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Abstract

Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic
architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics.
The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2,
and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two
segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This
suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in
that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in
any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of
them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis;
immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens
suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype.
We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring
the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats
associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional
sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages
integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and
related species.
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Introduction

Bacteriophages represent a numerical majority of biological

entities in the biosphere although their full genetic diversity remains

ill-defined [1]. Many different virion morphologies have been

described, with the largest group being the Caudovirales, double-

stranded DNA (dsDNA) tailed phages [2]. The complete sequences

of approximately 750 phage genomes have been determined,

although over 70% of the sequenced dsDNA genomes correspond

to just twelve bacterial hosts [1,3]. As many or more prophages also

have been identified in bacterial genome sequencing projects [4,5].

Although phages of different bacterial hosts typically share little

nucleotide sequence similarity, phages of common hosts can also

represent substantial diversity at the nucleotide level [6,7].

Comparative analysis of 80 mycobacteriophage genomes

reveals substantial but not homogenous diversity. Although many
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Table 1. Genometrics of Cluster K mycobacteriophages.

Phage Length (bp) Overhang # ORFs # tRNAs School Location Subcluster Accession #

Adephagia 59,646 11 bases 94 1 UNT Denton, TX K1 JF704105

Anaya 60,835 11 bases 98 1 Calvin Grand Rapids, MI K1 JF704106

Angelica 59,598 11 bases 94 1 WUSTL University City, MO K1 HM152764.1

CrimD 59,798 11 bases 95 1 Wm. & Mary Williamsburg, VA K1 HM152767.1

TM4 52,797 10 bases 91 0 – Denver, CO K2 AF068845.1

Pixie 61,147 11 bases 100 0 Pitt Houston, TX K3 JF937104

doi:10.1371/journal.pone.0026750.t001

Figure 1. Dotplot comparison of Cluster K genomes. A. Nucleotide sequences of Cluster K genomes were concatenated and compared to
themselves and each other using the dotplot generator Gepard [75]. Phages Adephagia, Anaya, Angelica, and CrimD show extensive nucleotide
identity to each other while TM4 and Pixie are less similar, supporting division into Subclusters K1, K2 and K3 as shown. B. Average nucleotide
identities of Cluster K mycobacteriophages.
doi:10.1371/journal.pone.0026750.g001
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phages have little or no sequence similarity to each other,

examples of genomes with substantial nucleotide sequence

similarities have also been documented [7,8]. To facilitate

analysis, the phages have been sorted into clusters on the basis

of gross DNA relationships using the cluster metrics described

previously [6,9], and a total of eleven Clusters (A–K) have been

described [8]. The diversity among phages within clusters varies

greatly. At one extreme, the four genomes of Cluster G – Angel,

BPs, Halo and Hope – differ in only few nucleotide positions and

at the variable position of the Mycobacteriophage Mobile

Element (MPME) [8,10]. At the other extreme, the current

members of both Clusters A and B can be subdivided into four

subclusters (A1–A4, B1–B4), with subclustered genomes having

common genomic architectures but relatively low levels of

nucleotide sequence similarity [8]. Five of the 80 completely

sequenced mycobacteriophage genomes – Corndog, Giles,

Figure 2. Virion morphologies of Cluster K phages. Particles of Cluster K phages were put on 400 mesh coated copper grids and stained with
1% uranyl acetate. Virions were imaged using a Morgagni transmission electron microscope. All the cluster K phages exhibit a flexible non-contractile
tailed morphology with short side tail fibers. Virion capsids are ,55 nm in diameter and tails average ,190 nm in length.
doi:10.1371/journal.pone.0026750.g002

Figure 3. All Cluster K phages infect M. tuberculosis. Lysates of Cluster K phages were serially diluted with phage buffer and dilutions were
spotted onto lawns of M. tuberculosis mc27000. All cluster K phages infect M. smegmatis mc2155 (data not shown) and M. tuberculosis mc27000 with
equal efficiency. TM4 forms clear plaques whereas all other Cluster K phages form turbid plaques.
doi:10.1371/journal.pone.0026750.g003
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LeBron, Omega, and Wildcat – are ‘singletons’, having no close

relatives [8]. There are a total of 26 different subcluster and

singleton genomes, a remarkably large number for a collection of

phages that infect a common bacterial host strain, M. smegmatis

mc2155. Like most phage genomes, mycobacteriophages have

mosaic genomic architectures [9,11] with illegitimate recombi-

nation predicted to play a key role in the exchange of modules

amongst phage types [12].

Mycobacteriophages provide extremely useful tools for the

study and manipulation of their hosts. Many mycobacteriophages

were isolated originally for uses in phage typing of clinical

bacterial isolates [13,14] but have since proven to be workhorses

for developing mycobacterial genetics. A landmark achievement

was the construction of shuttle phasmids – chimeric vectors that

replicate in Escherichia coli as cosmids and upon transfection of M.

smegmatis yield mycobacteriophage particles that can deliver

foreign DNA to Bacillus Calmette Guérin (BCG) or M. tuberculosis

[15]. Incorporation of a drug resistance marker into a temperate

shuttle phasmid led to the development of the first transformation

systems [16], and addition of reporter genes such as firefly

luciferase or green fluorescent protein enabled construction of

tools for rapid diagnosis and drug susceptibility testing of

M. tuberculosis [17,18,19]. Other applications include the efficient

delivery of transposons to generate transposon libraries

[20,21,22], and for targeted gene replacement [23] or transfer

of point mutations [24] by specialized transduction. Mycobacter-

iophages have also been adapted for diagnostic applications in

amplification assays [25,26,27] and exploited for the development

of integration-proficient vectors [28,29], non-antibiotic selectable

markers [30], and recombineering systems [31,32,33,34].

Mycobacteriophage TM4 plays a central role in mycobacterial

genetics, being the first phage to be used for shuttle phasmid

construction [15] and still widely employed for efficient gene

delivery to M. tuberculosis. It has also been useful for understanding

the role of phage-encoded WhiB proteins [35], lysis systems [36],

and the role of conserved peptidoglycan hydrolyzing motifs in

tapemeasure proteins [37]. The phage was initially recovered from

a putative lysogenic strain of M. avium [38], although following

purification the original host strain was not immune to TM4

superinfection [38]. It has a broad host range infecting both fast-

and slow-growing mycobacteria [39] but does not appear to form

stable lysogens in any strain [15,17]. Timme et al., (1984) suggest

that either the original strain became cured of its prophage, or the

prophage is present in a pseudolysogenic state, such that a

majority of cells remain susceptible to infection. The complete

sequence of the TM4 genome [40] shows that it is 52,797 bp in

length and contains 92 predicted protein-coding genes and no

tRNA genes [40]. There is no evidence for a phage repressor,

but because repressors encompass considerable sequence

diversity [30] they cannot always be readily identified bioinfor-

matically. It is clear that TM4 does not encode a serine- or

tyrosine-integrase, partitioning functions, or recognizable trans-

posases that might indicate a temperate life-style. Thus the

relationship of TM4 to its parent strain M. avium 8/9 serovar 4

remains unresolved.

A potential disadvantage of the use of shuttle phasmids for gene

delivery purposes is that infection typically results in phage

replication and lysis of the infected host. To circumvent this,

conditionally replicating derivatives of TM4 have been isolated

that grow at 30uC but fail to replicate at 37uC [20,41]. To ensure

that reversion to temperature resistance does not interfere with

recovery of derivatives at 37uC that require low frequency events

(such as transposon or recombination), conditionally replicating

derivatives such as TM4 derivative ph101 were generated using

Figure 4. Immune specificities of Cluster K phages. Cluster K phages were serially diluted 100-fold and spotted onto lysogens of Subcluster K1
and K3 phages, as shown.
doi:10.1371/journal.pone.0026750.g004
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multiple rounds of mutagenesis; these presumably contain two

more mutations that contribute to the phenotype [20]. Similar

TM4 shuttle phasmids have also proven useful for gene delivery in

Mycobacterium marinum [42,43] and Mycobacterium avium subsp.

Paratuberculosis [44,45].

We recently described the isolation of two phages – Angelica

and CrimD – with discernible nucleotide sequence similarities to

TM4. The three phages formed a new cluster, Cluster K, and are

divided into two subclusters, K1 (Angelica and CrimD) and K2

(TM4) according to their nucleotide relationships [8]. Here we

report the discovery of three additional Cluster K phages, Anaya,

Adephagia, and Pixie, and provide a detailed comparative

analysis of the Cluster K genomes. Interestingly, all of these

phages – with the notable exception of TM4 – are temperate and

form stable lysogens in both fast- and slow-growing mycobacteria.

The integration functions are identified, but appear to be deleted

from the center of the TM4 genome. These observations suggest

that TM4 has undergone relatively recent deletion events that

explains its biological oddities. We also map the mutations that

give rise to the conditionally replicating phenotype in the TM4

derivative ph101.

Results and Discussion

Phage isolation and genome sequencing
The isolation of TM4, Angelica, and CrimD has been described

previously [8,38], as well as their genomic sequences [8,40].

Phages Anaya and Adephagia were isolated at Calvin College and

the University of North Texas respectively as part of a freshman

research-based course supported by the Howard Hughes Medical

Institute (HHMI) Science Education Alliance (SEA). Pixie was

isolated at the University of Pittsburgh as part of its Phage Hunters

Integrating Research and Education (PHIRE) program [46]. All

were isolated by the plating of environmental samples on lawns of

Mycobacterium smegmatis mc2155; Pixie, Adephagia, and Anaya were

recovered after enrichment by growth in the presence of M.

smegmatis.

Following plaque purification, DNA was isolated, and each

genome was shotgun sequenced using 454 technology to at least 25-

fold redundancy (,4000 to ,8000 reads per genome). In the cases

of Adephagia and Anaya, shotgun Illumina reads (100-fold

redundancy) were also generated to strengthen any weak points in

the 454 data. Remaining ambiguities and the nature of the genome

termini were resolved by targeted Sanger sequencing with

oligonucleotide primers using phage genomic DNA as a template.

The general genomic features of these phages are shown in Table 1.

Cluster and subcluster assignments
Comparison of the genome sequences of phages Anaya,

Adephagia, Angelica, CrimD, and Pixie by dotplot analysis shows

that they share extensive nucleotide sequence similarity (Fig. 1A).

This similarity is clearly to different degrees, but none show

substantial DNA similarity to any other sequenced mycobacter-

iophages (data not shown). Anaya, Adephagia, Angelica and

CrimD show strong similarity (.92% pair wise average nucleotide

similarity; ANI, Fig. 1B) and constitute Subcluster K1. Both TM4

and Pixie share less than 73% ANI to the other phages in that

TM4 constitutes Subcluster K2 [8], and Pixie is the sole member

of the new Subcluster, K3 (Fig. 1).

Virion morphologies
Electron microscopy of the Cluster K phages shows that they

have similar particle morphologies with long flexible non-contractileF
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tails and isometric heads (Fig. 2). The heads of all six phages are

approximately 55 nm in diameter and the tails are 185–200 nm

long. The Cluster K phages are thus classified morphologically as

members of the Siphoviridae. Short side tail fibers at the tip of the tail

can be seen on many of the particles.

Host-range of Cluster K phages
The host-range of TM4 has been described previously

[38,39,45]; it is reported to infect fast-growing mycobacteria such

as M. smegmatis as well as the slow-growing M. tuberculosis H37Rv and

M. ulcerans. However, these reports differ in regards to the infection

of M. avium by TM4, with substrains M. avium 701; 6, M. avium 702;

7, M. avium 3746/02 being resistant to infection [39], whereas

substrains M. avium Bridge, serovar 2, M. avium 158, serovar 2, M.

avium TMC 1419, serovar 2, and M. avium TMC 1461, serovar 2 are

sensitive [45]. Timme et al (1984) report that TM4 infects nine M.

avium strains, all of different serovars. Rybniker et al (2006) postulate

that because TM4 was derived from a putative lysogenic strain of M.

avium 6/8 serovar 4, the failure to infect some substrains of M. avium

may be due to superinfection immunity conferred by resident

prophages.

We tested phages Adephagia, Anaya, Angelica and CrimD as

examples of Subcluster K1 as well as TM4 and Pixie for plaque

formation on M. tuberculosis mc27000, M. bovis BCG strain Pasteur,

M. avium 104, and M. marinum strains M and 927. All six phages

infected M. tuberculosis mc27000 efficiently, albeit with different

plaque morphologies (Fig. 3); TM4 yields larger clear plaques

while Angelica, CrimD, and Pixie produce smaller, turbid plaques.

Adephagia and Anaya produce large turbid plaques, although

Anaya only produces plaques when incubated at or below 33uC.

Only TM4 showed infectivity on M. bovis BCG, although we

observed a reduction of efficiency of plating relative to M. smegmatis

Figure 6. Genome map of Mycobacteriophage TM4. A map of the TM4 genome was revised from that reported previously [40]. The genome is
shown with markers spaced at 100 bp intervals, with genes shown as colored boxes, either above (rightwards transcribed) or below (leftwards
transcribed) the genome. Gene names are shown within the boxes, and the phamily number of that gene shown above with the number of phamily
members in parentheses. Genes are colored according to their phamily, and white genes represent orphams (phams with only a single member).
Genes 92, 93, and 94 are newly assigned, transcribed in the reverse direction from the rest of the genes of the genome, and replace gene 41 in the
original TM4 annotation (see figure 11A). Putative gene functions are indicated. Also shown is a segment that is deleted in construction of shuttle
phasmid phAE159 [23], and the locations of mutations (purple asterisks) and PCR amplicons (purple bars) used in their analysis. Vertical arrows with
numbers show the positions of Start-Associated Sequences (SAS), either with (ESAS; red arrows) or without (black arrows) extended SAS sequences
(see Figs. 14 and 15). SAS and ESAS sites are numbered as in Fig. 14 and are all in one orientation unless indicated otherwise with a minus sign.
doi:10.1371/journal.pone.0026750.g006
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by between five and six orders of magnitude. No infectivity of

M. avium 104 was observed with any of the Cluster K phages tested

here. Adephagia, Anaya, Angelica and CrimD showed no

infection of either M. marinum strain, although both TM4 and

Pixie did, albeit at a greatly reduced efficiency of plating (data not

shown). Plaques picked from these plates and re-spotted on lawns

of M. marinum did not show an increased ability to infect either M.

marinum strain over the parent phages. These plaques were only

observed using 0.35% top agar and incubating at room

temperature. We do not yet know the basis for these observed

reductions in plating efficiencies, although it could be the result of

restriction, CRISPR’s, abortive infection, or the need for

mutations that would expand the host range.

Temperature-dependence of Anaya growth
Despite its genome sequence similarity to the other members of

Cluster K1, Anaya does not share the same temperature growth

range. No wild-type Anaya plaques were observed on M.

smegmatis or M. tuberculosis lawns when plates were incubated at

temperatures higher than 33uC; however, it was possible to

isolate stable high-temperature resistant Anaya mutants from

high titer M. smegmatis infections at 37uC. A wild-type Anaya

lysate incubated at 37uC for one hour retained infectivity,

indicating that the particles themselves do not dissociate at

elevated temperatures. The nature of this temperature sensitivity

during infection remains unclear.

Anaya, Adephagia, Angelica, CrimD, and Pixie are
temperate phages

It has previously been reported that TM4 behaves as a lytic

phage in infection of M. smegmatis or M. tuberculosis, and lysogens

have not been reported [17]. Furthermore, the genome of TM4

contains no readily identifiable features to suggest that it is

competent to form lysogens [40]. However, during the host range

analyses described above, it was evident that all of the other

Cluster K phages form turbid plaques on all the susceptible strains

tested. The Cluster K1 phages consistently show uniform,

medium-sized plaques (,2 mm dia.), although Pixie plaques are

smaller, with more variation in size and less turbidity. Using these

phages, we successfully recovered lysogenic derivatives of M.

smegmatis that both confer immunity to self-superinfection, and

release phage spontaneously into culture supernatants. Integration

of the genomes was confirmed by PCR across one of the putative

attachment junctions (see below). In spite of further attempts, we

were unsuccessful in recovering any TM4 lysogens.

We have determined the immune specificities of each of the

Cluster K phages (Fig. 4). Interestingly, we observed patterns of

reciprocal immunity of the K1 and K3 phages, and presumably

this homoimmune group of phages has related repressor-operator

systems. In contrast, TM4 efficiently infects all of the lysogenic

strains tested (Fig. 4). We note that the Adephagia lysogen behaves

somewhat differently to the other K1 phages and appears to confer

at least partial immunity to all of the phages tested, including TM4

Figure 7. Genome map of Mycobacteriophage Anaya. The genome map of Anaya is shown with annotations as described for Figure 6.
doi:10.1371/journal.pone.0026750.g007
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and Pixie (Fig. 4). These observations are especially revealing

about TM4 and its previously characterized properties. A simple

explanation is that TM4 is a relatively recent derivative of a

temperate phage that was heteroimmune with other Cluster K

phages, but which has lost its immunity functions. When this event

may have happened is unclear, it could have occurred during

passage of the phage between its isolation in 1984 and genome

sequencing in 1998, during the process of isolation, or at some

prior time as a naturally occurring event. This is discussed in

greater detail below. We note the obvious parallels to the

relationship between D29 and Cluster A phages such as L5

[47,48]. In D29, a 3.6 kbp deletion removes a segment that in L5

contains the repressor, and although D29 is lytic in nature, it is

homoimmune with L5 immunity [30].

Revisions to the TM4 genome annotation
The development of improved bioinformatic tools and the

advantages of comparative genome analysis facilitate a revision of

the TM4 genome annotation, an important consideration given its

widespread use in mycobacterial genetics (Table S1; Figs. 5, 6, 7, 8,

9). We propose that three formerly identified orfs – designated as

genes 32, 37, and 71, are removed. The first two are very small

(90 bp and 150 bp respectively) and show no compelling evidence of

coding potential. The third (71) is somewhat larger (294 bp) but also

shows little evidence of coding potential. In the central part of the

genome, there was formerly a single small rightwards-transcribed orf

(336 bp), designated gene 41. We propose that this is replaced by

three small orfs on the opposite strand, designated as genes 93, 94

and 95 (to maintain the prior gene naming scheme). Although all

three are small, they all show good coding potential as predicted by

GeneMark [49]. In addition, relatives of 93 (Pham 1847) are present

in Pixie (as gene 74, Fig. 9) – although not in the Subcluster K1

phages – and distributed broadly among a diverse collection of

different mycobacteriophages (Fig. 10). The closest relative of TM4

gp93 is Pixie gp74 although the proteins share only 53.7% identity,

and the route by which TM4 gene 93 arrived at its current genomic

location in TM4 is unclear.

In addition, there are five TM4 genes for which an alternative

start codon is predicted, genes 12, 26, 51, 66, and 76. Two of these

were previously annotated to use either AUG (gene 76) or GUG

(gene 26), and all have been re-annotated to use a UUG start

codon, with better predictions for ribosome binding sites and

better alignment with the predicted coding potential. Translation

start sites for genes 12, 51, and 66 were changed to more closely

reflect the coding potential (Table S1).

Cluster K genome organizations
Five of the six Cluster K genomes (Anaya, Adephagia, Angelica,

CrimD and Pixie) are of similar lengths (59.1–61.1 kbp) with TM4

(52.7 kbp) being approximately 7 kbp shorter (Table 1). All of the

viral genomes are linear with defined ends having 39 single-stranded

DNA complementary extensions; all have 11-base extensions with

Figure 8. Genome map of Mycobacteriophage Adephagia. The genome map of Adephagia is shown with annotations as described for
Figure 6.
doi:10.1371/journal.pone.0026750.g008
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the exception of TM4, which is reported to have a 10-base extension

[40]. The genomes contain between 90 and 100 predicted protein-

coding genes and the four Cluster K1 genomes – Anaya,

Adephagia, Angelica and CrimD – all encode a single tRNAtrp

near their left end (see Tables S1, S2, S3, S4, S5, S6).

To facilitate comparative genomic analysis, the three newly

sequenced genomes were added to the 80 previously described

mycobacteriophage genomes to create a database (Mycobacter-

iophage_83) for the genome comparison program, Phamerator

[50]. The total of 9,308 predicted protein-coding genes were

compared with each other using ClustalW and BlastP, and

assembled into 2,667 phamilies using previously published param-

eters (manuscript submitted). Of these, 1,120 (47.3%) are orphams

(phams containing only a single gene member). The mean pham

size is 3.932.

An overview of the relationships between the six cluster K

phages is shown in Fig. 5, and several patterns emerge. First, the

extent of nucleotide sequence similarities between the genomes are

clearly illustrated, and emphasizes the close similarity among the

Cluster K1 phages, and the more distant relationships between

these and the subcluster K2 and K3 phages. The left parts of the

Cluster K1 genomes are especially closely related, with greater

deviations in the right parts (Fig. 5). Secondly, the overall genome

architecture is shared by all six phages with a substantial number

of shared genes, as seen from the commonality of the color-coded

pham assignments (Fig. 5). Thirdly, the basis for the smaller size of

the TM4 genome compared to both its subcluster K1 and K3

relatives is apparent, with reductions in size near the left end, in

the middle, and at the extreme right end (Fig. 5; see below).

Genome maps of Anaya, Adephagia, TM4 and Pixie are shown

in Figures 6, 7, 8, 9 [Angelica and CrimD were reported recently

[8] and maps are provided as Figs. S1 and S2; the TM4 map

(Fig. 6) is a revision of that reported previously [40]. In all of the

Cluster K phages the virion structure and assembly genes occupy

the leftmost 22–24 kbp and are transcribed rightwards. There is

considerable departure among the genomes at their extreme left

ends, with a variable number of small genes of no known function

between the terminase large subunit gene and the left physical end.

All of the K1 phages, but neither TM4 nor Pixie, contain a

tRNAtrp gene in this region. Within the virion structure and

assembly genes there are a few notable differences between the

genomes. First, the putative capsid assembly proteases of the K1

and K3 phages are larger than that of TM4 (Figs. 6, 7, 8, 9) due to

a central insertion of about 1.1 kbp. This central portion does not

appear to be related to inteins, homing endonucleases, or other

mobile elements, but does have weak sequence similarity to parts

of methyl-accepting chemotaxis proteins of several bacteria

including Planctomyces limnophilus and Chromobacterium violaceum;

however, it is compositionally biased (rich in alanine) which could

account for the weak sequence similarity. The tapemeasure

proteins are similar in length with the exception of Pixie gp20,

which is 114 amino acid residues longer than the others; Pixie has

a correspondingly longer tail than the other Cluster K phages

(Fig. 2). To the right of the tail genes are the lysis cassettes, each of

which contains a Lysin A gene, a Lysin B gene, and a putative

holin gene. However, there is substantial diversity among the

Cluster K phages in these genes. For example, the Lysin A of Pixie

(gp31) is unrelated to the other Cluster K Lysin A proteins, and is

Figure 9. Genome map of Mycobacteriophage Pixie. The genome map of Pixie is shown with annotations as described for Figure 6.
doi:10.1371/journal.pone.0026750.g009
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more closely related to the Lysin A proteins of Cluster E phages

(sharing, for example, 65% amino acid identity with Cjw1 gp32).

The putative holin genes are downstream of the Lysin B genes,

each containing 4–5 putative membrane-spanning domains and

are only weakly related to each other and not across their entire

spans. The 7–8 rightwards transcribed genes to the right of the

lysis cassettes (e.g. Anaya genes 34–40, Fig. 7) are of unknown

function, although we note that Anaya gene 36 and its relatives in

the other five Cluster K phages have relatives in distantly related

phages including Propionibacterium acnes phage PA6. This region

is one of the most diverse among the Subcluster K1 phages

(Fig. 5).

With the exception of TM4 (see below), integration cassettes

containing putative integrase genes and attP sites are located close

to the center of the genomes; the integrases are of the tyrosine

recombinase family and the attP sites are located to the 59 side of

the integrase genes (Figs. 7, 8, 9). The integration cassettes are

flanked by a small number of genes transcribed in the leftwards

Figure 10. Phamily circle of Pham1847. A phamily circle of Pham1847 is shown with each of the 83 phages around the circumference of the
circle and arcs drawn between phages that contain a member of Pham1847; BLASTP values shown as blue lines and ClustalW similarities as red lines.
doi:10.1371/journal.pone.0026750.g010
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direction, whose function is unknown. Putative Xis genes encoding

proteins with MerR-like DNA binding domains are located to the

right within an apparently long rightwards-transcribed operon that

extends to the right end of the genomes. This region contains

WhiB-related proteins, e.g. TM4 gp49, a protein that has been

shown to be non-essential for TM4 growth [35] although it is

well-conserved among the Cluster K phages. Other genes whose

functions can be predicted from database similarity searches are

those related to SprT (e.g. Pixie gp78), RusA (e.g. Adephagia

gp75), HNH homing proteins (e.g. TM4 gp92), glutaredoxin-like

NrdH proteins (e.g. TM4 gp67) and a large Primase/Helicase

protein (e.g. TM4 gp70). The Subcluster K1 genomes also encode

Figure 11. Putative deletions giving rise to phage TM4. Comparison of the TM4 genome to the other Cluster K genomes reveals two
segments that appear to have been lost from TM4, and which may contribute to its non-temperate phenotype. A. The central parts of the CrimD,
TM4, and Pixie genomes are aligned, with the colored shading reflecting the presence of genes of shared phamilies (i.e. homologues; note this
shading does not reflect nucleotide sequence similarity as in Fig. 5). Although nucleotide sequence similarity is minimal, the alignment of shared
genes suggests the loss of about 3.5 kbp form TM4 compared to its relatives. B. Alignment of the right ends of the CrimD, TM4 and Pixie genomes
suggesting loss of ,3.3 kbp from TM4 compared to its relatives; shading is as described for A.
doi:10.1371/journal.pone.0026750.g011
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relatives of RtcB (e.g. Anaya gp88), a putative RNA ligase

component [51]. Because only the Subcluster K1 genomes encode

both tRNA and the RtcB proteins, we speculate that these phage-

encoded RtcB proteins play a role in protection against a host-

mediated tRNA cleavage defense against viral infection [52]. The

remainder of the proteins encoded in these regions are of unknown

function, and we note that about 30% of the Pixie genes in this

region are orphams, reflecting its high genomic diversity from all

other mycobacteriophages.

TM4 is a derivative of a temperate parent
TM4 was originally isolated by recovery from a strain of M.

avium, although understanding its origin is complicated by the

observations that it is able to infect the original M. avium strain and

does not appear to be temperate in any mycobacterial host [39]

(Fig. 3). Because the related Cluster K phages are all temperate, we

have investigated potential genes that are deleted in TM4 and that

could contribute to a temperate lifestyle.

Because none of the other phages are closely related to TM4 at

the nucleotide sequence level (Fig. 5), the most informative

comparisons emerge from comparing shared genes with amino

acid sequence similarity (Fig. 11). We have focused on two regions

of the genomes. The first is at the center of the genomes where the

integration cassettes are found in the Subcluster K1 and K3

phages (Fig. 11A). TM4 genes 40 and 42 correspond to CrimD

genes 38 and 44 such that the three leftwards transcribed TM4

genes, 93, 94, and 95, occupy the location corresponding to

CrimD genes 39 and 44 (Fig. 11A). Thus a simple explanation is

that TM4 has lost a DNA segment approximately 3.5 kbp in

length from a temperate parent that included the integrase gene

and attP site. Interestingly, TM4 retains the predicted Xis

function encoded by gene 43, consistent with this interpretation

(Fig. 11A).

The second region of interest is at the right end. The

comparison between CrimD and TM4 is perhaps the most

informative. CrimD contains homologues of TM4 gp84 and gp85

(CrimD gp83 and gp90), but they are separated by a 3.3 kbp DNA

segment containing six predicted open reading frames (Fig. 11B).

This suggests that TM4 has undergone a deletion of approxi-

mately 3.3 kbp between genes 84 and 85 from its putative

temperate parent. It is plausible that one of the lost genes

corresponds to a phage repressor, consistent with TM4’s clear

plaque phenotype. We note that the L5 repressor (gp71) is

encoded near the right end of its genome, so this is a not an

unusual genomic position for a repressor gene. Although none

of the genes in these regions of the Cluster K1 or K3 genomes

have sequence similarity to known repressors, all the K1 and K3

phages are homoimmune and are thus expected to share similar

repressors. Pixie is quite different from the K1 genomes in this

region, and there is only a single gene that they share in this

interval, corresponding to Pixie gp85, Anaya gp90, Adephagia

gp86, CrimD gp87, and Angelica gp84. However, prelimi-

nary analysis suggests that expression of CrimD gp87 from a

plasmid in the host cell does not confer immunity to any of

Cluster K phages and it is therefore an unlikely repressor

candidate.

All of the Cluster K genomes contain a member of Pham2518

with putative DNA binding motifs. We therefore tested whether a

member of this phamily, Pixie 81 (Fig. 9) confers immunity to

superinfection. Expression of Pixie gp81 strongly interferes with

Pixie infection (Fig. 12), but has only modest effects on infection

with TM4, CrimD, and Adephagia, supporting infection but

yielding plaques with increased turbidity. If Pixie gp81 and its

relatives encode phage repressors, we would expect to observe

immunity to other Subcluster K1 and K3 phages; thus we propose

that these proteins are involved in gene regulation but not as

phage repressors. Unsuccessful attempts to delete Pixie 81

suggest it is likely to be an essential gene, consistent with this

interpretation. TM4 gene 72 has a small internal deletion

compared to its relatives but its functionality is unknown.

Characterization of integration functions
The Cluster K1 mycobacteriophages are unusual in that they

are predicted to integrate into a chromosomal attB site that

overlaps the host tmRNA gene. Each contains a 24 bp common

core segment corresponding to the extreme 39 end of the tmRNA,

suggesting that strand exchange occurs within or close to the

segment corresponding to the tmRNA TyC stem [53]. The M.

tuberculosis tmRNA gene differs from both M. smegmatis and the

phages by a single base within the TyC loop, although this does

not appear to interfere with integration since these phages form

stable lysogens in M. tuberculosis. These attP common cores are

located to the 59 sides of the integrase genes in each of the K1

genomes (Fig. 13). A search for potential integrase arm-type DNA

binding sites in CrimD reveals two pairs of 11 bp repeats, each

flanking the common core (Fig. 13A–C), which we have labeled

P1, P2, P3 and P4. Sites P3 and P4 are inverted in orientation

relative to P1 and P2 (Fig. 13A); Anaya, Adephagia, and Angelica

Figure 12. Expression of Pixie gp81 interferes with infection by Cluster K phages. M. smegmatis strains containing plasmid pCMF06 in
which Pixie gene 81 is under control of the acetamidase-inducible promoter were tested for infection by Cluster K phages by spotting serial dilutions
onto lawns of induced or uninduced strains. Expression of Pixie gp81 strongly inhibits Pixie infection and confers greater turbidity of other Cluster K
phages.
doi:10.1371/journal.pone.0026750.g012
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have similar organizations. We note that both mycobacteriophages

Giles and L5 also contain pairs of putative arm-types [54,55]

although in these examples they are in direct orientation and L5

has several additional arm-type sites [54].

The CrimD four arm-type sites are not identical and vary in two

positions (Fig. 13C). Angelica contains identical sites to CrimD,

but interestingly both Anaya and Adephagia have potential

arm-type binding sites with different consensus sequences

(Fig. 13C). For example, whereas the consensus position 7 in

CrimD is a T residue, in Anaya it is a G, and in neither case is

there any departure from the consensus (Fig. 13C); in contrast, two

of the Adephagia sites have T residues, and two have G residues.

Because the arm-type sites are recognized and bound by the N-

terminal domains of the tyrosine integrases we have compared

these regions of the Subcluster K1 integrases (Fig. 13D). They are

very closely related but contain amino acid substitutions at

positions 17 and 19, which are thus candidates for involvement in

recognition of the site features that differ between these genomes

This is consistent with the model for arm-type site recognition by

the lambda integrase [56]. An intriguing possibility is that

Adephagia represents a transitional state between the evolution

of a CrimD-type specificity and an Anaya-type specificity (Fig. 13).

It is also interesting to note that these Cluster K1 phage integrases

are close relatives of some of the Cluster F1 integrases, including

Fruitloop gp40 (44% amino acid identity), although these in-

tegrate into a different attB site that overlaps a tRNAala gene

(Msmeg_2138).

Because the putative Subcluster K1 attB site is distinct from

those reported for other mycobacteriophages, this presents an

opportunity to construct integration-proficient vectors that are

compatible with those derived from L5 [29], Tweety [57], Giles

[55], Bxb1 [58], and Ms6 [59]. To construct a new integration-

proficient vector we PCR amplified a segment of the Adephagia

genome containing the int gene (41) and attP site and inserted it

into a mycobacterial non-replicating plasmid to generate pWHP02.

Introduction of pWHP02 into electrocompetent M. smegmatis

yielded transformants at a frequency of 56105 transformants/mg

DNA. PCR analysis of four independent transformants showed that

plasmid integration had occurred at the predicted attB site within

the M. smegmatis tmRNA gene (data not shown).

The Subcluster K3 phage Pixie codes for an integrase more

distantly related to the K1 integrases, although it shares substantial

similarity to other mycobacteriophage integrases including the

Tweety (Subcluster F1) integrase (44% amino acid identity) that

was characterized previously [57]. The Pixie 47 bp attP common

core (Fig. 13B) is similar to that of Tweety and they are predicted

to integrate into the same attB site overlapping a tRNAlys gene

(Msmeg_4746). The Pixie attP site has an unusual array of

potential arm-type binding sites with a pair to the left of the core

(P2 and P3), and a set of three to the right (P4, P5, P6), all in direct

orientation (Fig. 13B). A sixth site (P1) is located to the left of the

core but oriented in the opposite orientation. These correspond

closely to a consensus sequence with few departures (Fig. 13C).

Phages with related integrases (e.g. Tweety) that use the same

attP site do not share these arm-type sequences and presumab-

ly have different recognition specificities, although this remains

ill-defined.

Identification of Start Associated Sequences (SASs)
BlastN comparison of each of the Cluster K genomes against a

database of all sequenced mycobacteriophage genomes reveals the

presence of short repeated sequences located throughout the

Cluster K genomes. The arrangement of these repeats is complex,

and although their function is not known, their locations and

orientations suggest a possible role in translation initiation. There

are fundamentally two types of repeats. The first is a 13 bp

asymmetric sequence present in between 11 and 19 copies in each

Cluster K genome. The second is a pair of imperfect 17 bp

inverted repeats located just upstream of a subset (about 50%) of

the 13 bp repeats.

The locations of the 13 bp sequence 59-GGGATAG-

GAGCCC repeats are shown on the genome maps represented

in Figures 6, 7, 8, 9, S1 and S2, and alignments of the sequences

are shown in Figures 14 and S3. There are several striking

features. First, it is apparent from the genome maps (Figs. 6, 7, 8,

9) that these sites are restricted to the right halves of the genomes

containing non-structural protein genes. Second, virtually all of

the repeats are located within a few nucleotides of the predicted

translation start codons of downstream genes, typically 3–7 bp

(Fig. 14, S3), and the start codon most commonly associated with

SASs is ATG (80 of 93 sites identified) though ATG in general is

only used by about 55% of mycobacteriophage genes. Third, the

sequence is non-palindromic notwithstanding the symmetry of

the outer parts of the sequence (i.e. 59-GGGNNNNNNNCCC),

and is typically present in one orientation only (Anaya,

Adephagia, Angelica, and CrimD all have a single site in the

opposite orientation that is not obviously associated with a gene

start; Figs. 14 and S3). Fourth, these sequences are predomi-

nantly associated with genes that are separated from their

upstream gene neighbors by more than 50 bp, relatively large

intergenic regions within the context of typical phage genome

organization (Tables S1, S2, S3, S4, S5, S6). Finally, this

sequence is not common among mycobacteriophages, and

outside of Cluster K genomes, only Corndog has a single copy

with two deviations from the consensus. There is not a single

copy of the consensus 13 bp sequence in M. smegmatis and only

four when permitting a single deviation. Likewise there are no

exact copies in M. tuberculosis H37Rv and only two with a single

deviation.

This conserved sequence is in the position typically occupied by

the Ribosome Binding Site (RBS). Indeed, the repeat contains the

59-AGGAG sequence that is a core component of the Shine-

Dalgarno sequence that pairs with the 39 end of the 16S rRNA

during translation initiation, and positions 2–4 of the conserved

sequence have the capacity to extend the pairing with 16S rRNA

Figure 13. Organization of the attP sites of Cluster K genomes. A. Organization of the attP site of phage CrimD. The attP core region with
sequence similarity to the chromosomal attB site is indicated, with predicted integrase-binding arm-type sites (P1, P2, P3, and P4) shown flanking it.
The predicted orfs for integrase (41) and gene 40 are shown (see Fig. S2 for genomic context). A putative rightwards stem-loop terminator is located
between the core and P3 sites; the attP sites for the other K1 phages are organized similarly. B. Organization of the attP site of phage Pixie, annotated
as above. The K3 phage Pixie uses an integrase more distantly-related to those encoded by K1 phages, has a different attP core, and integrates into a
different attB site. C. Alignment of the putative arm-type sites of Cluster K phages and the consensus sequences derived from them. Consensus
positions shown in bold indicate differences between the K1 phages (CrimD, Angelica, Anaya, and Adephagia). D. Alignment of the N-terminal
regions of the Subcluster K1 integrases that are predicted to recognize the arm-type sites.
doi:10.1371/journal.pone.0026750.g013
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(Fig. 14). However, it seems unlikely that this repeat simply

corresponds to just a favorable translation initiation site. First, the

starting base of the sequence is extremely well conserved (Fig. 14)

but has no corresponding base to pair with in 16S rRNA. Second,

positions 10–13 are also highly conserved, but do not have pairing

potential with rRNA (Fig. 14). Nonetheless, the positioning of

these repeats suggests a role in translation initiation – in contrast to

the 13 bp stoperator sequences in L5 and other Cluster A phages

that play a role in transcription regulation [60] – and we therefore

propose that they be called Start Associated Sequences (SASs).

Whether these act independently or represent binding sites for

either a host- or phage-encoded gene product (either RNA or

protein) remains to be determined. The conservation of these sites

across the three subclusters – often associated with genes of

different phamilies (Table 2) – strongly suggests that they play

important roles for these phages.

Approximately one half of the genes with an SAS also contain a

second sequence feature composed of imperfect 17 bp inverted

repeats (IRs) separated by a variable spacer (Figs. 15, S4). Because

these are tightly associated with SASs, we refer to these as

extended SASs (ESAS); in one notable exception the inverted

repeat upstream of TM4 gene 79 does not appear to be associated

with an SAS (Fig. 15A). For each genome a consensus sequence

can be derived (Fig. 15B) from the left and right IRs, although the

left IRs typically have a closer correspondence to the consensus

than the right IRs (Figs. 15, S4); the spacer region between the IRs

is variable, but is 4–13 bp in the vast majority of sites (Figs. 15A,

S4). Interestingly, the consensus sequence of the IRs is different for

phages of the three subclusters. The four Subcluster K1 phages

have very similar IR consensus sequences (Figs. 15, S4), but differ

from those of the Subcluster K2 (TM4) and K3 (Pixie) at positions

11, 12 and 13. For example, at position 11, there is predominantly

a C in Anaya (in 15 of 16 IRs), but a T in both Pixie and TM4 (16

of 18 and 10 of 12 IRs respectively). At position 12, the C residue

is strongly conserved in both Pixie and TM4, with no departures in

any of the 30 constituent IRs, but this site is predominantly an A

residue in Anaya (two of the 16 IRs have a C). At position 13 Pixie

and TM4 have a consensus A residue, with no departures in any of

the 30 IRs, whereas in Anaya this site is predominantly a T (two

IRs have a G, and one has a A) (Fig. 15).

The ESAS sites are well conserved among the Cluster K

genomes, in that if a gene of a particular phamily is associated with

an ESAS in one genome, then other Cluster K genomes

containing a gene member of that phamily also have an

associated ESAS (Table 2). A notable exception is TM4 gene

80 (Pham 1364), which lacks an ESAS (it has an SAS), whereas all

other phamily members have an ESAS (Table 2). Inspection of

the TM4 sequence shows that the site is completely lacking,

rather than having more highly diverged but related IRs. The

conservation of these sites strongly suggests that they serve

important functions for the phages, although it is not clear what

they are. Because these are closely linked with the SASs that in

turn are associated with translation initiation sites, it is tempting

to assume that they also play a role in translation initiation.

However, there is little support for the possibility that the two IRs

form hairpin structures in mRNA, in that departures in the left

and right IRs do not generally support RNA base-pairing.

Therefore, it seems more likely that these represent binding sites

for DNA-binding proteins and that the differences in consensus

sequences represent different specificities in the three subclusters.

One possible role might be in transcription initiation (i.e.

promoters), but alternatively they could be operator sites for

phage repressors. This latter explanation is attractive except that

the K1 and K2 phages are homoimmune (Fig. 4), which is not

consistent with the consensus differences. Furthermore, it is

unclear why in virtually every occurrence the IRs are closely

associated with translation initiation signals if they are operator

sites. Finally, we note that in Pixie and TM4 each 17 bp IR itself

has a symmetrical character, and can be considered as a 6 bp half

site (59-TGTTGA) separated by a 4 bp spacer from the inverse

complement (Fig. 15B). However, this is not true for the

Subcluster K1 phages because of the consensus differences at

positions 11–13 (Fig. 15B, S4), as discussed above.

Characterization of a conditionally-replicating mutant of
TM4

Bardarov et al. (1997) described a conditionally replicating

mutant of TM4 that fails to form plaques and fails to kill infected

cells at temperatures of 37uC or above. This mutant – ph101 – is

the basis for the construction of conditionally replicating shuttle

phasmids used for delivery of reporter genes, transposons, and

allelic exchange substrates to mycobacterial hosts [20,23,61]. The

mutant was isolated using two rounds of hydroxylamine

mutagenesis with the goal of isolating mutants that revert only at

very low frequencies [20]. Because the functions of so few TM4

genes are known, we characterized the mutations in ph101.

Sequencing of the complete ph101 genome reveals a total of 23

differences (Table 3). One of these is a one base insertion in a non-

coding region at the extreme right end of the genome; the others

are all base substitution transitions, consistent with the mutagenic

spectrum of hydroxylamine (Table 3). The large number of

mutations reflects the heavy mutagenesis employed to recover the

non-reverting mutants. Twelve of the base substitutions do not

alter the predicted coding sequences, whereas the other ten do and

are therefore candidates for contributing to the temperature-

sensitive phenotype. Because the reversion frequency of ph101 is

low (,1028) it is likely that more than one mutation contributes to

this phenotype. Three of the affected genes are predicted virion

structure genes (8, 20, 23) and are unlikely to be involved in DNA

replication (Fig. 6).

To gain insight into which of the mutations contribute to the

temperature sensitive phenotype we isolated five independent

revertant mutants (C, D, F, G, and J) that are able to grow at

37uC, followed by PCR amplification and sequencing of the

regions containing the ten non-synonymous mutations (Fig. 16).

Revertants D, F, G, and J each contains nucleotide changes back

Figure 14. Location of Start Associated Sequences (SASs). Repeated sequences were identified in Cluster K phages through BLASTN
comparisons with other mycobacteriophages, followed by scanning for the presence of the sequence 59-GGGATAGGAGCCC, allowing for up to two
deviations from the scanned sequence. (Pixie site #19 has three departures from the consensus but is included in the list because it is associated with
an Extended SAS, see Fig. 15). Sites for Angelica, Adephagia, and CrimD are shown in Fig. S3. The sequence is asymmetric and most copies are
orientated in one direction as indicated. With the rare exception of those sites in the opposite orientation (e.g. Anaya site #17), all are immediately
upstream of gene start sites (Anaya site #7 is a notable exception.) The gene immediately downstream is listed along with its phamily (Pham)
designation; the putative translation initiation codons are underlined; where the termination codon of the upstream gene lies within the conserved
sequence it is italicized. The consensus sequence is shown in bold and the positions of the sites are shown by the colored highlighting. The extreme
39 end of the 16S rRNA is shown with bases predicted to contribute to pairing with mRNA shown in bold. The genomic locations of these SASs are
shown by numbered vertical arrows in Figs. 6, 7, 8, 9, S1 and S2).
doi:10.1371/journal.pone.0026750.g014
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to the wild-type sequence at mutations #10 and #14 (Table 3,

Fig. 16), suggesting strongly that TM4 genes 48 and 66 contribute

to the temperature-sensitive conditionally replicating phenotype.

The involvement of gene 48 was somewhat surprising because the

deletion in phasmid phAE159 removes the C-terminal 12 codons

of gene 48 (see below). However, this region is poorly conserved

among the TM4 gp48 relatives and is presumably not required for

their function.

The fifth mutant (C) also has the reversion to wild-type

sequence in gene 66, but retains mutation #10 in gene 48.

However, it contains an additional mutation in codon 186 in gene

48 that presumably provides intragenic suppression of the first

gene 48 mutation. This mutant also contains an apparent single

base insertion at 31,784 within gene 42, and although this is

unlikely to contribute to the temperature sensitive phenotype, it

suggests that 42 is not an essential gene. The specific roles of gp48

and gp66 are not known and neither has known non-mycobacter-

iophage homologues, but these data strongly suggest that both are

required for normal replication of TM4.

All of the five mutants isolated at 37uC form plaques at 42uC
with an efficiency of plating of approximately 1024, suggesting that

reversion of a third mutation is required to restore the full wild-

type TM4 phenotype. Two independent mutants recovered at

42uC were analyzed as described above and both were found to

contain a single additional base change that restores the wild type

sequence at mutation #4 in gene 20 (Table 3, Fig. 16). Because

gp20 is a putative virion structural protein (Fig. 6), the mutation in

gene 20 is likely to contribute to the temperature-sensitive

phenotype, but not to the conditional replicating property of

ph101.

Sequencing of the cosmid-phage junctions in the shuttle

phasmid phAE159 shows that a 5.8 kbp region between

coordinates 33,877 and 39,722 is deleted and is therefore non-

essential for TM4 growth (Fig. 6). This deletion removes all of

genes 49 to 63 and the first sixteen codons of gene 64, presumably

rendering it non-functional. The deletion also removes the last 12

codons of gene 48; but the extreme C-terminus of TM4 gp48 is

not well conserved, and this modestly truncated product may

retain its functionality. However, the proline residue altered in

ph101 is absolutely conserved among all six related protein

sequences.

Concluding remarks
We have described here the genomes of the Cluster K group of

mycobacteriophages, providing insights into the origins of the

widely-used mycobacteriophage TM4, the genetic basis of a

conditionally-replicating mutant of TM4, and a variety of enticing

genomic features indicative of interesting but as yet not understood

biological behavior. The presence of short repeated sequences

suggests interesting regulatory features that have yet to be fully

understood, but these also could be targets for homologous

recombination and thus contribute to the mosaic nature of these

genomes. The Cluster K phages clearly have a combination of

features that make them particularly attractive for advances in

tuberculosis genetics. First, all of the Cluster K phages infect both

M. tuberculosis as well as M. smegmatis and appear to have relatively

broad host ranges. Second, apart from TM4, all of them are

temperate and form stable lysogens. Third, the genomes are

relatively small – all are shorter than the average mycobacter-

iophage genome size of ,70 kbp – and are amenable to

manipulation using shuttle phasmid and recombineering strategies

[62,63].
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Materials and Methods

Bacterial strains and Media
M. smegmatis mc2155, Mycobacterium bovis bacilli Calmette-Guérin

(BCG) (Jacobs et al., 1991; Snapper et al., 1990) and M. tuberculosis

mc27000 have been described previously [64]. M. marinum strains

M and 927 were kind gifts from Dr. Don G. Ennis, University of

Louisiana, Lafayette, LA; M. avium 104 was a gift from Dr.

William R. Bishai, Johns Hopkins School of Medicine, Baltimore,

MD. Media were supplemented with carbenicillin (50 mg ml21)

and/or cycloheximide (10 mg ml21) as required. M. smegmatis and

M. marinum were grown in 7H9 liquid and on 7H10 plates; M.

tuberculosis, M. bovis, and M. avium were grown in 7H9 liquid, and

on 7H11 plates.

Phage Isolation and purification
Phage Pixie was isolated from a dry soil sample obtained from a

yard located in the Northwest Houston Metropolitan Area (TX,

USA). Phage Anaya was isolated from a soil sample obtained from

Grand Rapids, MI (MI, USA). Phage Adephagia was isolated from

a soil sample obtained from Denton, TX (TX, USA). All phages

were isolated by co-plating of soil extracts prepared with phage

buffer (10 mM Tris/HCl pH 7.5, 10 mM MgSO4, 1 mM CaCl2,

68.5 mM NaCl), and M. smegmatis. The soil extract was filtered

through a 0.22 mm filter. For Pixie, 50 ml of this sample was direct

plated with 0.5 mL late-exponential-phase M. smegmatis mc2155 in

4.5 mL 0.35% mycobacterial top agar (MBTA) with 1 mM CaCl2.

The MBTA/phage/bacterial mixture was distributed evenly on a

plate of 7H10 agar (Difco) supplemented with carbenicillin,

cycloheximide, 1 mM CaCl2 and 10% albumin dextrose complex

(ADC). Phages Anaya and Adephagia were isolated by incubating

1 gram of soil with M. smegmatis mc2155 in 50 mL of LB plus 1 mM

CaCl2 at 37uC with shaking for 24 hours. Remaining cells were

then pelleted by centrifugation, and the supernatant was filtered

through a 0.22 mm filter. Fifty microliters of the filtrate was co-

plated on LB plates with 0.5 mL late-exponential phase M. smegmatis

mc2155 in 4.5 mL LB top agar. All phages were incubated at 37uC,

except for Anaya, which was incubated at 30uC. After several

rounds of purification (Sarkis & Hatfull, 1998) high-titer stocks were

prepared and used for subsequent studies.

Figure 15. Extended SAS (ESAS) sequences. A subset of the SASs shown in Fig. 14 also contain a conserved sequence immediately upstream of
the SAS (red arrows in Figs. 6, 7, 8, 9, S1, S2). These sequences contain a 17 bp imperfect inverted repeat separated by a variable spacer. A. Alignment
of the extended SAS sequences for Anaya, Pixie, and TM4. The consensus sequence is shown with bases in upper case if there are two or fewer
departures from the consensus, and in lower case if there are more than two departures but a greater than 50% agreement. B. Consensus sequences
for each of the half sites within the extended SAS sequences. Upper case letters denote no more than four deviations from the consensus. Positions
conserved 50% or more are shown in lower case letters. The SASs are indicated with the colored boxes and the putative start codon is underlined.
The downstream gene is shown in italic type and its phamily designation is shown in parentheses. ESAS sequences for phages Adephagia, Angelica
and CrimD are shown in Fig. S4; their 17 bp consensus sequences are very similar to their fellow Subcluster K1 page Anaya. A comparison of which
phages genes are associated with SAS and ESAS sequences is shown in Table 2.
doi:10.1371/journal.pone.0026750.g015
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Genome Sequencing and Annotation
For phage Pixie, double-stranded DNA was phenol-extracted

from dialyzed CsCl banded phage particles, then sequenced by

454 technology to 25-fold redundancy (,4000 reads) at the

University of Pittsburgh Genomics and Proteomics Core Labora-

tories as described previously [10]. Shotgun sequencing for phages

Anaya and Adephagia was done by the Joint Genome Institute

using both 454 (,30-fold redundancy) and Illumina (,100-fold

redundancy) technologies. Reads were assembled with Newbler

[65]; Consed [66] was used to assure quality control for the

assemblies and identify the natures of the genome termini. To

resolve remaining ambiguities, genome finishing was performed

using targeted Sanger sequencing on phage genomic DNA

templates. Finishing reads were incorporated into existing

assemblies using PhredPhrap. The sequencing of TM4 [40],

Angelica, and CrimD [8] was described previously. The Genbank

accession numbers for Phages TM4, Pixie, Anaya, Adephagia,

Angelica and CrimD are AF068845, JF937104, JF704106,

JF704105, HM152764, and HM152767 respectively.

Finished sequences were analyzed and annotated in genome

editors including DNAMaster (http://cobamide2.bio.pitt.edu),

GBrowse [67], Apollo [68], and the University California Santa

Cruz Genome Browser [69]; Glimmer [70], GeneMark [71],

tRNA ScanSE [72], Aragorn [73], and Programmed Frameshift

Finder [74] were used to identify genome features. Genes were

assigned to phams, and genome maps and phamily circle diagrams

were drawn using Phamerator, database Mycobacteriophage_83

(S.G.C., R.W.H., G.F.H., manuscript submitted). The threshold

parameters of 32.5% identity with ClustalW and a BlastP E-value

of 10250, are different to those used previously, and were derived

by optimizing pham assembly over a range of possible values

(S.G.C., R.W.H., G.F.H., manuscript submitted). DotPlots were

made using Gepard [75].

Table 3. Mutations in the ph101 genome relative to TM4.

Change
# Coordinates Gene

Product
(aa)

Codon
change

aa
change

1 2742 5 gp5 (501) GCc-GCt None

2 5519 8 gp8 (186) aTC-gTC I46V

3 8385 13 gp13 (139) CAg-CAa None

4 17199 20 gp20 (154) cGC-tGC R116C

5 20656 23 gp23 (784) cCG-tCG P644S

6 23751 29 gp29 (547) AAc-AAt None

7 27942 36 gp36 (394) TAc-Tat None

8 30039 40 gp40 (235) gCC-aCC A19T

9 31784 42 gp42 (118) tCC-cCC S81P

10 33509 48 gp48 (246) GAa-Gag None

11 33834 48 gp48 (246) cCG-tCG P220S

12 35899 53 gp53 (129) GcT-GtT A126V

13 39664 63 gp63 (101) GCc-GCt None

14 40515 66 gp66 (172) gCC-aCC A131T

15 40881 67 gp67 (100) GcG-GtG A70A

16 41761 70 gp70 (867) GAa-GAg None

17 45678 75 gp75 (303) GCg-GCa None

18 46889 76 gp76 (153) CAc-CAt None

19 47580 79 gp79 (103) CAg-CAa None

20 48991 82 gp82 (259) TTc-TTt None

21 49153 82 gp82 (259) GAa-GAg None

22 49824 84 gp84 (65) gCG-aCG A30T

23 52756 Ins 1 base

doi:10.1371/journal.pone.0026750.t003

Figure 16. Mutations contributing to the conditionally replicating phenotype of TM4 mutant ph101. Phage ph101 is a temperate-
sensitive conditionally replicating derivative of TM4 [20], and differs by more than 20 base substitutions, ten of which confer amino acid changes in
predicted gene products as indicated. Five independent revertants capable of growth at 37uC were isolated, and the alleles at these ten positions
were determined by sequencing of PCR amplicons (see Fig. 6). Four (D, F, G, and J) contain identical base changes that revert the mutations in genes
48 and 66 back to wild-type. One mutant (C) also contains the wild-type gene 66 sequence, but has a presumed intragenic suppressor mutation in
gene 48. Genes 48 and 66 thus contribute to the conditionally replicating phenotype. All of the revertants plate with reduced efficiency of plating at
42uC, and revertants growing normally at 42uC have an additional mutation reverting to the wild-type sequence in the putative tail gene, 20.
doi:10.1371/journal.pone.0026750.g016
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Lysogen PCR Assays
Site-specific integration between the putative phage attP of

Pixie, Angelica, Anaya, Adephagia, and CrimD with the

corresponding M. smegmatis attB sites was confirmed in lysogens

by PCR amplification of the attL and attB sites. Pelleted, potential

lysogenic cells were suspended in 500 ml of 10 mM Tris (pH 8.0),

1 mM ethylenediaminetetraacetic acid (EDTA), heated for

20 minutes at 95uC and 10 ml was used in PCRs with Pfu

polymerase (Stratagene), 5% Dimethyl sulfoxide (DMSO) and

10 nM dNTPs. Primers CMF1 and CMF2 were used to amplify

bacterial attB of Pixie, primers CMF4 and CMF6 were used to

amplify the bacterial attB of Angelica, CrimD, Adephagia and

Anaya. Primers CMF3 and CMF2 were used to amplify attL of

Pixie, primers CMF5 and CMF6 were used to amplify attL of

Angelica, CrimD and Adephagia, and primers CMF4 and CMF13

were used to amplify attL of Anaya. Primer sequences are listed in

Table S7.

Immunity assays
Immunity to K cluster phages was tested by spotting serial dilutions

of each phage onto lawns of M. smegmatis mc2155, mc2155(Pixie)

lysogens, mc2155(Angelica) lysogens, mc2155(CrimD) lysogens,

mc2155(Anaya) lysogens and mc2155(Adephagia) lysogens.

Plasmid Constructions
Plasmid pWHP02 was constructed by amplifying the integrase

gene (41) and attP site from Adephagia virions using the primers

Ade-IntF and Ade-IntR. These primers added the restriction sites

SbfI and SacI to flank the target region. The L5-derived integration

vector pMH94 (KanR, oriE) was digested with SbfI and SacI to

remove the L5 attP region, and the amplified, digested Adephagia

attP region was ligated into the vector backbone. The ligation

reaction was transformed into E. coli DH10B, and recovered

colonies were picked into LB-Kan to isolate DNA. Correct

plasmid sequences were confirmed through restriction digestion

and sequencing. Plasmid pWHP02 was then transformed into

electrocompetent M. smegmatis mc2155, and plated on 7H10 Kan.

Recovered colonies were grown in 7H9 Kan, and used as a

template in a PCR amplification to check for insertion into the

tmRNA site using primers CMF4, CMF5 and CMF6.

Plasmid pCMF06 was constructed as follows. Two primers

(CMF18 and CMF19) with NdeI and HpaI restriction sites were

designed and used to amplify Pixie gene 81 from Pixie genomic

DNA. This 899 bp fragment was inserted by sticky-end cloning

into pLAM12. Plasmid pCMF06 contains Pixie gene 81 under the

control of an acetamide inducible promoter, oriE, oriM, and a

kanamycin-resistance gene. Primer sequences are listed in Table

S7. The contributions of all authors are listed in Table S8.

Supporting Information

Figure S1 Genome map of Mycobacteriophage Angeli-
ca. A map of the Angelica genome is shown with markers spaced

at 100 bp intervals, with genes shown as colored boxes, either

above (rightwards transcribed) or below (leftwards transcribed) the

genome. Gene names are shown within the boxes, and the

phamily number of that gene shown above with the number of

phamily members in parentheses. Genes are colored according to

their phamily, and white genes represent orphams (phams with

only a single member). Vertical arrows with numbers show the

positions of Start-Associated Sequences (SAS), either with (red

arrows) or without (black arrows) extended SAS sequences (ESAS,

see Figs. 14 and 15).

(PDF)

Figure S2 Genome map of Mycobacteriophage CrimD.
A map of the CrimD genome is shown with markers spaced at

100 bp intervals, with genes shown as colored boxes, either above

(rightwards transcribed) or below (leftwards transcribed) the

genome. Gene names are shown within the boxes, and the

phamily number of that gene shown above with the number of

phamily members in parentheses. Genes are colored according to

their phamily, and white genes represent orphams (phams with

only a single member). Vertical arrows with numbers show the

positions of Start-Associated Sequences (SAS), either with (red

arrows) or without (black arrows) extended SAS sequences (ESAS,

see Figs. 14 and 15).

(PDF)

Figure S3 Location of Start Associated Sequences (SASs)
in Adephagia, Angelica and CrimD. Repeated sequences

were identified in Adephagia, Angelica and CrimD genomes as

described in Fig. 14. All three genomes contain a single site on the

complementary strand.

(PDF)

Figure S4 Extended SAS (ESAS) sequences in Adephagia,
Angelica and CrimD. A. ESAS sequences in the Angelica,

Adephagia and CrimD genomes are shown as described in

Figure 15. B. Consensus sequences for each of the half sites within

the extended SAS sequences. Upper case letters denote no more

than four deviations from the consensus. Positions conserved 50%

or more are shown in lower case letters.

(PDF)

Table S1 Revised gene coordinates for mycobacter-
iophage TM4.

(PDF)

Table S2 Gene coordinates for mycobacteriophage
Anaya.

(PDF)

Table S3 Gene coordinates for mycobacteriophage
Adephagia.

(PDF)

Table S4 Gene coordinates for mycobacteriophage
Pixie.

(PDF)

Table S5 Gene coordinates for mycobacteriophage
Angelica.

(PDF)

Table S6 Gene coordinates for mycobacteriophage
CrimD.
(PDF)

Table S7 Primers used in this study.

(PDF)

Table S8 Author contributions.

(XLSX)
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