionnaire (provided

to participants prior to the clinical assessment) and confirmed by

medical notes (obtained wherever possible from their treating

physician). Based on the country of birth of the participant’s grand

parents, the subjects were predominantly of Northern European

ancestry, the majority were of Anglo Celtic (73%) or Southern

European descent (16%). The remainder were of Western

European (5%), Eastern European (4%), Scandinavian (1%) or

other (1%) descent.

Genotyping
DNA was collected and extracted from blood samples using

either the Nucleon Genomic DNA Extraction Kit (GE Lifescience)

or phenol-chloroform extraction. The majority of SNPs were

genotyped at the Broad Institute for Genotyping and Analysis

(http://www.broad.mit.edu/gen_analysis/genotyping/) with Se-

quenom’s MassARRAY platform (San Diego, CA, USA) using the

iPlex SNP assay design system [4]. However the SNPs rs6074022

and rs703842 were genotyped or imputed in a subset of 898

RRMS and SPMS patients as part of a genome-wide association

study [5], either in the GWAS phase (Illumina 370CNV arrays,

n = 581) or in the replication phase (Sequenom MassARRAY

platform, n = 317). Presence or absence of the HLA-DR15 allele

was determined from HLA-DRB1 typing performed previously in

954 of the cases using sequence-specific oligonucleotide hybrid-

ization and nucleotide sequencing [6].

MRI assessment
Existing MRI scans were retrieved for measurements of linear

markers of brain atrophy. Scans were available for 755 of the

patients.

The clinical scans were performed at multiple centres and a

variety of protocols were used, but generally the T1-weighted axial

scans were of 5mm thickness with either no gaps (inter-leaved) or

2.5mm gaps. Intercaudate distance (ICD) was described as the

minimum distance between the medial borders of the head of the

caudate nuclei as previously described and validated [20]. The

intercaudate ratio (ICR) was calculated as a fraction of the ICD to

the transverse skull diameter (TSD) where the TSD was defined as

the minimum distance separating the inner borders of the skull at

the level of the most rostral part of the frontal horns. ICD and

TSD were obtained from the same MRI slice, specifically the most

caudal axial T1-weighted slice on which the frontal horns were at

maximal width. ICR was log-transformed to give a more

normally-distributed phenotype, and adjusted for the disease

duration.

Statistical Analysis
Five measurements of disease severity (MSSS, age of onset, time

between the FDE and first relapse, duration-adjusted SDT and

duration-adjusted log(ICR)) were tested for association with SNPs in

CLEC16A (rs6498169), IL2RA (rs2104286), IL7R (rs6897932), CD58

(rs12044852), RPL5 (rs6604026), CD40 (rs6074022) genes and at

Chr12q13–14 (rs703842). Statistical analysis was performed using

Stata 10 statistical software (StataCorp). Testing was performed by

regression of continuous severity variables on the number of minor

alleles carried by patients. All traits were approximately normally

distributed except for MSSS (uniformly distributed by definition). For

nominal genotype-phenotype associations (p,0.05), further analyses

were performed, stratifying by sex and presence or absence of HLA-

DR15. In addition, mean values and 95% confidence intervals were

calculated for each severity variable, stratified by genotype. For

variables associated with disease duration (ICR and SDT), means and

confidence intervals were standardized to the mean disease duration

(13.4 years) using the Stata ‘lincom’ command. The statistical

methodology used in this paper has been previously published [16].

Results

There were 1006 patients in total, of whom 78% were female.

Patient demographic information is displayed in Table 1.

Genetics of MS Severity
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Approximately 57% of patients carried at least one copy of HLA-

DR15. Mean values of each of the MS severity variables were

similar in each of the categories of females and males, and DR15-

positive and DR15-negative individuals with the exception of age

of onset, which was lower in DR15-positive patients, as expected

in a cohort of northern European origin [21]. The ranges for each

variable were; MSSS 0.05–9.82, Age of onset 7-65yrs, time

between first demyelinating event (FDE) and first relapse 0–52 yrs,

SDT 0–80, log(ICR) 21.099 to 22.996, means and standard

deviations for these variables are shown in Table 1. Table 2 shows

means and 95% confidence intervals for each of the severity

measures stratified by genotype at each of the tested MS

susceptibility SNPs. Due to the continuous nature of sample

collection, some individuals were not typed for rs6074022 or

rs703842, for which 897 and 898 genotypes were available,

respectively, and for other assays, genotyping results were rejected

in up to 5% of reactions when SNPs were called ambiguously.

The effects of risk SNPS in this cohort of patients was analysed

against five MS severity variables, and the results of this analysis

are expressed as estimated change in disease severity variable for

each additional minor allele (Table 3).

No associations were found between MS-risk-associated SNPs

and MSSS, age of onset, or ICR. We observed a trend towards

association between the RPL5 SNP rs6604026 and the time

between FDE and first relapse (p = 0.024), and between the CD40

SNP rs6074022 and the duration of illness adjusted SDT score

(p = 0.016). For both of these associations the minor, disease-

associated allele was associated with more severe disease, however

these trends were not significant after applying the Bonferroni

correction for multiple testing, the threshold for which was

p = 0.05/35 = 0.0014.

To account for the possibility that particular subgroups of

patients might exhibit different genotype-phenotype effects, we

stratified the effect of RPL5 (rs6604026) genotype on the time

between FDE and first relapse, and the effect of CD40 (rs6074022)

genotype on the SDT score by either sex or HLA-DR15 status.

In the subgroup analysis, the effect of RPL5 (rs6604026) on the

time between FDE and first relapse was very similar between

groups. There was no significant interaction or trend between

rs6604025 and sex (p = 0.915) or between rs6604025 and HLA-

DR15 status (p = 0.650) (Table 4). When CD40 (rs6074022) results

were stratified by sex, there was a weak trend towards a stronger

effect in males than females (coefficients 23.1247 and 21.1795

respectively), and a weak trend towards a stronger effect in HLA-

DR15 negative individuals than HLA-DR15 positive individuals

(coefficients 21.8818, and 20.9834 respectively), but these trends

were not significant (interaction p-values 0.475 and 0.224,

respectively) (Table 4).

Discussion

In this study, we investigated whether seven recently identified

MS risk-associated SNPs were acting as modifiers of severity on

any of five markers of MS severity in a large cohort of relapsing-

remitting and secondary progressive MS patients from south-

eastern Australia. We chose to investigate these associations using

an additive, allele-load model of inheritance, rather than recessive

and dominant models, to reduce multiple testing. We found no

evidence that any of the tested SNPs modified the clinical

phenotypes of MSSS, age of onset or the time between FDE and

first relapse. We also did not detect an effect of the risk SNPs on

cerebral atrophy as measured by the ICR, and no evidence of

effects on cognitive function as measured by the SDT. We have

previously reported that none of the seven risk-associated SNPs

tested here are determinants of relapsing versus primary

progressive phenotypes [5]. Similarly, a recent genome-wide

association study of 1000 people with MS [22] investigated SNP

markers associated with age of onset, MSSS, cerebral atrophy and

T2 lesion load, and none of the seven risk SNPs assessed in this

study were reported as showing strong trends of association with

the tested phenotypic variations.

In our study, MS risk-associated SNPs in CD40 and RPL5

showed weak trends towards association with specific disease

severity measures, namely with ICR and time between FDE and

first relapse, respectively. These associations were not significant

after appropriate correction for multiple testing. As these two

SNPs may potentially only be associated with disease severity in

subgroups of patients, the subjects were stratified on two known

risk factors, sex and HLA-DR15 status. There was weak, non-

significant evidence that the CD40 SNP has a stronger effect on

ICD in males and HLA-DR15 negative individuals. The observed

lack of effect of CD40 on phenotype is consistent with a previous

study of disease severity (EDSS), which used an extremes of

severity approach and could not detect an association between

severity and CD40 genotype [23].

This study only examined associations between the identified

risk SNP genotypes and MS disease severity. The currently

identified risk SNPs may be causative, or they may be in linkage

disequilibrium with as yet unidentified SNPs in the same or

neighbouring candidate genes, which could potentially carry

stronger associations with MS. Fine mapping or sequencing of

genetic regions near the currently identified risk SNPs will

probably refine the current MS genetic associations and could

Table 1. Demographic and clinical data for 1006 MS patients with RRMS or SPMS.

Metric Total Females Males HLA-DR15- HLA-DR15+

Patients 1006 781 225 414 540

Age of onset 31.20 (9.84) 31.15 (9.74) 31.36 (10.19) 32.08 (10.18) 30.46 (9.56)

Time between FDE and 1st relapse
(N = 1002)*

5.13 (6.53) 5.01 (6.22) 5.56 (7.51) 5.25 (6.31) 5.03 (6.29)

MSSS 4.12 (2.62) 3.96 (2.54) 4.70 (2.79) 4.10 (2.58) 4.20 (2.63)

Symbol Digit Test (N = 850) 41.44 (12.69) 43.09 (12.26) 35.51 (12.49) 41.43 (12.32) 41.21 (13.06)

Log (ICD/TCD) ratio (N = 755) 22.08 (0.30) 22.11 (0.30) 21.99 (0.26) 22.08 (0.28) 22.08 (0.31)

All results shown as: Mean (standard deviation).
*FDE = first demyelinating event.
HLA-DR15 status was available for 954 patients.
doi:10.1371/journal.pone.0010003.t001
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also change the results of our analysis of genetic modulation of MS

disease severity.

In the analyses utilising the full sample (eg MSSS outcomes), our

study had 80% power to detect associations with SNPs that

account for at least 1.6% of a trait’s variance, Due to missing data,

power was reduced in some analyses. For the smallest sub-sample

(MRI outcomes) we had 80% power to detect associations with

SNPs that account for at least 2.1% of variance after correction for

the 35 tests in Table 3 (significance level of p = 0.0014). We had

80% power to detect nominally significant associations (p = 0.05)

with SNPs that account for at least 0.8% of a trait’s variance (full

sample) or at least 1.0% of variance (individuals with MRIs).

Given that our study did not show significant associations

between individual risk SNPs and MS severity, we would not

expect interactions between multiple SNPs to greatly influence MS

severity. However, although the cohort size of this study is large, it

still does not permit formal testing of interaction hypotheses, as

even interaction tests between any two of the seven risk SNPs

would result in 42 interactions to be tested, and the power of such

a study would be very low.

Interaction tests between treatment exposures and risk SNPs for

association with MS severity are also difficult to conduct because

of power issues. However, at the time of clinical assessment, 71%

of the study cohort was on treatment with one of four disease-

modifying drugs available at the time. If there were a large, SNP-

specific treatment effect, we would expect to detect it in this study

as the particular SNP would, in this case, be a characteristic of the

individuals with reduced MS severity.

Few allelic variations associated with MS severity have been

found, and the only one to be confirmed in multiple studies is the

association between increasing allele load of HLADR15 and lower

age at MS onset [2,7,8,9,10]. The effect of HLA-DR15 on other

markers of disease severity is contentious. While some studies have

shown no effect [24,25], other studies have shown that HLA-DR15

influences several other markers of MS disease severity including the

number of lesions at presentation [13], normalized brain volume,

cognitive function [26] and even the type of early clinical

manifestation of MS [27]. Of the three alleles of the apoE gene,

ApoE4 has been reported to be associated with worse outcome, but

large studies, including our own [16]and a recent meta-analysis [28]

did not confirm any of these effects. Other, as yet unreplicated

disease-modifier SNPs have been reported. For example, a SNP in

IL-1b, which leads to higher expression of the protein, has been

reported to be associated with more benign disease, as assessed by

duration-adjusted EDSS [29]. Two different polymorphisms in the

promoter region of the matrix metalloproteinase 9 (MMP9) gene

are associated with higher MMP9 expression and, in MS cases, were

reported to lower the age-of-onset [30,31] however this effect was

not replicated in another study [32]. Polymorphisms in the

interleukin 4 gene and its receptor (IL4R) have also been shown

to be associated not only with MS susceptibility [33,34,35] but also

with a primary progressive course [36].

More recently, a genome-wide phenotype-genotype study using

gene-ontology techniques in patients with relapsing-remitting MS

[22] reported that the gene function categories ‘‘antigen processing

and presentation’’ and ‘‘CNS development’’ were enriched in MS

susceptibility whereas the categories of ‘‘axon guidance’’ and

‘‘glutamate signalling processes’’ were implicated in phenotypes of

CNS damage, namely, T2 lesion load and brain volume.

The metrics in this study were chosen because they could be

assessed in a large cohort of people with MS, and thus, it is

Table 4. Nominally significant results (p,0.05) stratified by
sex and DR15 genotype.

EV15/RPL5 CD40

rs6604026 rs6074022

Metric Time 1&2 SDT

Stratification Coef p-val Coef p-val

Overall 20.754 0.024 21.529 0.016

female 20.765 0.033 21.1795 0.086

male 20.679 0.412 23.1247 0.025

DR152 20.844 0.100 21.8818 0.054

DR15+ 20.540 0.219 20.9834 0.263

Interaction with sex 0.086 0.915 0.93613 0.475

Interaction with DR15 0.304 0.650 21.7919 0.224

P-values arise from tests of whether these fitted coefficients differ significantly
from zero. Time 1& 2 is the time between the first demyelinating event and first
relapse. Symbol digit test (SDT) scores have been adjusted for disease duration.
doi:10.1371/journal.pone.0010003.t004

Table 3. Tests of association between SNPs and MS disease severity metrics.

MSSS Age of onset Time 1&2 SDT Log(ICR)

Gene SNP
Minor
Allele Alleles MAF N Coef p-val Coef p-val Coef p-val Coef p-val Coef p-val

CLEC16A rs6498169 G A/G 0.371 983 20.020 0.877 0.207 0.669 20.029 0.928 20.228 0.710 0.010 0.536

IL2RA rs2104286 G A/G 0.232 979 0.022 0.879 0.088 0.874 0.465 0.207 0.031 0.964 20.005 0.775

IL7R rs6897932 T C/T 0.246 955 0.024 0.866 0.515 0.327 20.410 0.239 0.569 0.409 20.001 0.951

CD58 rs12044852 A C/A 0.108 958 20.210 0.845 1.982 0.624 0.704 0.793 3.156 0.545 0.111 0.435

EV15/RPL5 rs6604026 C T/C 0.296 957 20.028 0.838 0.221 0.663 20.754 0.024 20.524 0.422 20.011 0.507

CD40 rs6074022 C T/C 0.293 897 0.215 0.102 20.148 0.765 20.289 0.396 21.529 0.016 20.006 0.716

Chr12q13–14 rs703842 C T/C 0.267 898 0.109 0.428 0.022 0.966 0.160 0.654 20.013 0.985 20.013 0.444

MAF is the minor allele frequency. Fitted coefficients (coef) give the estimated change in disease severity metric for carriage of each additional minor allele. P-values
arise from tests of whether these fitted coefficients differ significantly from zero. Symbol digit test (SDT) and intercaudate ratio (ICR) scores have been adjusted for
disease duration. MSSS is the multiple sclerosis severity score. ICR is the intercaudate distance divided by the transverse skull diameter. Time 1& 2 is the time between
the first demyelinating event and first relapse.
doi:10.1371/journal.pone.0010003.t003
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possible that different measures could detect changes that could

not be assessed here. SDT, for example, is a good screening tool

for cognitive functional ability in MS, but if the various SNPs are

associated with a regional deficit, or a specific functional change,

then such an effect would not be detected in our study. Likewise,

ICR is a validated measure of overall brain atrophy, but if

potential modulating effects of the MS associated SNPs were

brain-region specific, then the change might not be detected in this

study. Additionally, it has been shown that aspects of MS disease

phenotype are population-specific or stratify on the basis of ethnic

origin. For example, in British and Scandinavian cohorts the

HLA-DR2 allele imparts an earlier age of onset of disease

[2,7,8,9,10], whereas in a cohort from the USA no effect was

observed [11]. Beyond this, the potential interactions between

disease associated SNPs and environmental factors may be

different in cold climates than from tropical ones. As such, our

results are particularly applicable to an MS population of

Caucasian of predominantly British origin, resident in the

temperate mid-latitudes (36u–43uS).

In this population, our study provided no evidence that MS

severity or progression was altered by recently confirmed risk

alleles in MS sufferers.
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