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Background. Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this
growth occurring in low income countries. This growth is likely to have significant social, economic and environmental
impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and
potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low
income countries, however, where the changes will be concentrated, the least information on the distribution of population
exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can
be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large
areas. Methodology/Principal Findings. We examine various approaches for the production of maps of the East African
region (Kenya, Uganda, Burundi, Rwanda and Tanzania) and where fine resolution census data exists, test the accuracies of
map production approaches and existing population distribution products. The results show that combining high resolution
census, settlement and land cover information is important in producing accurate population distribution maps. Conclusions.

We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more
accurate results than existing products and can be undertaken for as little as $0.01 per km2. The resulting population maps are
a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk) and are freely available.

Citation: Tatem AJ, Noor AM, von Hagen C, Di Gregorio A, Hay SI (2007) High Resolution Population Maps for Low Income Nations: Combining Land
Cover and Census in East Africa. PLoS ONE 2(12): e1298. doi:10.1371/journal.pone.0001298

INTRODUCTION
The global human population is growing by over 80 million a

year, and though confidence intervals are large, is projected to

reach the 10 billion mark within 50 years [1]. The vast majority of

this growth is expected to be concentrated in low income

countries, and primarily in urban areas [2]. The effects of such

rapid growth are well documented, with the economies,

environment and health of nations, amongst others, all undergoing

significant change [3,4].

High resolution, contemporary data on human population

distributions are a prerequisite for the accurate measurement of

the impacts of population growth, for monitoring changes and for

planning interventions. Spatial databases of human population

have found use in disease burden estimation, epidemic modelling,

resource allocation, disaster management, accessibility modelling,

transport and city planning, poverty mapping and environmental

impact assessment amongst others [5–9]. Whilst high-income

countries often have extensive mapping resources and expertise at

their disposal to create such databases, across the low income

regions of the world, relevant data are either lacking or are of poor

quality. For many low income countries the last significant

mapping efforts occurred in the 1960–70s. The scarcity of

mapping resources and skilled personnel, lack of reliable validation

data and difficulty in obtaining high resolution contemporary

census statistics remain major obstacles to settlement and

population mapping in these regions.

In producing maps of gridded population distribution, the

principal factor affecting accuracy has been shown to be the

administrative boundary level, or spatial resolution, of the input

census data [10]. Ancillary data on such aspects as roads,

topography and settlements can be incorporated to improve

mapping accuracies, but unless these data are provided at a level

of detail finer than the accompanying census data, their use is

detrimental to mapping accuracy compared to the simple

gridding of census data [10]. The intrinsic link between human

population distribution and land cover [11], particularly settle-

ments, means that such data offer the best opportunity for

improved population mapping. Combinations of different types of

medium spatial resolution satellite imagery have been shown to

be capable of producing accurate, low-cost and easily updatable

settlement maps over large areas [12–14]. Here, we investigate

whether the outputs from these settlement mapping approaches

can be integrated with land cover and census data to improve

mapping accuracies over existing population distribution prod-

ucts. We focus on the East African (EA) region (Burundi, Kenya,

Rwanda, Tanzania and Uganda) and aim to examine the
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feasibility of using simple and semi-automated methods that can

be implemented with free image processing software and minimal

personnel to produce easily updatable maps at 100 m spatial

resolution. Given the scales and speed with which population

growth and urbanisation are occurring in the region, such

features are a necessity.

MATERIALS AND METHODS
An abridged, step by step version of the materials and methods is

presented here. Full details are provided in Text S1.

Satellite Imagery
Radarsat-1 country mosaics (MDA Geospatial Services, Rich-

mond, Canada) comprising of data collected between 1999 and

2002 were processed to extract texture information [13,14].

Landsat Enhanced Thematic Mapper (ETM) scenes covering the

EA region for 2002 (or as close to this year as possible) were also

acquired (Global Land Cover Facility, http://glcf.umiacs.umd.

edu). Imagery choice was constrained by attempting to maintain

between-scene temporal consistency [15] and minimising cloud

cover and other detrimental atmospheric effects. Each scene was

subject to atmospheric correction [16,17] and georegistration

against ancillary data layers. Figure S1 shows the Landsat ETM

tile extents, shaded by month of acquisition, while Figure S2 shows

the Radarsat mosaic for the EA region.

Land cover and other data sources
Full resolution Africover (www.africover.org) land cover data for

the EA region countries were obtained. The 99 individual classes

were aggregated to a more generic 22 classes to provide a

consistent legend across the entire region. Figure S3 shows the

resulting map. In addition, Africover roads, rivers and towns

products were obtained, along with other data on national parks,

urban centres and health facilities to aid mapping, testing and

accuracy assessment. The roads dataset was supplemented with

various other datasets to ensure the inclusion of smaller unpaved

roads [18].

Census Data
Human population census data and corresponding administrative

unit boundaries at the highest level available from the most recent

censuses in Burundi (1999, administrative level 2 (commune)),

Kenya (1999, administrative level 5 (sublocation)), Rwanda (1991,

administrative level 2 (commune)), Tanzania (2002, administrative

level 4 (ward)) and Uganda (2002, administrative level 4 (parish))

were obtained (figure 1). Also obtained were Kenyan 1999 census

data at enumeration area level (finer than level 5) with

corresponding boundaries for 50 of the 69 Kenyan districts

(figure 2). Finally, to aid population map assessment, 1999 Kenya

settlement population counts were obtained and matched to

corresponding Africover ‘urban area’ or ‘rural settlement’

polygons.

Gridded population products
To enable brief comparisons of population maps produced using

the approaches outlined in this paper and existing gridded

population products, for Kenya the African Population Database

(APD, http://www.na.unep.net/globalpop/africa/), the Global

Rural-Urban Mapping Project (GRUMP, http://sedac.ciesin.

org/gpw/), the Gridded Population of the World version 3

(GPW3, http://sedac.ciesin.org/gpw/) and Landscan 2005

(http://www.ornl.gov/sci/landscan/) were obtained.

Figure 1. The highest levels of administrative boundaries for which
national census data were available for Burundi, Kenya, Rwanda,
Tanzania and Uganda.
doi:10.1371/journal.pone.0001298.g001

Figure 2. Kenya enumeration area census data. The 50 Kenyan
districts for which enumeration area census data were available are
shaded grey. Within each district the enumeration area boundaries are
shown.
doi:10.1371/journal.pone.0001298.g002
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Settlement mapping
Identification of settlements and the mapping of their extents were

based upon the methodologies outlined in Tatem et al [13,14] and

adapted for simplification, ease of repetition and the incorporation

of new data.

Settlement mapping was undertaken at the level of the

Landsat tile extent (Figure S1), with the Radarsat imagery and

texture layers cut to match these extents. In areas of great

topographic variation, the radar responses due to the topography

are often greater than, or mistaken for, those from settlements, so

a ‘terrain ruggedness index’ [19] image was created from a 90

metre spatial resolution Shuttle Radar Topography Mission

(SRTM) digital elevation model (DEM). For those pixels with a

value of 500 or greater (defined as ‘highly’ or ‘extremely’ rugged),

Landsat ETM imagery alone was used for settlement mapping.

Settlement types and reflectance characteristics are often

dependent upon their setting and surrounding land cover. For

the imagery in each tile extent, therefore, Africover data was

used to identify land cover units (excluding settlement polygons)

within which separate settlement mapping would take place.

Accounting for the wide variation in reflectances within the

generic land cover classes, the imagery representing each land

cover type in a tile was then clustered into a conservative 1000

classes (thus reducing the possibility of spectral confusion through

choosing too few classes) using ISODATA unsupervised

classification [20].

Within each Landsat tile extent, 75% of Africover ‘urban area’

and ‘rural settlement’ polygons were chosen randomly for training,

with the remainder set aside for accuracy assessment. For every

tile, within each land cover region for which unsupervised

classification had taken place, examples of ‘urban area’ and ‘rural

settlement’ Africover polygons were identified from the training

set, where possible. Within these polygons, image classes were

highlighted and merged iteratively to best represent the training

polygon extents, whilst discounting clear non-settlement land

covers within the polygons, and produce a satellite imagery

derived settlement map. The individual tile-level settlement maps

were then mosaiced, and the overlap regions between tiles checked

for consistency.

The remaining 25% of Africover settlement polygons were

rasterised to the same 30 m spatial resolution grid as the settlement

maps, and all grid squares within each settlement extent were

identified for the calculation of accuracy statistics. An equal sized

set of ‘non-settlement’ grid squares were randomly selected from

non-settlement Africover classes to test whether the predicted

settlement maps had identified false areas of settlement [13]. Half

of these grid squares were positioned randomly within 500 m

buffers of Africover settlement polygons to also assess the accuracy

by which settlement extents were delineated by the maps.

Percentage correct, Kappa and errors of commission and omission

were calculated [21]. Visual comparison with the raw Landsat

imagery and overlay onto Google Earth (where the highest

resolution images were available) also enabled subjective exami-

nation of small settlement mapping accuracy where validation

data did not exist.

Population mapping
Population data for Burundi, Kenya and Rwanda were adjusted

forward [10] to estimated 2002 levels using inter-censal growth

rates to match the most recent census data used and the majority

of the satellite imagery. Three approaches to the creation of

gridded population distribution maps were tested. Firstly (EA-

pop1), the census data was simply areal-weighted [10] to a 100 m

spatial resolution grid. Secondly (EApop2), the satellite derived

settlement map for each country was degraded to the same 100 m

grid, and census counts within an administrative unit were then

allocated to the grid squares classified as settlement. Administra-

tive units not containing any grid squares that were classified as

settlements had their population counts simply areal weighted.

Finally (EApop3), the satellite imagery derived settlement maps

were degraded to 100 m spatial resolution and ‘burned’ into the

Africover land cover layers to create a refined land cover map for

the region. Where settlement extent was mapped as smaller in the

settlement map than the ‘urban area’ or ‘rural settlement’ classes

in Africover, the surrounding land covers were grown to infill the

gaps. This refined land cover layer and Kenyan enumeration area

census data were then used to define per land cover class

population densities (Table S1), were then used as weights to

distribute the census data across the entire region to create a

population map.

The accuracies of the various population mapping procedures

were tested principally using the enumeration area level census

data for 50 Kenyan districts (figure 2). Additionally, to provide a

finer resolution measure of settlement population mapping

accuracy, the Africover settlement extents with assigned popula-

tions were used. For each 100 m gridded population distribution

map produced, the population numbers falling within each

enumeration area and settlement polygon were extracted and

compared against the actual population figures, with overall and

district-specific root mean square errors (RMSEs) calculated. To

explore the effectiveness of the population mapping procedures in

the absence of high resolution census data, for Kenya the map

production process was repeated using census data at administra-

tive levels 4, 3, 2, 1 and 0 (national). Finally, the maps of Kenya

from existing gridded population products (APD, GRUMP,

GPW3 and Landscan 2005) were adjusted to 2002 [10], areal

weighted to a 100 m grid and compared to the enumeration area

census data to obtain estimates of their accuracy relative to the

approaches outlined in this paper.

RESULTS

Settlement mapping
Settlement maps at 30 m spatial resolution for the five EA region

countries were produced from the Landsat ETM and Radarsat

imagery, and figure 3 shows results for Kampala, Uganda. The

results of the accuracy assessments undertaken using the randomly

selected pixels, both outside and within the 25% of Africover

‘urban’ and ‘rural settlement’ polygons not used in the map

production process, are in table 1. The highest overall accuracy

(combined settlement and non-settlement accuracies) was 85.5%

for Kenya, but results were similar across the region. In general,

the non-settlement test pixels were mapped more accurately than

the Africover-defined settlement pixels, although all accuracies

were above 70% and Kappa values all above 0.55 (table 1),

indicating a good to excellent agreement [21].

Population mapping
The results of testing three population mapping procedures with

different levels of input census data against the high resolution

Kenya enumeration area census data (figure 1), are shown in

figure 4. At every level of input census data, EApop3, which used

both the satellite derived settlement map and Africover data,

produced the most accurate population distribution map. Except

for when national-level census counts were used, the simple areal

weighting approach (EApop1) proved to be the second most

accurate approach. While EApop3 was the approach that

East Africa Population Mapping
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produced the lowest RMSEs overall, by district, results varied with

both EApop1 and 2 proving more accurate approaches for certain

districts (figure 5). Comparisons against Africover settlement

polygons with population counts attached showed EApop3 to

again be the most accurate approach, with a RMSE of 62430

people, in contrast to 80367 for EApop1 and 68172 for EApop2.

Comparing the four existing gridded population products, APD,

GRUMP, GPW3 and Landscan against the Kenyan enumeration

area census data produced the overall RMSEs shown in table 2.

GRUMP produced the lowest RMSE of the four, with 703.9

people, but none were able to improve upon the RMSE of 574 for

EApop3. Finally, EApop3 was applied using the settlement map,

Africover data and highest administrative level census data

(figure 1) for the East African region. A three-dimensional

representation of the resultant population density map is shown

in figure 6.

DISCUSSION
For large regions of the World, spatially-referenced settlement and

population data are outdated, of poor quality or lacking entirely.

The results presented here show that it is possible to create detailed

and accurate settlement and population maps of low income

nations using cheap or freely available data. The most accurate

approach involved a simple and easily updated methodology that

required relatively few operators, and produced results that were

Figure 3. Example of settlement mapping. (a) Landsat ETM false colour composite of bands 2,3 and 4 in red, green and blue respectively showing
Kampala, Uganda and surrounding areas, (b) The same image as (a), but with the outlines of mapped settlements overlaid.
doi:10.1371/journal.pone.0001298.g003

Table 1. Accuracy statistics for the settlement maps produced for each country in the EA region.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Country

No. Africover
settlement
test polygons

No. test pixels
settlement/
non-settlement

Settlement
percentage
correct

Non-settlement
percentage
correct Kappa

Settlement
C(%)

Settlement
O(%)

Non-settlement
C(%)

Non-settlement
O(%)

Burundi 12 6782/6782 75.9 82.1 0.579 19.1 24.1 22.7 17.9

Kenya 81 46137/46137 81.4 89.5 0.712 11.4 18.6 17.2 10.5

Rwanda 11 6222/6222 76.8 83.9 0.607 17.3 23.2 21.6 16.1

Tanzania 147 83595/83595 73.9 92.2 0.662 9.5 26.1 22.1 7.8

Uganda 80 45585/45585 72.1 83.5 0.557 18.6 27.9 25.0 16.5

C = Error of commission, O = Error of omission.
doi:10.1371/journal.pone.0001298.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.
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substantially more accurate than existing datasets and at a much

finer spatial resolution.

Settlement mapping
The accuracies with which the Africover-defined test pixels were

mapped (table 1) show that the settlements large enough to feature

in the Africover land cover layer were well identified, their extents

were relatively well mapped, and those areas defined as containing

no settlements were also correctly mapped in general. The

Africover production process leads to the creation of simple

settlement outlines and definitions, which do not capture extent

details or the variety of land covers within a settlement seen at

30 m spatial resolution, and this explains principally the

discrepancies seen for the settlement statistics in table 1,

particularly the relatively high settlement errors of omission. In

terms of simply the percentages of test Africover settlement

polygons containing predicted settlement pixels, therefore, the

results were: Burundi 100%, Kenya 98.8%, Rwanda 100%,

Tanzania 98% and Uganda 97.5%. Testing whether the smaller

‘settlements’ identified through the classification process were

actually settlements, and were mapped accurately was also

difficult, given the lack of data that exists for the EA region on

such small settlements. For example, whilst Africover represents

Figure 4. RMSE plots of the three population mapping procedures tested for the six different administrative levels of Kenyan census data.
doi:10.1371/journal.pone.0001298.g004

Figure 5. Per-district RMSE plots of the three population mapping procedures.
doi:10.1371/journal.pone.0001298.g005
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the most detailed datasource on settlements and their extents for

the region, just 323 settlements are mapped for Kenya, whilst the

process described here identified over 7000 distinct groups of ten

or more contiguous settlement pixels. Such features mean that,

whilst Africover does represent the best data available and

accuracies were generally high, a full rigorous assessment of the

accuracy with which small settlements were mapped in the region

is unfeasible. Visual comparison between ‘settlements’ mapped

and both Google Earth and the Landsat imagery (e.g. figure 3)

does however suggest that the mapping accuracy of these smaller

settlements was high across the region. Moreover, overlaying the

comprehensive road network layer for Kenya identified that 81%

of pixels classified as ‘settlement’ fell within 250 m of a road,

suggesting correct mapping.

While the accuracies presented in table 1 are relatively high,

difficulties within the settlement mapping process did lead to

potential errors. Tatem et al [13] showed that the combination of

imagery from passive and active satellite sensors, together with

derived texture layers, produced the highest mapping accuracies.

However, when mapping was undertaken with just radar or just

Figure 6. East Africa region population density estimated using the EApop3 approach. The spatial resolution has been degraded and vertical
exaggeration has been applied for visualisation purposes. The full-resolution close-ups reveal detail for (a) Bujumbura, (b) Kigali, (c) Kampala, (d)
Nairobi and (e) Dar Es Salaam.
doi:10.1371/journal.pone.0001298.g006

Table 2. Details of the Kenya population maps produced, as well as existing products, and accuracy statistics calculated using the
43,733 EA census counts.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Surface
Administrative level
of input census data Ancillary data types used

Native spatial
resolution

RMSE (no.
people) Standard error Adjusted r2

EApop1 5 - 100 m 592.1475 530.64 0.608

EApop2 5 settlements 100 m 1097.754 971.51 0.365

EApop3 5 settlements, land cover 100 m 574.1875 509.7 0.625

APD 3 roads, rail, rivers, urban centers 2.5 minutes 1329.88 1298.07 0.276

GRUMP 5 urban extents 30 arc sec 703.9369 606.62 0.507

GPW3 5 - 2.5 minutes 1047.2101 904.44 0.411

LANDSCAN 3 roads, urban extents, elevation, slope, land cover 30 arc sec 1484.91 1365.19 0.232

doi:10.1371/journal.pone.0001298.t002
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Landsat imagery, the radar mapping produced much lower

accuracies. Therefore, in those locations where the selection of

cloudy Landsat imagery was unavoidable, settlement mapping

accuracy is likely to be lower (especially in rugged areas), though

sufficient verification data was unavailable to test this. Spectral

confusion in a few small areas also contributed to potential settlement

mapping errors, where what appeared to be non-settlement land

cover had an almost identical spectral and radar response to

settlements identified using Africover polygons. This occurred in

only a small number of places, and was corrected where clear

misclassification had occurred. Finally, in the cases where selection of

neighbouring Landsat scenes acquired at different times of the year

(Figure S1) were unavoidable, differing lighting conditions and

vegetation growth stages are likely to have contributed to some

spatial inconsistency within the settlement mapping [15].

Population mapping
Hay et al [10] suggested that mapping accuracy improvement over

simple areal weighting of census data could only be achieved with

relevant ancillary data layers of finer detail, and a suitable modelling

framework. Figure 4 provides evidence for this, with EApop3

producing small overall accuracy improvements over EApop1

through the use of detailed settlement information and a modelling

approach that takes account of detailed land cover information. It is

clear from the results of EApop2, that without the right modelling

procedure, the use of high resolution ancillary data is no guarantee

of mapping accuracy improvement over AW. Figure 4 also acts as a

useful guide, demonstrating the accuracy levels and changes

expected, given the administrative levels of census data available

for mapping. It underlines the message that obtaining as high a

resolution of census data as possible should be the priority starting

point in map production, with the gradient of EApop1 and 3

indicating the improvements that can be made. Whilst figure 4 does

demonstrate that EApop3 positioned populations more accurately

than the other approaches overall, figure 5 shows that this was not

achieved consistently for all Kenyan districts.

Table 2 emphasises further the importance of high resolution

census data. Both GRUMP and GPW3 used sublocation

(administrative level 5) data for Kenya, resulting in substantially

lower RMSEs than APD and Landscan, each of which used level 3

data. Moreover, figure 4 shows that simple areal weighting of level

3 (division) data produced improved accuracy over APD and

Landscan, indicating that the modelling approaches used were

detrimental to mapping accuracy. With a RMSE lower than

GRUMP and GPW3, however, the modelling approach of

EApop3 proved more accurate, though the 1km and 5km

resolutions of the original GRUMP and GPW3 mean that

conclusive comparisons are difficult to make.

The question remains of whether further improvements in

mapping accuracy over EApop3 can be made without significant

additional costs or effort. The largest improvements in accuracy

are likely to be achieved through the use of even higher

administrative level census data. In the absence of this, the

possibility of using additional ancillary data layers and rules should

be considered. The phenomenon of human populations clustering

around roads and other access routes has been exploited in the

past [22,23], though for much of the World, the data that exists on

routes is incomplete [24], and the use of such data is likely to be

detrimental to mapping accuracy (Table 2, [10]). Masks of zero

population are another alternative, though aside from waterbodies

(for which reliable and sufficiently high resolution data is rare),

deciding what constitutes an area of no human habitation is

difficult, with settlements existing around the world in national

parks, industrial areas and deserts for instance.

The 100 m gridded population maps produced using EApop3

for the entire EA region, or individual countries within it, are

freely available as a product of the Malaria Atlas Project (MAP:

http://www.map.ox.ac.uk, email: ) and can be obtained by

contacting Dr Andrew Tatem (andy.tatem@zoo.ox.ac.uk).

Future Applications
The semi-automated approach that produced the most accurate

maps here can easily incorporate new data, therefore, the maps

outlined in this paper will be updated regularly as new census,

satellite and ancillary data are released. The availability of improved

datasets, such as census data at higher administrative levels or

alternative satellite imagery, e.g. ASTER [25], are likely to also

enable methodological and accuracy improvements. Numerous

applications of the existing population maps are planned to exploit

the increased spatial resolution, including the refinement of malaria

risk and burden estimates [26], health system commodity estimation

and medical facility accessibility modelling [18]. Satellite, census

and land cover data stretch back to the 1970s, so the potential exists

to also create high resolution gridded population maps for the past

three decades. From such maps, valuable insights into the spatial

patterns and processes that govern settlement development and

population growth in low income regions could be gleaned that are

not possible using existing spatial population databases, facilitating

the modelling of future changes. Moreover, the substantial increase

in detail of the maps over existing products potentially enables, for

the first time for many countries, spatial epidemic model

construction, high resolution poverty mapping and human

movement modelling, amongst others.

Expansion of the Africover project (www.africover.org) to many

other countries within Africa, under the FAO-Global Land Cover

Network (www.glcn.org), and the initiation of similar projects in

low income countries elsewhere, means that coincident expansion

of high resolution population mapping is a possibility, with global

Landsat imagery (GLCF: http://glcf.umiacs.umd.edu/, OnEarth:

http://onearth.jpl.nasa.gov/) administrative boundaries (SALB:

http://www.who.int/whosis/database/gis/salb/salb_home.htm,

GADM: http://biogeo.berkeley.edu/gadm/, Statoids: http://

www.statoids.com/statoids.html) and census data (GeoHive:

http://www.geohive.com) freely available. The work described

in this paper was undertaken with contributions from a team of

just five people in three months. With settlements and populations

mapped at 100 m resolution for almost 2 million km2 and the sole

restricting expenses being software licenses and Radarsat data, the

final production costs were just US$0.011 per km2 (excluding

personnel costs). Advances in free image processing software (e.g.

Multispec, http://cobweb.ecn.purdue.edu/,biehl/MultiSpec/,

GRASS, http://grass.itc.it/), the fact that relatively accurate

mapping without radar imagery can be undertaken [13] and the

increasing availability of free high quality and contemporary

satellite and ancillary data, mean that mapping at below 1 cent per

km2 should be feasible. The opportunity exists therefore to extend

the approaches tested here towards a valuable and cost-effective

Africa-wide settlements and population mapping project.

SUPPORTING INFORMATION

Text S1 Materials and Methods

Found at: doi:10.1371/journal.pone.0001298.s001 (0.18 MB

DOC)

Table S1 Average population densities for each adapted Afri-

cover class in Kenya, as defined by the Kenyan enumeration area

census data.
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Found at: doi:10.1371/journal.pone.0001298.s002 (0.05 MB

DOC)

Figure S1 The acquisition month of Landsat ETM imagery

used in settlement mapping

Found at: doi:10.1371/journal.pone.0001298.s003 (9.13 MB

TIF)

Figure S2 Mosaic of Radarsat imagery used in settlement

mapping.

Found at: doi:10.1371/journal.pone.0001298.s004 (0.88 MB

TIF)

Figure S3 Simplified 22-class Africover land cover classification

used for population mapping.

Found at: doi:10.1371/journal.pone.0001298.s005 (8.84 MB TIF)
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