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Abstract

With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly
necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can
be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the
metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a
genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation
and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about
protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL
file that can then be regarded as a new useful database to generate other reconstructions. The generated model
iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange
reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing
abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the
essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains
that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model
of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of
biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.
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Introduction

Nowadays with the rapidly developed world’s economy, a series

of problems especially energy scarcity come out and become more

and more serious. As a finite and unsustainable fuel source [1],

petroleum is rapidly becoming scarcer and more expensive.

According to forecast, the energy demand is going to grow more

than 50% by 2025 [2]. In light of these concerns, the production of

renewable energy sources has become more interesting and

increasingly necessary in recent years [3]. Biodiesel is one

renewable energy source which gains a competitive advantage

including sustainability, reduction of greenhouse gas emissions,

efficiency and security of supply [4,5]. However, the conventional

production of biodiesel derived from oil crops, waste cooking oil,

and animal fat usually costs too much such as land use, even

worse, it has increased the cost of various food stuffs [6].

Development of novel sources of biodiesel production has

therefore become more and more necessary.

Recently many researchers have been focusing their minds on

oleaginous microorganisms that are able to synthesize and

accumulate oil at least 25% of their dry weight and therefore act

as ideal candidates for fuel production [7,8,9]. Among the

numerous oleaginous microorganisms, Yarrowia lipolytica is now

long used as a model organism for lipid accumulation partly

because it is the only one with developed genetic tools [10].

As the only ascosporic member of the genus Yarrowia, the yeast

Y. lipolytica, formerly known as Candida, Endomycopsis or Sacchar-

omycopsis lipolytica, is often found in environments rich in

hydrophobic substrates, such as alkanes, fatty acids and oils

[11,12]. Several strains of Y. lipolytica yeast have been isolated and

can be efficiently cultivated on various substrates such as glucose

(but not sucrose), alcohols and acetate. Via de novo synthesis

pathway, this yeast is able to accumulate large amounts of lipids, in

some cases to the level exceeding 50% of cell dry weight [DW]

[13]. The complete genome sequence of Y. lipolytica was

determined by B. Dujon et al. [14]. Its genome comprises more

than 6000 genes in six chromosomes whose annotation was

performed by the Génolevures Consortium [15]. Besides, many

genetic manipulation tools on Y. lipolytica have been established,

making rapid gene deletion and other molecular-level research

possible. From the above, Y. lipolytica has been chosen by many

researchers as the target microorganism for mechanism and

regulation studies of lipid accumulation. However, even with

existing tools and knowledge about Y. lipolytica, slow progress has

been made towards understanding of lipid accumulation with

classical metabolic engineering approaches.
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The large quantity of information featured in public databases,

like details about genomes, pathways and proteins has led to

metabolic network reconstructions and in silico modeling of an

organism’s metabolic capabilities [16]. Genome-scale metabolic

network (GSMN) reconstruction which represents currently

available biochemical, genetic, and genomic knowledge-bases for

target organisms provides a platform for omics data analysis and

phenotype prediction and has become an indispensable tool for

studying the systems biology of metabolism in the post-genomic

era [17,18]. Together with a variety of algorithms such as flux

balance analysis (FBA) [19,20], we can use a properly formulated

genome-scale metabolic network to predict the production and

optimization of an added value metabolite by target microorgan-

ism under different environmental conditions [21]. In addition,

effects of environmental and genetic perturbations on the

metabolic network can also be simulated [22]. Since the first

genome-scale metabolic reconstruction carried on E. coli was

released in 2000 [23], there have been up to 126 models about

more than 70 organisms (http://synbio.tju.edu.cn/GSMNDB/

gsmndb.htm). Though the standardized metabolic network

reconstruction process has been well established [24], there are,

however, only few genome-scale metabolic reconstructions about

oleaginous yeasts.

In this study the metabolic network model of Y. lipolytica

iYL619_PCP was reconstructed based on a combination of

genome annotation and the more detailed biochemical knowledge.

Using this metabolic reconstruction, we firstly predicted the

substrates of in silico model and then performed gene knock-out

and flux variability analysis to predict the essential genes in

iYL619_PCP using glucose as the sole carbon source and help

design new strains. Overall, iYL619_PCP provides a valuable tool

and platform for the system-level metabolic analysis of Y. lipolytica

and may also provide important metabolic basis and feasible

engineering ways for the improvement of fatty acid synthesis in

many other oleaginous yeasts.

Materials and Methods

Integration of information from multiple databases
Up to now, there are a large quantity of public databases that

can be used to construct a genome-scale metabolic network [25].

However, information about the same organism from different

databases may be varied; for example, the reaction direction may

conflict. In order to construct a high-quality metabolic network for

Y. lipolytica, information about genome, reaction and relevant

protein was mined from multiple available databases, i.e. KEGG

[26] and BIGG [27] (Table 1). As to the aforementioned

databases, all the information about reactions and their catalyzing

enzymes was downloaded from the FTP or web page of each

database. Then visual BASIC for applications (VBA) was used to

arrange the obtained data into EXCEL so as to be easily cited for

forming genome, protein, and reaction (GPR) associations [28]. By

a contrast of the genome annotation obtained from different

databases, more authentic information marked with their

resources (e.g., KEGG, IMG, both KEGG and IMG, etc.) was

chosen and added into the draft metabolic network.

High-quality metabolic network reconstruction of Y.
lipolytica

Using the genome annotation in several public databases and

information from available literature and experiment results, a

genome-scale metabolic network model of Y. lipolytica

iYL619_PCP was constructed. Because of lots of mistakes in

databases such as the missing of proton in one reaction, manual

curation was needed. With the help of pathway in KEGG, the

draft reconstruction was refined and assembled in a pathway-by-

pathway manner. In this step, we compiled programs to find the

deadend metabolites (see Figure 1 for the program flow) and to

validate what molecules should be added or deleted so as to

balance all the reactions. With the help of available literatures and

experiment results together with Brenda and ENZYME databases

we also validated cofactors or direction of reactions and whether a

reaction should be considered in the model system.

In our metabolic network, transport reactions for metabolites

moving between compartments should be considered. However,

so far transport systems of Y. lipolytica have not been well studied

and less experimental data could be used. Here, each metabolite

included in ‘‘Is deadend’’ category and ‘‘oneSub_Product’’

category (Figure 1) was studied by comparison with the transport

reactions in Saccharomyces cerevisiae model iMM904 [29] and the

flowing metabolites in our model were then determined. Besides,

metabolites found to be assimilated or excreted by Y. lipolytica

[30,31,32] were also included in the model by adding exchange

reactions and transport reactions.

Estimation of Biomass Composition and Maintenance
Energy Requirements

An objective function, usually the formation of the biomass or

the production of a target metabolite, is required to compute flux

distribution in a constraint-based reconstruction [33]. The

biomass compositions of Y. lipolytica, expressed in mmol/g DCW

(dry cell weight), were calculated from various sources including

published articles and available experimental data (see Additional

file S6 for details). These compositions were then integrated into

the genome-scale metabolic network model iYL619_PCP as a

biomass synthesis reaction (also see Additional file S6) to perform

flux balance analysis and flux variability analysis.

Maintenance energy accounts for the ATP requirements of

various cellular processes, such as turnover of the amino acid pools

and polymerization of cellular macromolecules, which can be

either growth associated (GAM), i.e., related to polymerization of

protein, or non-growth associated (NGAM) that is related to

maintaining membrane potential. In order to estimate the

maintenance requirements, experimental data obtained from

continuous cell growth on glycerol was used [34]. The NGAM

of Y. lipolytica was estimated to be 7.8625 mmol ATP/g DCW, and

GAM at dilution rate of 0.1 h21 was 86.7881 mmol ATP/g DCW

on the assumption that a molar glycerol can be completely

oxidized to generate 18.5 mol ATP.

Flux balance analysis (FBA)
FBA [35,36] is a constraint-based modeling approach to

determine the flux distribution in genome-scale metabolic

networks based on linear optimization of an objective function

(typically the rate of biomass production). Accordingly, it can be

used as a tool to predict the in silico cell growth rate or production

rates of biotechnologically important metabolites such as ATP.

As mentioned above, FBA relies on the imposition of a series of

constraints including equations that balance reaction inputs and

outputs (Eq. 2) and inequalities that define the maximum and

minimum allowable fluxes of the reactions, namely the direction-

ality and enzymatic capacity constraints (Eq. 3). These balances

and bounds imposed on model define an allowable solution space

of a linear optimization (Linear Programming, LP) problem of

maximize or minimize a cellular objective function such as the rate

of biomass synthesis (Eq. 1) [37]. FBA corresponds to the following

linear programming problem:

Reconstruction and Analysis of a Metabolic Model
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objective function : max Z~CT � v ð1Þ

constraint : S � v~0 ð2Þ

lbƒvƒub ð3Þ

where S is a sparse matrix of size m|n, m is the number of

metabolites, n is the number of reactions, v represents the flux

values through all reactions, lb and ub define the lowest bound and

uppermost bound of each reaction respectively. In Eq. 1, CT is a

vector comprising the coefficient of each metabolite in the

objective function.

FBA can be performed using COBRA Toolbox [38], which is a

freely available Matlab toolbox. In this study, FBA was used to

Table 1. Databases used in the reconstruction of metabolic network for Y. lipolytica.

Abbreviation Full Name Purpose Link

IMG The Integrated Microbial Genomes
system

Obtain genome annotations http://img.jgi.doe.gov/

KEGG Kyoto Encyclopedia of Genes and
Genomes

Obtain genome annotations
and metabolic reactions

http://www.genome.jp/kegg/

UniProtKB The Universal Protein resource
Knowledgebase

Obtain genome annotations
and metabolic reactions

http://www.uniprot.org/

ENZYME Enzyme nomenclature database Obtain metabolic reactions
of all available enzymes

http://enzyme.expasy.org/

BIGG Biochemical Genetic and Genomic
knowledgebase

Check metabolites and
reactions

http://bigg.ucsd.edu/

BRENDA Check reactions in model http://www.brenda-enzymes.org/

doi:10.1371/journal.pone.0051535.t001

Figure 1. Program flow to find deadend metabolites. ‘‘oneSub_Product’’ represents the metabolites involved in only one reversible reaction,
while ‘‘ManySub_Product’’ represents the metabolites participating in at least two reversible reactions. ‘‘May need transport reaction’’ means such
metabolite can be found in multiple compartments and may need to be transported from one compartment to another.
doi:10.1371/journal.pone.0051535.g001

Reconstruction and Analysis of a Metabolic Model
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simulate gene deletions and analyze the assimilation of substrates

and other characteristics of the model iYL619_PCP.

Minimal media determination and substrate utilization
prediction

Using FBA, we systematically predicted a minimal media

composition capable of supporting growth of Y. lipolytica.

Consulting some available articles [39], different combinations of

metabolites were allowed to enter the metabolic network until the

in silico minimal media was determined, i.e. the production of

biomass is not zero. With the minimal media, each possible carbon

source was allowed to flow into the in silico model one by one by

adding exchange reactions (if there was no corresponding one) for

the sake of simulating the growth of model under different

environmental conditions. The results of substrate utilization

prediction were compared with those obtained experimentally

elsewhere [40].

Flux variability analysis (FVA)
FVA is a frequently used computational tool to calculate the full

range of numerical values for each reaction flux under a given

simulation condition while maintaining some states of the network,

e.g., supporting maximum biomass production rate [41]. There-

fore, the maximum value Z0 of the objective function such as

biomass or ATP production was first computed with FBA

described above. Then each reaction in network was set as the

objective function, and the maximum and minimum flux values

through each reaction were calculated with the constraints

corresponding to an optimal solution Z0 [42]. The FVA problem

can be formulated as below:

objective function : max=min Zi~Ci
T � vi ð4Þ

constraint : S � v~0 ð5Þ

CT � v§lZ0 ð6Þ

lbƒvƒub ð7Þ

where vi is the flux value through each reaction, both maximum

and minimum flux values of a reaction were calculated to

determine the full range. Z0 is the maximum value calculated by

FBA. l, whose value is between 0 to 1, is a parameter to control

whether the analysis is carried out at a suboptimal network state

(when lv1) or at an optimal state (when l~1).

In order to design new strains, FVA was used to measure the

variation of flux of a single-gene-deleted mutant strain compared

with that of the wild-type strain with the equation introduced

below:

SDj~

Pn
i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VmaxizVmini)=2

q

n
ð8Þ

Vmaxi~(
fm maxi{fw maxi

fw maxi

)2 when fw maxi=0 ð9Þ

Vmin i~(
fm mini{fw mini

fw mini

)2 when fw min i=0 ð10Þ

where n indicates the number of all reactions; fw maxi and

fw min i represent the maximum and minimum flux value of i-th

reaction in the wild-type strain; fm maxi and fm min i represent

the maximum and minimum flux value of i-th reaction in the

mutant strain with j-th gene deleted; SDj indicates the average

standard deviation caused by the j-th gene deletion, which was

used to weigh the flux variation when the j-th gene was deleted.

Results

Integration of information from multiple databases
Multiple databases were used to distill more accurate informa-

tion about gene, protein and reaction associations of Y. lipolytica

(Table 1). Take UniprotKB for example, the information of genes,

proteins and reactions of Y. lipolytica was downloaded from its FTP,

and the VBA codes were then compiled to store the necessary

GPR associations into EXCEL (Additional file S1). The EXCEL

file included information about GPR associations of Y. lipolytica,

the genes’ UniprotKB ID, the cofactor of each reaction, the

pathway for each reaction and so on. All these information

obtained (e.g. the most important information of GPR associa-

tions) was used to be compared with those in other databases. The

number of genes and proteins obtained from each database was

showed (Figure 2). As shown in this figure, there are much fewer

genes with EC (Enzyme Commission) number in UniprotKB than

that of any other two databases, which might be because most of

the genome annotations in UniprotKB database are verified by

experts. Besides, the number of genes with ambiguous EC number

in KEGG is zero because the genes without exact annotations are

eliminated from the FTP of KEGG.

To be worth raising, the information about protein and reaction

associations of all the organisms in KEGG and Expasy-ENZYME

database was collected from their FTP and stored into an EXCEL

file (see Additional file S2, where some information of KEGG was

updated up to Feb. 4, 2012), which would be helpful for the

reconstruction of metabolic networks for other organisms.

Genome-scale reconstruction of the metabolic network
for Y. lipolytica

The information of different databases obtained above was

compared with each other and the more correct information was

chosen so as to form the draft metabolic network. With the

genome annotation and other metabolic capacities in available

literature and experiments, the draft metabolic network was

validated and curated manually until a high-quality genome-scale

metabolic network model of Y. lipolytica was constructed.

The resulting network, named as iYL619_PCP consists of 619

genes, 843 metabolites and 1142 reactions including 236 transport

reactions and 125 exchange reactions (Table 2). Almost all the

reactions except biomass reactions and exchange reactions were

element-balanced and charge-balanced semi-automatically. All the

elements of each metabolite in the network were arranged into

EXCEL (Additional file S3) and VBA codes were compiled for the

sake of automatically checking whether each reaction is balanced

or not. The reversibility of each reaction was also manually

validated using KEGG, Brenda database and other available

articles. There are 1142 reactions in all, of which 342 reactions are

non-associated with genes. Most of the reactions non-associated

with genes were transport reactions (154 reactions) and exchange

reactions (125 reactions). Other reactions non-associated with

Reconstruction and Analysis of a Metabolic Model
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genes include spontaneous reactions and reactions added to fill

gaps in the reconstructed network based on simulations (Addi-

tional file S3). A majority of 13 spontaneous reactions involved in

iYL619_PCP are in amino acid metabolic pathway. Isolated

reactions and repeated reactions were eliminated from the

metabolic network (Additional file S3). 551 out of 843 metabolites

participate in 761 cytoplasmic reactions.

More information of the model iYL619_PCP can be found in

Additional file S3. Due to the limited knowledge about Y. lipolytica,

there were still 60 dead-ends included in 59 reactions in the model

iYL619_PCP (Additional file S3). As described above, 843

metabolites within 1142 reactions in the model can be shown in

the form of S matrix (843*1142). The Y. lipolytica model S matrix

was visualized using Matlab, where all non-zero entries in S were

represented with a dot, as shown in Figure 3 (A). Many metabolites

were shown with a large number of dots, indicating their

participation in many metabolic reactions. Figure 3 (B) listed

several metabolites and numbers of participating reactions, where

the metabolite proton is related to 442 cytoplasmic reactions in the

model iYL619_PCP, suggesting 442 dots in the row of proton in

Figure 3 (A). From the network topology perspective, all the

metabolites in iYL619_PCP displayed the connectivity distribution

patterns similar to that of the other microbial genome-scale

networks, such as yeast [43]. A small quantity of metabolites

participate in very many reactions, whereas most of the

metabolites have few connections. Most connected metabolites

include the current metabolites (e.g. ATP, NADPH, NADH), key

metabolites in the central metabolism (e.g. pyruvate, succinate,

fructose-6-phosphate), a couple of amino acids and its precursors

such as L-glutamate, and key metabolites and precursors in the

lipid biosynthesis pathway (e.g. malonyl-ACP, ACP, acetyl-CoA).

These most connected metabolites play important roles in the

metabolic network, for example, the stability in transporting such

highly connected metabolites into or out of the network will affect

globally the in silico metabolic phenotype. In addition, the

organization of regulatory mechanisms may be significantly

affected by such highly connected metabolites. In order to discover

the corresponding regulatory mechanisms, more and more

researchers concentrate their attentions on these highly connected

metabolites. Furthermore, the connection of metabolites can be

found in Additional file S3.

Minimal media determination
Using the method mentioned above an in silico minimal media

composition capable of supporting growth of Y. lipolytica was

systematically predicted with the help of available literatures that

revealed experimental growth requirements (see Additional file

S4). The glucose minimal media composition is shown in Table 3.

By using the FBA method and this minimal media, a maximum

flux of 0.0439 was predicted for cells growing in glucose minimal

media where glucose uptake rate and ammonium consumption

rate were assumed to be 20mmol/(g DCW?h) and 3 mmol/(g

DCW?h) respectively.

Figure 2. Number of genes and proteins obtained from different databases. ‘‘Genes with EC number’’ represents the gene that has
annotation in each database, whereas ‘‘Genes with exact EC number’’ and ‘‘Genes with ambiguous EC number’’ represent the gene that has exact and
ambiguous annotation in each database respectively.
doi:10.1371/journal.pone.0051535.g002

Table 2. Basic properties of metabolic network iYL619_PCP.

Features number

Compartment 3

genes 619

reaction 1142

Associated with genes 800

Not associated with genes 342

Transport reactions 236

Exchange reactions 125

Extracellular reactions 239

Cytoplasmic reactions 761

Mitochondrial reactions 142

Metabolic reactions 781

Reversible reactions 563

Irreversible reactions 218

Spontaneous reactions 13

Metabolites 843

Extracellular metabolites 128

Cytoplasmic metabolites 551

Mitochondrial metabolites 164

doi:10.1371/journal.pone.0051535.t002

Reconstruction and Analysis of a Metabolic Model
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In addition, the flask growth of the wild-type strain of Y. lipolytica

in the minimal media (Table 3) was experimentally tested, during

which optical density (OD) was detected with spectrophotometer.

The results shown in Figure 4 indicated that Y. lipolytica could grow

on this minimal media with a maximum specific growth rate of

approximately 0.0352 h21, which is consistent with the predicted

value. In addition, no growth of Y. lipolytica was observed with the

absence of ammonia sulfate, glucose or orthophosphate in the

media (see Figure 4).

Substrate utilization validation of in silico model
iYL619_PCP

Utilization of various substrates by Y. lipolytica has been reported

previously by Kurtzman [40]. We compared the in silico prediction

on the use of substrates with available experimental data (Table 4).

During this process, in which FBA was used, twenty-nine

substrates were chosen to predict whether Y. lipolytica can grow

on each substrate with the minimal media defined above. As

shown in Table 4, the growth on twenty-four out of twenty-nine

substrates were correctly predicted, resulting in a predictive

accuracy of about 83%. The wrongly predicted instances included

GN (substrate that can be assimilated in experiment but can’t in

silico) and NG (substrate that can’t be assimilated in experiment

but can in silico). There are four GN-substrates including D-

mannitol, D-glucitol, succinate and hexadecane and only one NG-

substrate of trehalose. These instances of GN indicate that the

model iYL619_PCP has a weaker ability than that it should have,

whereas the instance of NG just in opposite, indicate the model

has a stronger ability. There might be at least two reasons for four

GN-substrates in the model iYL619_PCP. On one hand, some

reactions associated with the assimilation of these four substrates

were overlooked, resulting in gaps in biosynthetic pathways. On

the other hand, the equation of biomass reaction might be

responsible for four wrong predictions. For example, if a

component was not a part of biomass but was wrongly included

into the biomass equation, the predicted biomass synthesis flux will

be zero in case that this component can not be synthesized from a

certain carbon source. This implied that further validation and

improvement of biomass compositions are required for the

constructed model system. Apropos of trehalose, the only NG-

substrate, a reaction catalyzed by the product of gene YA-

LI0D15598g was found responsible for the synthesis of glucose

from trehalose. Meanwhile, by referring to some articles [44],

Figure 3. Analysis of the S matrix of the model iYL619_PCP. (A) The visualization of the (843*1142) S matrix of the model iYL619_PCP, (B)
Most connected metabolites in the iYL619_PCP metabolic network.
doi:10.1371/journal.pone.0051535.g003

Table 3. The in silico glucose minimal media composition of
the model iYL619_PCP.

Reaction
name

Reaction
description Equation LB*1 UB*2

R1294 D-glucose exchange [e]: D-glucose
, = .

220 1000

R1196 Sulfate exchange [e]: so4 , = . 21000 1000

R1204 O2 exchange [e]: o2 , = . 21000 1000

R1211 Phosphate exchange [e]: pi , = . 21000 1000

R1218 Ammonia exchange [e]: nh4 , = . 21000 1000

R1221 H2O exchange [e]: h2o , = . 21000 1000

R1228 CO2 exchange [e]: co2 , = . 21000 1000

R1305 Proton exchange [e]: h , = . 21000 1000

*1, LB, lower bound, whose unit is mmol/(gDW*h21).
*2, UB, upper bound, whose unit is also mmol/(gDW*h21).
doi:10.1371/journal.pone.0051535.t003

Reconstruction and Analysis of a Metabolic Model
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some regulation mechanisms of trehalose metabolism were found,

whereas there were no mechanisms included in the model

iYL619_PCP. So the possible reason for the discrepancy between

experimental and simulated growth on trehalose might be some

wrongly added reactions or missing of regulation network in the

model iYL619_PCP. The current model iYL619_PCP therefore

needs to be improved with possible regulatory mechanisms and

further curated.

Gene deletion analysis
In practical experiments, genetic manipulation has become an

indispensable tool to design mutant strains and validate pheno-

Figure 4. Experimental validation of the minimal media predicted in silico with the model iYL619_PCP. The composition of minimal
media in experiment is as follows: glucose (20g/L), NH4SO4 (3g/L), KH2PO4(2g/L). The OD of culture media after inoculation was about 0.06.
doi:10.1371/journal.pone.0051535.g004

Table 4. Comparison of substrate utilization between experimental and in silico data.

Substrate Experiment Prediction Substrate Experiment Prediction

Glucose + + Hexadecane + –

N-Acetyl-D-glucosamine + + Sucrose – –

Methanol – – Maltose – –

Ethanol + + Cellobiose – –

Glycerol + + Trehalose – +

Galactitol – – Lactose – –

D-Mannitol + – Melibiose – –

D-Glucitol + – Raffinose – –

Mehyl-D-glucoside – – Inulin – –

Salicin – – D-xylose – –

D-Lactate + + L-Arabinose – –

L-Lactate + + D-Arabinose – –

Succinate + – L-Rhamnose – –

Citrate + + D-Glucosamine – –

Inositol – –

‘‘+’’ means the substrate can be assimilated.
‘‘–‘‘ means the substrate can not be assimilated.
doi:10.1371/journal.pone.0051535.t004

Reconstruction and Analysis of a Metabolic Model
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typic outcomes. However, the process of gene deletion is very

time-consuming. In order to reduce the scope of experiments and

quickly investigate essentiality of each gene in Y. lipolytica, a single

gene deletion study with FBA was conducted with model

iYL619_PCP in the glucose-minimal media described above. As

shown in Figure 5, the results could be divided into three

categories: i) 117 essential genes [45], deletion of which completely

inhibits biomass growth, ii) 51 partially essential genes, deletion of

which affects but does not completely inhibit biomass growth, iii)

451 non-essential genes, deletion of which exhibits no effect on

biomass growth. More information of the prediction can be

obtained from Additional file S4. Though gene essentiality is

related to environmental condition and biomass reaction, the

results obtained in this study might provide significant potential

use and guidance for the metabolic engineering of Y. lipolytica.

Flux variability analysis for strain design
Flux variability analysis was used to help design strains that can

produce more lipids. Because lipids such as triglyceride are

intracellular products, the production of lipids is in great relation

to biomass production. Here in order to help design mutant strains

that produce a large mount of lipids, the biomass production was

set at the optimal value Z0 (described above) until the influencing

factor of lipid production was experimentally studied clearly. FVA

was used to evaluate the effects of individual non-essential genes

on flux distribution (see Additional file S4 for the flux distribution

of each reaction), and the SD value of each non-essential gene was

calculated and shown in Figure 6 (the SD values of three genes

were too high and not shown here, see Additional file S4 for more

details). Only a few non-essential genes exhibited large SD values,

indicating great effects of these genes on overall flux distribution.

To perform gene manipulation and strain engineering more

efficiently, the scope of genes could be restricted to these genes

with larger SD values. For example, with the above definition of

SD value, the deletion of gene ‘‘YALI0C11407g’’ resulted in the

largest SD value (Additional file 4), indicating that this gene might

have the greatest effects on overall flux distribution and could be

regarded as a candidate for engineering. In the model, the

‘‘YALI0C11407g’’ gene encodes acetyl-CoA carboxylase that

catalyzes the conversion of acetyl-CoA to mal-CoA (reaction

‘‘R0162’’). Interestingly, literature information [46,47] shows that

acetyl-CoA carboxylase is responsible for the control of rate-

limiting step of de novo fatty acids synthesis. It therefore provides

evidence that the FVA-based analysis is informative and the gene

deletions with large SD values probably have large impacts on the

decision of an engineering strategy. In case that the maximum or

minimum flux value of the i-th reaction in the wild-type strain was

zero, Vmaxi and Vmin i could not be calculated by the equations

above (Eq. 9 and Eq. 10). However, if the i-th reaction is closely

related to a certain target product and the deletion of the j-th gene

resulted in a non-zero flux of the i-th reaction in the mutant strain,

the j-th gene might be a good candidate for strain engineering to

achieve improved yield of the target product. For example,

reaction ‘‘R0272’’ shows that serine is synthesized from 3-

Phosphoglycerate. FVA results indicated that the minimum flux

value of this reaction was zero in the wild-type strain, whereas the

knockout of either gene ‘‘YALI0F16819g’’ or gene ‘‘YA-

LI0F09185g’’ resulted in a minimum flux of 19.7162 mmol/g

DCW/h and 19.6913 mmol/g DCW/h respectively. Although in

this example V min could not be calculated with Eq. 9, both genes

could be considered as good engineering targets for enhanced

serine synthesis. In fact, the ‘‘YALI0F16819g’’ gene encodes the

enzyme converting 2-phospho-D-glycerate to phosphoenolpyr-

uvate and the product of ‘‘YALI0F09185g’’ catalyzes the

conversion of phosphoenolpyruvate to pyruvate. A deficiency of

either enzyme might result in the accumulation of 3-Phospho-

glycerate and thus enhance the flux of serine synthesis. Table 5

shows parts of the above reaction-gene pairs obtained from FVA

(see Additional file S4 for more details), from which specific genes

are suggested to be engineered to obtain certain enhanced

metabolic functions.

Figure 5. Results of single gene deletion study. The horizontal axis represents every gene in the metabolic model; the vertical axis represents
the ratio of biomass production of a single gene-deletion strain to that of the wild-type strain.
doi:10.1371/journal.pone.0051535.g005
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Discussion

We have successfully reconstructed a genome-scale metabolic

network model iYL619_PCP for Y. lipolytica with the help of

available knowledge in public databases and scientific publications.

The model iYL619_PCP is the first genome-scale metabolic

reconstruction for oleaginous yeasts with information directly

derived from multiple databases. Both the SBML representation

(see Additional file S5) and the EXCEL representation of the

model are freely available so that it provides a basis for the

improvement of reconstructions for oleaginous yeasts. During the

reconstruction of iYL619_PCP, the genome annotations in

KEGG, IMG, UniprotKB were picked up and compared

automatically to decide which annotation should be added into

the metabolic network. Besides, the information about protein and

reaction associations of all the organisms in KEGG and Expasy-

ENZYME databases was obtained and stored into an EXCEL file,

which therefore provides a platform to generate other reconstruc-

tions.

The model iYL619_PCP as a chemically and genetically

structured database comprises 619 genes, 843 metabolites and

1142 reactions including 236 transport reactions, 125 exchange

reactions and 13 spontaneous reactions. Because of the lack of

knowledge of gene annotations in several public databases, 78

reactions without gene associations were added into the model to

satisfy the production of biomass and other characters of Y.

lipolytica. The deadends were defined and 60 deadends in 59

reactions were found using a VBA program. In iYL619_PCP

almost all the reactions were element-balanced and charge-

balanced, and the names of metabolites in model followed the

conventional naming rule [48] and their molecular formation and

charge were all ensured one by one, which will facilitate balancing

the reactions.

Before we presented our metabolic model iYL619_PCP,

another model iNL895 for Y. lipolytica [49] was on-line published

in the journal BMC system biology. The reconstruction of iNL895

was derived from the models of a phylogenetically distant yeast S.

cerevisiae, whereas iYL619_PCP was derived directly from the well-

known databases with more credible information of Y. lipolytica.

There are some differences in the information included in

iYL619_PCP and iNL895, so the two models can complement

each other in the future metabolic study and engineering of this or

other related oleaginous yeasts.

Figure 6. The SD values calculated of all non-essential genes. ‘‘SD’’ represents the average standard deviation calculated using Eq. 8, ‘‘Gene
pct’’ represents the percent of SD values in each range, because SD values of some non-essential genes can’t be calculated, SD values of such type are
set as zero and showed here.
doi:10.1371/journal.pone.0051535.g006

Table 5. Reactions with zero flux in the wild-type strain but
non-zero flux when the corresponding gene was deleted.

Group I * Group II **

Reaction Gene Reaction Gene

R0133 YALI0D17864g R0635 YALI0C23210g

R0135 YALI0D17864g R0287 YALI0F09185g or
YALI0F16819g

R0146 YALI0C05951g R0512 YALI0F30129g

R0148 YALI0C05951g

R0154 YALI0D17864g

R0155 YALI0D17864g

R0272 YALI0F09185g or
YALI0F16819g

R0275 YALI0F05874g

R0309 YALI0D10813g

R0310 YALI0E16797g or
YALI0F19514g

R0311 YALI0D07986g

*Group I: reaction with zero minimum flux in the wild-type strain, but non-zero
minimum flux when the corresponding Group I gene was deleted.
**Group II: reaction with zero maximum flux in the wild-type strain, but non-
zero maximum flux when the corresponding Group I gene was deleted.
doi:10.1371/journal.pone.0051535.t005
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The in silico minimal media of the model was ensured and

experimentally tested, with which the utilization of 29 substrates

was predicted and compared with the results reported elsewhere.

The growths of Y. lipolytica on 24 substrates were correctly

predicted, indicating the model iYL619_PCP could be used to

qualitatively predict the production of biomass under various

substrate conditions. Besides, four GN-substrates and one NG-

substrate were identified, which could be used to direct the

improvement of the model system. A single gene deletion study of

the model iYL619_PCP was performed in the glucose-minimal

media, and 117 essential genes, 51 partially essential genes and

451 non-essential genes were identified, which will be partially

verified experimentally in our future study and now provides a

guidance for genetic manipulations of Y. lipolytica. Using FVA, the

model iYL619_PCP was used to design mutant strain. The effects

of individual non-essential genes on overall flux distribution were

evaluated with the introduction of novel average standard

deviation SD, which can therefore be used to reduce the scope

of genetic manipulation for the design novel mutant strains for

enhanced production of lipids and some useful chemicals.

The genome-scale metabolic model iYL619_PCP could be

employed for the prediction of certain physiological and metabolic

functions. However, due to the lack of sufficient knowledge of Y.

lipolytica, this model still needs iterative curation, for example, the

prediction of essential genes may be not accurate enough, and as a

result of the lack of regulatory mechanisms, some predictions such

as the assimilation of trehalose might disagree with the experi-

mental results. We expect in future the current model of

iYL619_PCP could largely help researchers to improve the strain

and experimental designs and in turn, the growth experimental

evidence will significantly benefit the improvement of GPR

associations and prediction accuracy of the genome-scale model

iYL619_PCP.
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