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Abstract

Background: Nitric oxide (NO) has long been recognized to affect muscle contraction [1], both through activation of
guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile
apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides
directly regulate striated muscle myosins.

Principal Findings: Exposure of skeletal and cardiac myosins to physiological concentrations of nitrogen oxides, including
the endogenous nitrosothiol S-nitroso-L-cysteine, reduced the velocity of actin filaments over myosin in a dose-dependent
and oxygen-dependent manner, caused a doubling of force as measured in a laser trap transducer, and caused S-
nitrosylation of cysteines in the myosin heavy chain. These biomechanical effects were not observed in response to S-
nitroso-D-cysteine, demonstrating specificity for the naturally occurring isomer. Both myosin heavy chain isoforms in rats
and cardiac myosin heavy chain from human were S-nitrosylated in vivo.

Significance: These data show that nitrosylation signaling acts as a molecular ‘‘gear shift’’ for myosin—an altogether novel
mechanism by which striated muscle and cellular biomechanics may be regulated.
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Introduction

Products of nitric oxide (NO) synthase activation have long been

recognized to affect muscle contraction [1]. Contraction and

contractility are thought to be regulated indirectly through

activation of guanylyl cyclase to generate cGMP, and by direct

action of NO on proteins. Protein sulfhydryl modification by

oxidized NO to yield S-nitrosothiol (S-NO) moieties is widely

accepted as an important regulatory mechanism. The breadth and

importance of the protein targets, however, remains to be fully

understood.

Skinned (membrane-permeablized) muscle preparations re-

spond to NO donors with reduced Ca2+ sensitivity [2–4], ATPase

activity [2,3], and velocity of shortening [3]. In intact cardiac

fibers NO causes a decrease in calcium sensitivity and an increase

in rigor force [5]. These data suggest a direct effect of NO on

myofibrillar proteins in muscles that is independent of calcium

handling and cGMP-mediated phosphorylation. Unfortunately, it

is difficult to determine in these preparations which of the

myofibrillar proteins are being affected and how. It was reported

in a 1998 abstract that NO donors completely inhibit myosin

function as measured in vitro (J.L. Tan, M. Heidecker, J.D. Cohen,

M.B. Fowler & J.A. Spudich, 1998). In recent work, Nogueira and

coworkers found that the ATPase activity of skeletal myosin can be

reversibly inhibited by nitroso-S-glutathione but not by donors of

NO [6]. These studies together suggest that myosin is a target for

regulation by endogenous donors of NO.

To gain a better understanding of whether and in what manner

the physiological function of myosin is affected by NO, we tested

the effects of a NO donor (DEA NONOate) and small,

endogenous nitrosothiols (nitroso-cysteine) on the force and

velocity generated by skeletal and a-cardiac myosins in vitro. We

found that DEA NONOate reduced actin filament velocity over

striated myosins, but increase isometric force generated by myosin.

While nitroso-L-cysteine had a similar effect to NONOates,

nitroso-D-cysteine had no functional effect on myosin, showing

stereospecificity for the endogenous NO donor. Our data show a

strong yet nuanced effect of NOS products on striated muscle

myosins that extends beyond mere inhibition, suggesting that

myosin is indeed directly regulated by NO.

Results

NO slows motility by striated myosins and HMM
Using the in vitro motility assay we observed the movement of

single fluorescently labeled actin filaments gliding over a myosin-
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coated glass surface [7,8]. We employed a modified version of the

protocol that avoids the use of reducing agents that would otherwise

reverse S-nitrosylation [9]. Briefly, myosin or heavy meromyosin

(HMM) was bound to a nitrocellulose-coated coverslip in a flow cell

and flushed with a reducing agent-free buffer. HMM is a proteolytic

subfragment of myosin that includes the paired heads of myosin, the

associated light chains, and the short coiled-coil region called S2,

but lacks the tail that allows myosin to form thick filaments. DEA

NONOate was diluted into buffer pre-equilibrated to either 15 or

152 mmHg PO2 and added immediately to the flow cell for 1

minute. Actin filament motion was observed by epifluorescence

microscopy after removing the donor.

We found a dose-dependent response of both cardiac and

skeletal muscle myosin function to DEA NONOate (Figure 1A

and B), though cardiac myosin was more sensitive than skeletal.

There was no difference in the response of full-length skeletal

myosin and skeletal HMM to donor, indicating that the responsive

domain of myosin is in subfragments 1 or 2 (Figure 1C). These

effects were reversible by exposure to 10 mM DTT, and could not

be duplicated using sulpho NONOate, which is less likely than

DEA NONOate to transfer NO+ to thiols.

S-nitrosylation by NO radical itself requires an electron

acceptor and therefore can be oxygen-dependent. We therefore

measured dose-response curves at three oxygen concentrations –

0, 15 (physiological), and 152 (atmospheric) mmHg PO2. Cardiac

myosin was approximately 10X more sensitive to donor than was

skeletal when measured in terms of the concentration to achieve a

significant reduction in velocity. Inhibition of motility in cardiac

myosin did not differ significantly at physiological and atmospheric

PO2 (Figure 1A, p = 0.25). The Ki for reduction of actin filament

velocity propelled by cardiac myosin was 6606250 nM donor, or

approximately 66 nM [NO] at 152 mmHg PO2. In contrast there

was a trend toward blunting of the skeletal muscle myosin dose

response at high PO2 (Figure 1B); the Ki for inhibition was 3240

and 138 nM [NO] at 152 and 15 mmHg PO2, respectively

(p = 0.03).This suggests that at physiologic oxygen concentrations

the response of myosin to nitrogen oxides is already maximized. In

the absence of oxygen, 1 mM DEA NONOate had no effect on

motility. These data show that myosin function is responsive to

NO in an oxygen- and isoform-dependent manner.

Myosin generates more force in the presence of NO
As a physiologically-relevant measure of the force production in

the purified actomyosin system, an optical trap assay was used to

measure the stall force of multiple myosin molecules interacting

with an actin filament [10]. Laser trapped beads were bound to

the trailing ends of motile actin filaments (Figure 2A) to measure

the force at which forward motion stalled. Repeated over a range

of actin filament lengths, these measurements can be used to

estimate the time-averaged isometric force generated by myosin.

Figure 1. Dose-response and PO2 interactions of the NO donor
DEA NONOate on myosin. A: Cardiac myosin at high (open symbols,
20%, 152 mmHg) and physiologic (solid symbols, 2%, 15 mmHg) PO2.
PO2 has no significant effect on the response of isolated cardiac myosin
to the NONOate. B: Same as A, but with skeletal muscle myosin which
was significantly more sensitive to NO at lower PO2. *p,0.05 compared
to no DEA NONOate at 15 mmHg. ** p,0.05 compared to no DEA
NONOate at 152 mmHg. C: There is no difference in the dose-response
curves of full length skeletal myosin (gray) and HMM (black), indicating
that the site of NO action lies within the head or S2 regions of myosin.
N = 3. The [NO] scale bar shows the approximate NO concentration for
the equivalent DEA NONOate concentration given our exposure times
and conditions.
doi:10.1371/journal.pone.0011209.g001
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Skeletal HMM was treated with DEA NONOate at 0, 10 or

100 mM for 1 minute. Both 10 and 100 mM caused force

generation by myosin to nearly double - 1.960.2 and 1.860.2

fold over control as indicated by the slopes of the force/heads/

filament relationship (Figure 2B). To confirm these results, we

performed ‘‘mixture’’ experiments to measure the relative force

generated by nitrosylated myosins. Analogous to a tug-of-war,

donor-treated and untreated myosins are laid down in a motility

assay over a range of relative concentrations, ranging from 100%

treated and 0% untreated, to 0% treated and 100% untreated.

The relationship between filament velocity and fractional

composition can be used as a measure of relative force production

by the two myosin populations [11]. At any given mixture,

velocities of actin filament velocities were closer to those of NO+ -

treated myosin than to control myosin (Figure 2C). Interpreted

according to Harris et al. [11], the data yield a relative production

of 2.160.3 higher force by DEA NONOate-treated cardiac

myosin compared to untreated myosin (p = 0.003). These data too

suggest that NO (as NO+) exposure approximately doubles the

time-averaged force generated by skeletal and cardiac myosins.

Myosin is stereoselective for an endogenous NO donor
An effect of exogenous nitrogen oxide on myosin function does

not necessarily imply regulation. We therefore used the naturally

occurring donor nitrosocysteine (SNO-cys) - a nitrosothiol in cells

that may be important in signaling. Its D- and L-isomers have

similar chemistries and rates of decay to yield NO+, so any

preference in the response to the naturally occurring L-isomer

Figure 2. Measurement of time-averaged isometric force after exposure to NO. A: A streptavidin-coated bead is held in a laser trap and
touched to the trailing (+) end of a moving, biotinylated, TRITC-phalloidin labeled actin filament. Displacement of the bead from trap center was
followed using back focal plane interferometry [34,35]. B: Force versus number of potentially bound, force-generating heads (a reflection of filament
length) for three conditions, control (N, black lines), 10 mM DEA NONOate (#, red lines) and 100 mM DEA NONOate (., green lines). Steeper slopes
indicate proportionately higher forces per head. Solid lines indicate the regression fit, while the dashed lines show 95% confidence intervals. Each
data point is an independent force measurement (N = 25, 20 and 10 for 0, 10, and 100 mM DEA NONOate respectively). C: Mixtures experiment for rat
cardiac myosin. The line shows the fit of equation 1 from Harris et al. [11] yielding a relative force production 2.1-fold higher after DEA NONOate-
treated compared to control. N = 3.
doi:10.1371/journal.pone.0011209.g002
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over the synthetic D-isomer is suggestive of stereospecific

regulation via trans-nitrosylation – the transfer of NO+ from a

nitrosothiol to a thiol. To test for functional stereospecificity to an

endogenous donor, skeletal and cardiac myosins were exposed for

1 minute in the dark to SNO-L-cys and SNO-D-cys. We found

that SNO-D-cys had no effect on myosin-based motility

(Figure 3A). In contrast, SNO-L-cys reduced actin filament

velocities by approximately one half at 5 mM. Motility was

restored to near control levels by two 2-minute exposures to

ultraviolet light (Figure 3B) which breaks S-NO bonds [12] with

buffer washes after each exposure to remove the freed NO. Stereo-

selectivity for the naturally occurring isomer of a small ligand is

generally considered strong evidence for specificity, and hence

regulation.

The effects of SNO-cysteine and other nitrogen oxides on

myosin are unlike those of alkylating agents (e.g. N-ethylmalei-

mide), which completely inhibit myosin cycling and lead to the

formation of strong, rigor-like bonds with actin.

Myosin heavy and light chains are nitrosylated in vitro
and in vivo

We next tested whether the L- or D-isomers of SNO-cysteine

could nitrosylate myosin. Skeletal muscle HMM was exposed at a

1:2 molar ratio with each isomer (12 mM) and the incorporated

NO measured by chemiluminesence. We found that SNO-L-cys

lead to the incorporation of 1.16 NO-equivalents/myosin heavy

chain, while SNO-D-cys lead to the incorporation of only 0.25.

These data suggest that myosin is more efficiently nitrosylated by

the L- than by the D-isomer of S-NO-cys. Liberation of NO by

SNO-D-cys during removal by microdialysis may explain the

small level of stereoselectivity; the nitrosylation state at the earliest

time points after SNO-cys exposure remains to be determined.

Nonetheless, nitrosylation of myosin is stereo-selective and while

reversible, persists over time.

To determine which chains of the myosin heterohexamer were

stereospecifically nitrosylated, we used a coumarin switch assay

[13], similar to the standard biotin switch assay [14] to identify

nitrosylated proteins in a mixture. In this variation, AMCA

fluorophore rather than biotin replaced all NO moieties so that

nitrosylated proteins could be rapidly imaged under UV light and

subsequently stained with colloidal coomassie to determine the mass

for each protein band. Normalizing the nitrosylation signal to total

protein is critical for quantifying nitrosylation in myosin heavy

chain, or for any other protein where (a) sample-to-sample protein

recovery after the biotin switch is not uniform, or (b) the number of

modified cysteines is low relative to the mass of the protein. Both are

the case for myosin heavy chain and failure to normalize against the

mass of protein in each individual electrophoretic band (as opposed

to an overall protein assay) will mask a small number of consistently

nitrosylated cysteines in the large protein.

All three isoforms of myosin heavy chain and most of their

associated myosin light chains were readily nitrosylated by SNO-

L-cys (Figure 4A) – these included the slow and fast isoforms of the

essential light chains, and the skeletal regulatory light chain. The

only light chain that was not significantly nitrosylated by SNO-L-

cys was the cardiac myosin regulatory light chain. The myosin

heavy chain was significantly stereoselective for nitrosylation by

the L- over the D-isoforms of SNO-cys as assayed by coumarin

switch. The L/D nitrosylation per unit mass was 1.960.1 and

3.860.9 for skeletal and cardiac myosin heavy chains, respectively

(p,0.001 for a ratio .1.0). Once again, the low degree of

stereoselectivity was probably related to the extended times

necessary to remove the protein from donor using precipitating

agents. We found no significant selectivity by any of the light

chains for nitrosylation by L- over D- SNO-cys (L/D nitrosylation

per unit mass ,1). This suggests that the functional stereoselec-

tivity we observed (Figure 3) is the result of heavy chain

nitrosylation, and not light chain nitrosylation.

We also measured the endogenous level of nitrosylation in rat

skeletal and cardiac myosins, and human cardiac myosin. High-

Figure 3. Stereo-selective effects of SNO-L-cysteine on myosin.
A: Dose-response showing that SNO-L-cysteine, the naturally occurring
isomer, has pronounced effects on actin filament velocity, while SNO-D-
cys does not. B: Effects of 5 mM L- and D-isomers of SNO-cys on actin
filament velocities over skeletal (dark bars) and cardiac (light bars)
myosin, and recovery by exposure to ultraviolet light – strong support
of nitrosylation as the underlying modification. *Different from control
(p,0.05). **Different from SNO-L-cys alone (p,0.05). N = 5.
doi:10.1371/journal.pone.0011209.g003

Regulation of Myosin by NO

PLoS ONE | www.plosone.org 4 June 2010 | Volume 5 | Issue 6 | e11209



ionic strength extracts of these muscles were left untreated

(endogenous), treated with ascorbate (control), or treated with

10 mM SNO-L-cys (L) and subjected to the coumarin switch assay

followed by coomassie staining and protein mass normalization as

described earlier. Relative endogenous nitrosylation was calculated

after mass normalization as (endogenous - control)/(L - control).

We found that rat skeletal and cardiac myosin heavy chains were

nitrosylated in vivo to 50% and 30%, respectively, of the level

induced using 10 mM SNO-L-cys. Human cardiac myosin heavy

chain was nitrosylated to a level of approximately 20% (Figure 4B).

These are minimum estimates, since there will be some

spontaneous loss of NO equivalents during protein extraction.

We were not able to make comparable measurements of light

chain nitrosylation since the high ionic strength extracts had an

abundance of low molecular weight proteins that could lead to

misidentification of the light chain bands.

Discussion

Our data suggest that either nitrosylation or trans-nitrosylation act

as a ‘‘gear shift’’ for myosin, switching it on-the-fly from a relatively

high-speed, low-force motor to a low-speed, high-force motor at

physiological concentrations of NO. The question naturally arises, to

what purpose? Regulation of contraction under physiological and

pathological conditions by NO is complex, involving direct and

cGMP-dependent pathways [15], so a simple answer is unlikely to

suffice. It has been proposed that the direct effect of NO in muscle

cells is to slow contraction and its associated metabolism [16]. One

possible example of this is exercise, during which NO increases in

skeletal muscle [17]. NO or S-nitrosothiols may thus serve both to

increase oxygen supply to the tissue through vascular dilation and

simultaneously shift contractile function to higher force generation at

the expense of lowered shortening velocity.

The concentrations of S-nitrosothiols used in these experiments

are thought to span the physiological range. Free [NO] on the order

of 100 nM to several mM has been measured adjacent to stimulated

cardiac myocytes [18–21]. However, the presence of these levels of

free radical in the presence of ,200 mM concentrations of

myoglobin in the myoplasm seems unlikely [22]. It is entirely

possible that the concentrations of nitrosothiols in myocytes and

other cells are ,100 nM [23,24]. However, as with any reversible

bimolecular reaction, it is not only the concentration of reactants

but the forward and reverse reaction rate constants for the

nitrosylation reaction that will ultimately determine the functional

impact of NO production. The forward reaction we know from

motility experiments occurs in seconds. We also know that the

effects of NO donors persist for at least several minutes once donor

is removed, presumably due to slow spontaneous reversal of the S-

NO modification. Thus S-NO-myofibrillar proteins may accumu-

late in cells, even in the presence of myoglobin.

The pattern of effects on force and actin filament velocity

suggests a model where S-NO modification of muscle myosin

alters the attached time and duty cycle of myosin. From the

perspective of a single molecule, the velocity of actin over a pure

myosin is related to the inverse of its attached lifetime (ton) – how

long during each hydrolytic cycle myosin remains attached to

actin. In contrast, the time-averaged force generated by myosin is

related to its duty cycle (ton/(ton+toff)) – the fraction of the total

cycle time myosin is attached to actin. Thus a doubling of ton with

no change in the detached time (toff) would result in a 50%

decrease in actin filament velocity, and an approximate 2X

increase in average force. Striated muscle myosins are thought to

have low duty cycles; thus doubling ton could produce the observed

changes in force and velocity without large changes in total cycle

time as measured by ATPase rates. This may explain why

Nogueira and coworkers [6] found no effect of DEA NONOate on

ATPase rates; in addition, in those particular experiments their

readout of myosin function was a non-functional, ion-activated

ATPase assay rather than a functional actin-activated assay.

One might speculate that nitrosylation is a general regulatory

mechanism for myosin-based motility. There are a number of

cysteines that are well conserved across myosin isoforms, including

two especially reactive cysteines [25] (cys707 and cys697) among

the nine in the motor domain of the heavy chain. Interestingly, the

reactive cysteines themselves and the encompassing alpha helix are

highly conserved in muscle myosins, even across species. However,

conservation of the reactive cysteines does not fully extend to non-

muscle myosins. Myosin V, for example, possesses one of the two

reactive cysteines and conserves much of the encompassing helix

from muscle myosins while other myosins have neither reactive

cysteine. If one or both reactive cysteines are indeed the point of

NO regulation of muscle myosin, then one would predict that

myosins lacking these cysteines would be unresponsive to NO and

nitrosothiols. It is possible, however, that non-muscle myosins

incorporate different sites for regulation by NO, including one

proposed in myosin heavy chain 9 [26], that better meet their

particular regulatory needs. Further, we found that some of the

light chains of striated myosins can be nitrosylated in vitro. There

are obviously several possible sites for regulation of myosins by NO

and its endogenous donors. Determining which of these is

responsible for the effects observed here will be the subject of

future studies, as will the identification of other potential NO

regulatory sites in the contractile apparatus of cells.

Methods

Ethics Statement
Use of human myocardium was approved by the University of

Virginia Human Investigation Committee, Protocol 10274 to Drs

Figure 4. Myosin nitrosylated in vivo and in vitro. A: Rat skeletal
and cardiac myosin heavy (MHC) and light chains were nitrosylated by
in vitro exposure to SNO-L-cysteine (L) over the control level (C). The
ventricular/slow skeletal isoform of the essential light chain (ELC) could
be nitrosylated, as could the regulatory light chain (RLC) and fast
essential light chain of skeletal muscle myosin. The regulatory light
chain of cardiac myosin was not significantly nitrosylated. B: Myosin
heavy chain was endogenously (E) nitrosylated in rat skeletal and
cardiac muscle, and also in human myocardium (MHC AMCA). A protein
staining of the same gel is shown (MHC total) to illustrate how
nitrosylation is normalized against protein mass to reveal low levels of
nitrosylation between zero (A, ascorbate-treated) and maximum (L,
SNO-L-cys-treated). See the text for details of the normalization
procedure. Without normalization, variations in recovery between
protein bands (as shown, typical) will mask single (or a few) nitrosylated
cysteines in large proteins like myosin. N = 3 in all cases.
doi:10.1371/journal.pone.0011209.g004
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Jones and Gaston to use ‘‘materials (data, documents, records or

specimens) that have been collected solely for non-research

purposes (such as medical treatment and/or diagnosis).’’ Rat

myocardial and skeletal muscle tissues were obtained from the

cadavers of animals sacrificed under other investigators’ IACUC

protocols; no animals were sacrificed specifically for this study, and

it was therefore deemed exempt from IACUC approval.

Proteins
Myosin was prepared from rat skeletal and cardiac tissues by the

method of Shiverick [27] and actin according to Pardee and

Spudich [28]. Skeletal HMM was prepared from fresh myosin

according to Margossian and Lowey [29]. Actin was biotinylated

as described previously [10].

In vitro motility assays and donor treatments
Exposures to NO donors take place in reducing agent-free

solutions bubbled with N2/O2 to obtain the desired oxygen

tension. NONOates (DEA and sulpho) were obtained commer-

cially (Alexis/Cayman) and stored frozen in 100 mM KOH. Stock

NONOates were diluted in 10 mM KOH ,30 seconds before use.

Treatment buffers were formulated such that the pH of the

reaction mixture changes by less than 0.1 units upon addition of

donor. L- and D-S-NO-cys were prepared as 10 mM stock

solutions and were stored as aliquot at 280uC. Stock SNO-cys was

diluted to working concentrations in actin buffer ,30 seconds

before use.

The DTT-free motility assay is described elsewhere [9]. Briefly,

aliquots of all solutions were vacuum degassed on ice for 20

minutes. Preparations were performed in a darkened room to

prevent donor photolysis. Myosin or HMM was applied to a flow

cell consisting of a nitrocellulose-coated coverslip and glass slide to

a final concentration of 200 mg/ml and 80 mg/ml, respectively.

The flow cell was washed with degassed ‘‘actin buffer’’ (25 mM

KCl, 25 mM Imidazole, 1 mM EGTA, 4 mM MgCl2, pH 7.4)

after a one minute incubation. Donor was applied to the flow cell

in actin buffer equilibrated with 0%, 2%, or 20% oxygen (balance

nitrogen). After a one minute incubation with donor, the flow cell

was washed with degassed low salt buffer and blocked with 0.5%

(v/v) Tween 20 in degassed low salt buffer for myosin, or 2%

PVP40 in degassed low salt buffer for HMM for 1 min. TRITC-

phalloidin labeled actin filaments were introduced, followed by

two degassed actin buffer washes. A low salt motility buffer

(25 mM KCl, 25 mM Imidazole, 1 mM EGTA, 4 mM MgCl2,

1 mM ATP, 0.5% methylcellulose, pH 7.4) was added and actin

filament movement was recorded. The motility buffer also

contained an oxygen scavenger system described in Guo and

Guilford [30].

Actin filaments were tracked used a energy-minimalization

segmentation routine, previously described [9]. At least 50 actin

filaments were tracked for each experimental trial, though

typically hundreds were used, and each condition repeated a

minimum of three times. The sample number (N) was conserva-

tively taken as the number of independent experiments, not the

number of filaments tracked. Filament velocities were normalized

to daily controls.

Laser trap force assay
As a physiologically-relevant measure of the force production in

the purified actomyosin system, an optical trap assay was used to

measure the stall force of multiple myosin molecules interacting

with an actin filament [10]. Briefly, 0.97 mm streptavidin-coated

microspheres (Bangs Laboratories) were fluorescently labeled with

TRITC-labeled BSA. HMM was applied to flow cells and

subsequently blocked with 1 mg/ml BSA. TRITC-phalloidin

labeled and biotinylated actin filaments were added. Finally,

streptavidin microspheres were resuspended in actin buffer with

100 mM ATP and introduced to the flow cell to initiate motility.

Individual fluorescent beads were trapped and a motile actin

filament was chosen. A trapped bead was brought into contact

with the trailing (+) end of the motile filament and held until the

forward motion of the filament stalled. Stall force measurements

were repeated over a range of actin filaments lengths (1–7 mm).

The number of HMM heads that may interact with each actin

filament was estimated from HMM density measurements [30].

Mixture Assay
Force generation by donor treated myosin relative to untreated

myosin was measured using a mixture assay [31,32] with

modifications. Myosin was exposed in solution to DEA NONOate

or nitrosocysteine in buffer bubbled with 2% or 20% oxygen and

allowed to sit for 35 minutes on ice. Treated and untreated myosin

were mixed in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100

immediately before application to a flow cell. Motility was then

performed as described above. An alternative approach was also

used, namely introducing 50% diluted myosin to the flow cell,

treating with donor for one minute (as above), and subsequently

introducing a second bolus of 50% diluted myosin. The two

methods gave comparable results.

Mixture assay data were analyzed by the model of Harris et al.

[11] assuming a compression factor of 0.26. The model was fit to

the data using SigmaPlot to find the force of the fast myosin

relative to the slow.

Nitrosothiol quantitation
S-nitrosothiols were measured in 6 mM skeletal HMM after

treatment with 12 mM L- or D-SNO-cysteine, and with or without

HgCl2 pretreatment to break the S-nitrosothiol bond (negative

control). Samples were dialyzed for 1.5 hours to remove excess

SNO-cysteine. Assays are carried out under He in a purge vessel

containing 1 mM cysteine and 100 mM CuCl, pH 7.0, 50uC
connected to an NOA chemiluminescence detector (Sievers NOA

280, Boulder, CO) with added carbon monoxide (CO) to the inert

gas flow through the reflux chamber, preventing NO autocapture

by heme groups. Metal carbonyls (<0.7 ppm in research grade

CO) must be removed, as both Ni- and Fe-carbonyls chemilumi-

nescence in the presence of O3. Therefore, the CO source gas is

passed through iodine crystals and activated charcoal, blended

with the He stream in a gas proportioner. Oxidized cys was

replaced, and residual Hb removed, by refreshing the reflux

chamber after each sample injection [33]. Water and nitrite NO2
2

solution were injected as additional negative controls before each

experiment.

Coumarin switch assay
S-nitrosylation was measured using a modification [13] of

Jaffrey’s biotin switch assay [14]. AMCA-HPDP was used rather

than biotin-HPDP during labeling to allow S-nitrosylated proteins

to be imaged in-gel prior to staining total protein; this aids in

normalization of fluorescence against protein mass in each band.

Between treatments, protein was precipitated using either 10%

trichloroacetic acid (TCA) at room temperature for 10 minutes, or

90% cold acetone (220uC) for 20 minutes followed by 10 minutes

of centrifugation, depending on whether the myosin heavy chain

or myosin light chains, respectively, were desired; myosin heavy

chain does not precipitate constitutively in acetone, and myosin

light chains do not precipitate constitutively in TCA.
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Purified skeletal or cardiac myosin in HEN buffer (HEPES,

EDTA, neocuproine, as in [14]) were exposed to SNO-cys. After

precipitation to remove donor, reduced cysteines were blocked

with 1% methyl methanethiosulfonate (MMTS) in HENS (HEN

with 2% SDS) at 50uC for 30 minutes. Protein was precipitated

twice to remove MMTS, and resuspended in 1 mM AMCA-

HPDP in HENS with 4 mM sodium ascorbate. Labeling was at

room temperature in the dark for 1 hour. Protein was precipitated

to remove excess label, and resolved on 6% (for myosin heavy

chain) or 12% gels (for myosin light chains). ACMA-labeled

protein was imaged in an Alpha Innotech gel documentation

system using a 460 nm filter and an excitation wavelength of

365nm. Gels were subsequently stained with colloidal coomassie

and imaged in brightfield for total protein. The identity of the

ventricular/slow skeletal isoform of the essential light chain band

was confirmed using Western blot against MYL3.

Statistics
Statistical comparison of means was by z-test. The slopes of

fitted lines, such as those from the laser trap assay, were compared

as described in Rao and coworkers [10]. N unless otherwise stated

is the number of independent experimental preparations, not the

number of individual samples.
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