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Abstract

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in
nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the
development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV
infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear
localization signals (NLS), but no nuclear export signal (NES) has yet been identified. We show here that the aa(109–133)
region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway.
Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the
mature core aa(1–173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7
cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein
or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated
that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of
nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus
by confocal microscopy and coincided with a decrease in virus replication. Our data suggest that the functional NLS and
NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein
transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with
nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.
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Introduction

Hepatitis C virus (HCV) infection is a major cause of chronic

liver disease worldwide. Most infected subjects develop a chronic

infection that may progress to steatosis, liver cirrhosis and HCC.

Current treatment is based on the combination of pegylated

interferon alpha and ribavirin, and leads to elimination of the virus

in 50 to 80% of cases, depending on the genotype {Shepard, 2005

#1;Tellinghuisen, 2002 #77}. The development of more effective

treatments will require improvements in our understanding of the

interactions between the virus and host-cell components.

HCV belongs to the Hepacivirus genus, within the Flaviviridae

family. The HCV genome, a single-stranded RNA of positive

polarity, consists of 9,600 nucleotides and encodes a single

polyprotein that is cleaved into structural and nonstructural

proteins by cellular and viral proteases. Core and the envelope E1

and E2 glycoproteins form the putative viral particle, together with

lipoproteins. The nonstructural proteins are involved in the

synthesis of HCV RNA and virus assembly.

HCV core protein is cleaved from the polyprotein by cellular

proteases (see for review. Signal peptidase cleaves a C-terminal

signal sequence between core and the E1 glycoprotein, thereby

producing the 191 amino-acid (aa) immature form of core. This

form (MW 23 kDa) remains anchored to the endoplasmic

reticulum (ER). It is then cleaved by a signal peptide peptidase,

which removes the signal peptide to generate the mature form of

core (MW. 19–21 kDa), which is 173–179 aa long and is trafficked

from the ER membrane to lipid droplets (LDs). The association of

the mature core protein with LDs is directly related to the

intracellular transport of this protein to the perinuclear area, the

site of assembly of infectious HCV particles. HCV is then secreted

through the VLDL-secretory pathway.

The core protein has three functional domains: the highly basic

N-terminal domain I (DI) is involved in the interaction with HCV

RNA; the hydrophobic domain II (DII) contains structural

determinants mediating the binding of core to cellular membranes

and lipid droplets and domain III (DIII) is a signal peptide that is

cleaved during the formation of the mature core protein (Figure 1).
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When the entire polyprotein is synthesized in mammalian cells,

core is found mostly at the ER membrane and on the surface of

lipid droplets and mitochondria. HCV core may also be found in

the nucleus, where it may act as a substrate for proteasomal

degradation, particularly when C-terminally truncated forms of

core are produced. These findings suggest that core is targeted

away from the ER very soon after its synthesis. However, it

remains unclear what determines the ultimate fate of core,

whether it remains at the ER or is trafficked to other subcellullar

compartments, and the regulation of this process appears to be

complex (see for review,).

In addition to binding to the HCV RNA to form the virus

nucleocapsid, core protein interacts with several cellular compo-

nents, thereby influencing lipid metabolism, signal transmission,

and the regulation of gene expression and transcription from

several viral and cellular promoters. HCV core affects cell

proliferation, apoptosis and host defense mechanisms, by interfer-

ing with both innate and adaptive immunity (see for review:).

Furthermore, studies in transgenic mice and observations in

humans suggest that core protein has oncogenic potential. HCV

core consistently interacts with several host factors, including the

p53 tumor suppressor protein and p21, and LZIP, and with

cellular shuttling proteins, such as p53, 14-3-3, DDX3, putative

RNA helicase and proteasome activator PA28c. These particular

properties of core may be related to HCV-induced cell

transformation (for review, see).

In liver biopsy specimens from HCV-infected individuals, HCV

core is found mostly in the cytoplasmic compartment, but a

nuclear localization of core has also been reported. In particular,

tumor tissues from patients with HCC have been found to contain

truncated forms of the HCV core protein within the nucleus.

These studies suggested that core may localize to the nucleus at

some stages of natural HCV infection, particularly in cancer

patients. Similarly, in transgenic mice producing HCV core

protein, a nuclear localization of core was associated with liver

disease and HCC. The interaction of core protein with nuclear

molecules may therefore play a key role in the development of

HCC.

Some of the proteins of positive-strand RNA viruses, which

replicate in the cytoplasm, may be located in the nucleus or the

nucleolus at some point in the viral life cycle. Such proteins

contain appropriate targeting signals, such as nuclear localization

signals (NLS) and nuclear export signals (NES). The distribution of

core protein may thus also be regulated by these signals. Indeed,

three NLS have been identified in HCV core, in the aa(5–13),

aa(38–43), and aa(58–71) sequences. These sequences constitute

functional, at least bipartite NLS able to bind importin-a.

However, no NES that could potentially direct the translocation

of the protein from the nucleus to the cytoplasm has yet been

reported in HCV core.

We demonstrate for the first time that core protein contains a

functional NES (aa(109–133)) facilitating its export from the cell

nucleus via the CRM-1/exportin pathway. In the HCV in vitro

replication system (JFH1), HCV core was translocated to the

nucleus early in infection. The presence of functional NLS and

NES motifs raises the possibility of core protein shuttling between

the nuclear and cytoplasmic compartments. These new properties

of core may be important for virus multiplication and the

pathogenesis of infection.

Materials and Methods

Cell culture
All cell lines were cultured at 37uC, in a humidified atmosphere

containing 5% CO2. The human hepatoma cell line Huh7, the rat

hepatoma cell line ARL-6 and human embryonic kidney 293T

cells were obtained from ATTC, immortalized human hepatocytes

Fa2N-4 were purchased from XenoTech, Lenexa KS, USA,

whereas the Huh 7.5 cell line was kindly provided by C. Rice.

Cells were maintained in Dulbecco’s modified Eagle’s medium

Figure 1. Schematic diagram of structural and functional domains within the HCV core protein. The RNA-binding region aa(1–57), the
three nuclear localization signals (NLS), and the classical NES aa(179–187) and the candidate ‘‘non classical’’ NES aa(109–133) identified in this study
are shown. Numbers identify the aa positions covered by each domain and functional region.
doi:10.1371/journal.pone.0025854.g001
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(DMEM; Gibco-Invitrogen) supplemented with 10% fetal calf

serum, 1% non-essential aminoacids and antibiotics (penicillin

100 U/ml and streptomycin 100 mg/ml). The CHO-K1 cell line

(ATCC#CCL-61) was obtained from LGC Prochem (Molsheim,

France) and cultured in F12 medium (Invitrogen, Cergy-Pontoise,

France) containing glutamine and supplemented with 10% fetal

calf serum (FCS) antibiotics and anti-fungal compounds.

Plasmid construction
Plasmids were constructed by inserting core-encoding fragments

of various lengths — aa(1–120), aa(1–140), aa(1–160), aa(1–173) —

into pEGFPN1 (Clontech). These fragments were amplified by

standard PCR, cleaved with EcoRI and BamHI and inserted into

pEGFPN1.

We constructed several plasmids encoding enhanced green

fluorescent protein (EGFP) or mCherry, to determine whether the

NES and NLS sequences were functional. The reporter genes

were fused with (i) the NLS of SV40 nuclear T antigen (EGFP-

NLSSV40), (ii) the NLS of SV40 followed by the potential NES of

the HCV core protein aa(109–133) (EGFP-NLSSV40-NEScore),

or (iii) the NLS of SV40 followed by the functional NES of the

HIV regulatory protein Rev (EGFP-NLSSV40-NESRev). Three

more plasmids, encoding core fragments aa(109–160), aa(144–160)

and aa(134–143), were constructed. These fragments were fused

with the EGFP or mCherry sequence and the NLS of SV40

(EGFP-NLSSV40-core(109–160); EGFP-NLSSV40-core(144–

160); EGFP-NLSSV40-core(134–143)).

All viral coding sequences were amplified by standard PCR and

introduced into the pDONR207 plasmid (Invitrogen) via a

recombinational cloning strategy (Gateway; Invitrogen). Viral

sequences were then transferred from pDONR207 into Gateway-

compatible versions of pEGFP-C1 (kindly provided by Y. Jacob) or

mCherry vectors (Clontech), for expression in mammalian cells

with an N-terminal EGFP or mCherry tag.

The PCR primers used to amplify and clone viral ORFs had 20

to 30 specific nucleotides matching the ends of the ORF, giving a

Tm close to 60uC. For the recombinational cloning of PCR

products, the 59 ends of forward primers were fused to the attB1 59-

GGGGACAAGTTTGTACAAAAAAGCAGGCATG-39 recom-

bination sequence, whereas the reverse primers were fused to the

attB2 59-GGGGACCACTTTGTACAAGAAAGCTGGTTA-39

recombination sequence. All the constructs used were amplified

by transforming (by heat shock) Escherichia coli DH5a (Invitrogen).

Cell transfection
For overexpression, mammalian cells were transfected with

pEGFP-C1 or mCherry vectors containing the viral ORFs, in the

presence of the FuGene Transfection Reagent (Promega),

according to the manufacturer’s instructions. Unless otherwise

specified, we dispensed 5x104 cells per into each well of 24-well

plates and, 24 to 48 h later, we transfected these cells with 500 ng

of plasmid DNA per well.

Mutations in the NES sequence
Mutations (L119A, I123A, and L126A) were introduced into the

NES sequence of HCV core protein with the QuikChange

Lightning site-directed mutagenesis kit (Agilent-Stratagene). An

EGFP expression plasmid (EGFP-NLSSV40-NEScore) encoding

the putative HCV core export sequence aa(109–133) or EGFP-

labeled core protein aa(1–173) was amplified with the 59-

phosphorylated mutagenic primers 59-GCCGATACCGCTA-

CATGCGGCTTCGCCGACCTCAT and 59-GACCTTACCC

GCATTACGCGACCTACGCCGGGGGT. Template DNA

was then digested with Dpn1 and mutagenized plasmids were

circularized by self-ligation with T4 DNA Ligase (New-England

Biolabs). Mutant clones were selected and the sequences of their

expression cassettes were checked.

Sequence analyses
Multiple sequence alignment was carried out with Clustal W.

‘‘Classical’’ NES were identified with NetNes software (www.

expasy.org).

HCVcc (JFH1) cell culture
The plasmid corresponding to the genome of the JFH1 strain

was kindly provided by T. Wakita and used to generate cell

culture-produced virus (HCVcc). The virus was cultured as

previously described. For cell infection, monolayers of Huh 7.5

cells were grown for 24 h in tissue culture plates. They were then

inoculated by incubation with 25 ml of the virus preparation

(containing approximately 106 IU of HCV RNA) for 2 h at 37uC,

to allow infection. Cells were analyzed at various time points after

infection, as indicated, by immunofluorescence studies, quantita-

tive RT-PCR or electron microscopy.

RNA interference
For RNA interference-based knockdown experiments, a 25-

nucleotide siRNA (ccu cgu ugc uga agg ugg auc agg a) targeting

PA28c was purchased from Invitrogen (Stealth Select RNAi).

Huh7.5 cells were tranfected with 20 nM siRNA, in the presence

of JetPRIME (Ozyme). Control ON-TARGET plus (Dharmacon)

non targeting siRNA was used to confirm silencing specificity. For

analyses of the influence of proteasome activator silencing on the

subcellular distribution of core, cells were transfected with siRNA

targeting PA28c or with control siRNA 18 h before infection with

HCVcc.

LMB treatment
We investigated the role of CRM-1-dependent transport in the

subcellular localization of core, by treating cells with leptomycin B

(LMB, Sigma). Huh7 cells were cultured and transfected as

described above. After 22 to 48 h, the cells were treated for 2 to

4 h, at 37uC, with LMB at a concentration of 2 ng/ml or 10 ng/

ml in DMEM. For studies in the JFH1 infection model, 10 ng/ml

LMB was applied at various time points during or after infection,

and cells were incubated in a medium containing LMB for the

indicated times.

Cell viability after LMB treatment was determined by counting

live and dead cells, after trypan blue staining, in an automated cell

counter (Countess; Invitrogen). We also quantified the ATP

present in cultured cells, with the CellTiter-GloH Assay (Promega),

used according to the manufacturer’s instructions. Untreated cells

and cells treated with 10% DMSO (to induce cell death) were used

as negative and positive controls, respectively.

Immunofluorescence and confocal microscopy
We investigated PA28c production in untransfected Huh 7.5

cells and in Huh 7.5 cells transfected with an siRNA targeting

PA28c (or control siRNA), with a rabbit anti-PA28c antibody and

Alexa Fluor 488-conjugated anti-rabbit IgG. The distribution of

HCV core in infected cells was analyzed with a monoclonal anti-

core antibody, ACAP27, followed by an Alexa Fluor 568-tagged

anti-mouse IgG. Staining with rabbit anti-lamin B antibody

followed by Alexa Fluor 488-conjugated anti-rabbit IgG was used

to outline the cell nuclei.

For fluorescence microscopy, infected or transfected cells were

washed in PBS and fixed by incubation with 4% paraformalde-
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hyde (PFA) in PBS for 20 min at 4uC. The cells were washed

several times in PBS and permeabilized with 0.5% Triton X-100.

They were then incubated in a blocking buffer containing 1%

gelatin and 0.1% Tween 20 in PBS. Primary antibodies were

incubated with the cells for 2 h (mostly at a concentration of 1 mg/

ml in blocking buffer). After subsequent washes with 0.1% Tween

20 in PBS, secondary antibodies were added and the cells were

incubated for 1 h. The cells were washed again and mounted in

Vectashield medium containing DAPI (Vector Laboratories,

Abcys, France). Fluorescent fields were captured with a Widefield

ApoTome AxioCam upright (66RC10P) microscope.

Relative fluorescence analyses
We analyzed the relative fluorescence intensity of the proteins in

the cytoplasm and nucleus, by converting bright-field immunoflu-

orescence images to grayscale images, with Image J software.

Boundaries were applied to demarcate the nuclear and cytoplas-

mic compartments and the fluorescence intensity of each

compartment was measured with a script created with Acapella

2.0 image software (Perkin Elmer). All measurements were

normalized with respect to background fluorescence. A nonpara-

metric one-way ANOVA assay was carried out to compare

fluorescence between the cytoplasm and the nucleus of 1138, 712

and 573 cells transfected with plasmids (EGFP-NLSSV40),

(EGFP-NLSSV40-NESRev) and (EGFP-NLSSV40-NEScore), re-

spectively. Graphs showing the means and variances of the ratio of

nuclear to cytoplasmic fluorescence intensities were plotted for the

three constructs considered.

For analyses of the mutated NES, 153 cells transfected with the

wild-type (EGFP-NLSSV40-NEScore) plasmid and 130 cells

transfected with the mutated construct were analyzed, and the

results are presented as a graph showing the means and variances

of the ratio of nuclear to cytoplasmic fluorescence intensities for

wild-type and mutated constructs. Similarly, 139 and 101 cells

transfected with the wild-type and mutated core protein aa (1–173)

constructs, respectively, were also considered. Graphs showing the

means and variances of the ratio of nuclear to cytoplasmic

fluorescence intensities were plotted for the wild-type and mutant

proteins and a nonparametric t-test was used to evaluate the results

obtained.

RT-quantitative PCR (RT-qPCR)
The HCV RNA associated with cells was quantified by one-step

real-time RT-qPCR, with the SuperScript III Platinum One-Step

qRT-PCR Kit (Invitrogen). The 59-AGYGTTGGGTYGC-

GAAAG-39 and 59-CACTCGCAAGCRCCCT-39 primers were

used to amplify HCV RNA from JFH clones, and 6-FAM-

CCTTGTGGTACTGCCTGA-MGB (Applied Biosystems, Fos-

ter City, CA, USA) was used as an internal probe. Real-time

detection of the PCR products was carried out with an AbiPrism

7000 machine. HCV RNA was quantified and standardized with

an HCV RNA quantification panel from AcroMetrix, and the

values obtained are expressed as HCV RNA IU.

Western Blot
Huh7 cells (1.56104) were transfected with plasmids encoding

core proteins of various lengths — aa(1–140), aa(1–160), aa(1–173)

— fused to EGFP. Transfection was performed with jetPRIMETM

Transfection Reagent (Polyplus Transfection Company, France),

according to the manufacturer’s instructions. After 24 h, the

transfected cells were washed with PBS and lysed by incubation for

5 min on ice with 900 ml/well 1X RIPA buffer (20 mM Tris-HCl

pH7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-

40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate,

1 mM Na3VO4, 1 mg/ml leupeptin). Cells were scraped of the

plates and collected by centrifugation for 10 min. at 14,000 rpm at

4uC. Supernatants were collected and separated by SDS-PAGE in

10% polyacrylamide gels and the protein bands were transferred

to nitrocellulose membranes (Pure Nitrocellulose membrane, Bio-

Rad). Proteins were detected by incubation with polyclonal anti-

GFP (Roche) and anti-tubulin (Abcam) antibodies, followed by

peroxidase-conjugated anti-rabbit immunoglobulin antibodies

(Santa Cruz Biotechnology). The proteins bands were detected

by enhanced chemiluminescence (Sigma).

Electron microscopy
Supernatants collected from Huh7.5 cells producing JFH1 were

concentrated by centrifugation through a 20% sucrose cushion for

4 h at 32,000 rpm, in an SW32Ti rotor. For electron microscopy

analyses, Huh7.5 cells were grown in 3 cm dishes for 24 h, washed

with cold serum-free-DMEM and maintained for 10 min at 4uC.

The medium was then replaced with 1 ml cold serum-free DMEM

supplemented with a concentrated virus preparation (approx.

56109 IU/ml HCV RNA) and the cells were incubated for

30 min at 4uC. At the end of this adsorption step, the cells were

placed for 20 min at 37uC and examined by transmission electron

microscopy (TEM). Briefly, cells were fixed by incubation with 4%

(v/v) paraformaldehyde (Delta Microscopies, Ayguevive, France)

and 0.05% (v/v) glutaraldehyde in phosphate-buffered saline

(PBS) pH 7.4, for 30 min at 37uC. They were washed with PBS

and incubated for 10 min in blocking solution containing 0.5% v/

v cold fish skin gelatin (FSG), 0.1% v/v saponin and 0.02 M

glycine (all from Sigma Aldrich) in PBS pH 7.4, at room

temperature. The cells were washed with 0.5% FSG in PBS

(PBS/FSG) and incubated for 60 min with ACAP-27 monoclonal

antibody, kindly provided by JF. Delagneau, (0.6 mg/ml, diluted in

PBS/FSG). The cells were again washed in PBS/FSG, incubated

for 30 min with anti-mouse IgG conjugated with NanogoldHpar-

ticles (Yaphank, NY, USA) in PBS/FSG, washed in PBS/FSG and

fixed by incubation with 1% v/v glutaraldehyde in PBS for 1 h at

room temperature. The cells were washed in water and

NanogoldH staining was enhanced by incubation for three minutes

with the HQ silver enhancement kit (Nanoprobe, Yaphank, NY,

USA). Cells were then post-fixed by incubation with 1% v/v

osmium tetroxide in PBS for 1 h and processed by dehydration in

a series of ethanol solutions for embedding in epoxy resin. TEM

examination was performed on a Philips CM120 microscope, and

images were acquired with an ORIUS SC200D CCD camera

(Gatan Inc.).

Results

Subcellular localization of core proteins
Several studies have shown that, when produced separately, the

immature core protein aa(1–191) remains in the cytoplasm and the

processed, mature core protein is present in both the nuclear and

cytoplasmic compartments, whereas the shorter core proteins

aa(1–120) or aa(1–140) are targeted to the nucleus.

Using plasmids encoding EGFP-labeled core proteins composed

of aa(1–173), aa(1–160) or aa(1–140), we investigated the

subcellular distribution of the protein in various cell lines. The

short form of core aa(1–140) was found in the nucleus in all cell

lines tested. By contrast, core proteins aa(1–160) and aa (1–173)

were found in both the cytoplasmic and nuclear compartments in

transfected Huh 7 cells, but solely in the nucleus of cells of non

human origin, such as Chinese hamster ovary cells (CHO)

(Figure 2) and rat hepatoma cells (ARL-6) (not shown). Results

identical to those for Huh7 cells were obtained for other hepatic

Nuclear Export Signal in HCV Core
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cells (HepG2 hepatoma cell line and Fa2N4 immortalized human

hepatocytes) in which HCV core proteins aa(1–160) and aa (1–

173) were found in both the cytoplasmic and nuclear compart-

ments. By contrast, in human non hepatic cells, such as embryonic

kidney cells (HEK-293) these two core proteins were found

exclusively in the nucleus (not shown), as for CHO and ARL-6

cells.

We performed Western Blot analyses of the EGFP-labeled core

proteins generated, to check their integrity and to exclude the

possibility of degradation of the constructs used for these

experiments, which might affect the subcellular distribution of

the corresponding proteins. These experiments (shown in Figure 3)

confirmed that only one EGFP-labeled protein was produced in

transfected Huh7 cells for each construct: a 47 kDa EGFP-labeled

core protein for the plasmid encoding core aa(1–173), a 45 kDa

EGFP-labeled protein for the plasmid encoding aa(1–160) and a

43 kDa EGFP-labeled protein for the plasmid encoding aa(1–140).

There was therefore no degradation of the constructs and the

distribution of core proteins was specific to the cells analyzed.

These results suggest that, in addition to the previously

described NLS, there may be other signals in HCV core and

interacting sequences in human hepatic cells, regulating the

subcellular distribution of core protein. These mechanisms may be

nonfunctional or differently regulated in non human and human

cells of non hepatic origin.

Identification of a ‘‘classical’’ NES in the immature form of
HCV core

The subcellular distribution of the HCV core protein, like that

of other viral proteins, may be influenced by the presence of

nuclear localization signals (NLS) and nuclear export signals

(NES). Indeed, the tripartite NLS located in the N-terminal DI

have been described and shown to be functional. These and other

functional domains of the core protein are shown in Figure 1.

However, no NES capable of directing the translocation of the

protein from the cell nucleus to the cytoplasm has ever been

reported in HCV core.

We therefore used NetNES software (www.expasy.org) to search

for a ‘‘classical’’ NES in the core protein. Such ‘‘classical

sequences’’ are relatively short linear oligopetides enriched in

leucine residues, usually consisting of the peptide sequence X-R(2-

Figure 2. Subcellular localization of HCV core proteins of different lengths in CHO and Huh 7 cells. Plasmids encoding EGFP-labeled
core proteins composed of aa(1–140) (a,d), aa(1–160) (b,c), and aa(1–173) (c,f) were used to investigate the subcellular distributions of the encoded
proteins in the several human and non-human cell lines. Cells were transfected with plasmids encoding the corresponding EGFP-labeled proteins,
grown for 24 h and analyzed by fluorescence microscopy, as described in the Materials and Methods section. (a–c) results obtained for CHO cell line
(the same type of distribution was observed for ARL-6 and HEK-293 cells) and (d–f) distribution representative for Huh 7 cells (and other cells of
hepatic origin as HepG2 or Fa2-N4). Bar represents 10 mm.
doi:10.1371/journal.pone.0025854.g002

Figure 3. Western Blot analyses of constructs used for cell
transfection. The integrity of the constructs used to transfect cells
(shown in Figure 2) was assessed by Western Blotting. After separation
of the proteins in cell lysates by SDS-PAGE, the bands were transferred
to nitrocellulose membranes and for detection with anti-EGFP and anti-
tubulin antibodies followed by peroxidase-labeled anti-rabbit IgG. The
protein bands were detected by chemiluminescence. 1. Lysed Huh 7
cells; 2-Huh 7 cells transfected with pEGFPN1, 3-Huh7 cells transfected
with core sequence aa(1-173) inserted into pEGFPN1; 4-Huh 7 cells
transfected with the core aa(1–160) sequence in pEGFPN1; Huh 7 cells
transfected with core sequence aa(1–140) inserted into pEGFPN1.
doi:10.1371/journal.pone.0025854.g003
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4)X-R2-X-R-X, where X is leucine, isoleucine or valine and R is

any amino acid. This analysis identified a ‘‘classical’’ leucine-rich

nuclear export sequence (NES Classic) within the C-terminal part

of core, between aa 179 and 187 (Figure 4). Nevertheless, it is well

established that sequential cleavages by signal peptidase and signal

peptide peptidase remove the C-terminal hydrophobic DIII of

core, to yield the mature form of core composed of aa(1–173),

more recently defined as aa(1–177). Thus, the immature form core

aa(1–191), attached to membranes, contains the classical NES,

whereas the mature form of core does not (Figure 1).

Identification of a ‘‘non classical’’ NES in HCV core
As the mature core (aa(1–173)) was found in both the cytoplasm

and the nucleus, another ‘‘non classical’’ or ‘‘atypical’’ NES is

probably present in the mature form of core. Such sequences have

been reported for several viral proteins, such as equine infectious

anemia virus (EIAV) and feline immunodeficiency virus (FIV) Rev.

We therefore searched for another, ‘‘non classical’’ NES in the

mature form of core by generating multiple sequence alignments

and comparing the core aa sequence with known viral sequences

enriched in hydrophobic residues that can function as NES motifs,

as described by Rowland et al. 2003 for the N–protein of porcine

reproductive and respiratory syndrome virus (PPRSV). We found

that the aa(109–133) region of core contained a sequence similar

to that of other ‘‘atypical’’ viral NES. An analysis comparing the

putative NES of core with other viral sequences is shown in

Figure 5A.

Comparative analyses of consensus sequences available for the

core proteins of different genotypes provided evidence that this

region was well conserved in various HCV genotypes (Figure 5B).

The aa(109–133) sequence is a functional NES
We investigated whether the putative NES sequence (aa(109–

133)) could direct the export of the protein from the nucleus to the

cytoplasm, using an approach previously used to characterize the

NES of PPRSV and HSV proteins. We constructed three plasmids

(shown in Figure 5C). In the first, EGFP or mCherry was C-

terminally tagged with the NLS of SV40 large T antigen, which

targets proteins to the nucleus. The second plasmid encoded the

SV40 NLS fused to the potential NES sequence of the HCV core

protein aa(109–133). Finally, EGFP or mCherry fused to the SV40

NLS and the functional NES of the HIV Rev regulatory protein

was used as a control for nuclear export. The Rev protein of HIV

is a shuttling protein that promotes the nuclear export of mRNAs

encoding viral structural proteins in a CRM-1-dependent manner.

We transiently transfected Huh7 cells with these plasmids and,

after 40 h, we determined the subcellular distribution of the

encoded proteins by fluorescence and confocal microscopy

(Figure 5D). Fluorescent proteins containing the SV40 NLS were

found almost exclusively in the nucleus, whereas proteins

containing both the SV40 NLS and the Rev NES were found in

both the nucleus and the cytoplasm. Similarly, the protein

containing the SV40 NLS and the putative core NES was found

in both the nucleus and the cytoplasm, providing evidence that

aa(109–133) of core is a functional NES capable of directing the

chimeric protein from the nucleus to the cytoplasm. Similar results

were obtained with plasmids encoding proteins tagged either with

EGFP or with mCherry, excluding the possibility that the

subcellular distribution of the encoded proteins was dependent

on the fluorescent tag used.

We confirmed the subcellular distribution of the putative NES

of core (aa(109–133)) and of the proteins encoded by control

plasmids, in quantitative analyses (Figure 5E). These analyses

provided evidence that the aa(109–133) core sequence acted as a

functional NES, targeting the protein from the nucleus to the

cytoplasm, like the HIV Rev protein NES.

Mutation of the NES sequence changes the subcellular
distribution of HCV core

We hypothesized that the hydrophobic residues L(119), I(123)

and L(126) in the core NES (Figure 5A, underlined within the

frame) might be important for the nuclear export of this protein.

We tested this hypothesis by carrying out comprehensive alanine-

scanning mutagenesis and determining whether the replacement

of these residues by alanine residues decreased the nuclear export

of the protein, thereby resulting in accumulation of larger amounts

of protein in the nucleus.

Cells were transfected with mutated constructs and the

subcellular distributions of the resulting proteins were analyzed

by immunofluorescence microscopy and compared with that of

the non mutated control.

Transfection efficiency for the construct containing SV40 NLS

fused to the mutated putative export sequence aa(109–133) of the

core protein was similar to that for the wild-type construct, but the

mutated protein had a different subcellular distribution. Indeed,

whereas the wild-type chimeric protein with a putative export

sequence aa(109–133) was found principally in the cytoplasm, the

protein encoded by the mutated construct was mostly nuclear

(Figure 6 A). Quantitative analyses confirmed that mutations

affecting this core fragment significantly decreased the nuclear

export of the protein produced and thus provided evidence that

the aa(109–133) core sequence acted as a functional NES,

targeting the protein from the nucleus to the cytoplasm.

The C-terminal aa(140-160) sequence contributes to the
cytoplasmic localization of core

We have demonstrated above that aa(109–133) is a functional

NES. Consistent with this finding, core protein aa(1–120), which

does not contain this sequence but does contain a functional NLS

in the N-terminus of core, is found exclusively in the nucleus of

hepatoma cells. However, another core fragment, aa(1–140),

Figure 4. Identification of a classical NES in the immature form
of HCV core protein. A leucine-rich NES with an LXL motif was
identified in domain III of core, between aa179 and 187, with NetNES
Software. This sequence is absent from the mature form of core,
because it is cleaved by SPP during core processing. Graphical plot of
the values (NES score) calculated by the prediction server from the
Markov Model (HMM), and Artificial Neural Network (NN) scores. If the
calculated NES score exceeds the threshold, then the residue concerned
is predicted to be involved in a nuclear export signal.
doi:10.1371/journal.pone.0025854.g004
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which includes the NES identified above, is also found exclusively

in the nucleus, whereas larger core fragments, consisting of aa(1–

160) or aa(1–173), were found in both the nucleus and the

cytoplasm of hepatoma cells (Figure 2), as previously reported. We

therefore conclude that, in addition to our NES, HCV core region

aa(140–160) influences the subcellular distribution of the core

protein.

The core protein sequence has been analyzed for determination

of its secondary structure. Both aa(109–133) and aa(179–187) form

a-helices. These sequences correspond to the two NES motifs

identified in HCV core: the classical motif in DIII (Figure 4) and

the ‘‘atypical’’ motif in core DII (Figure 5A). The adjacent aa(134–

143) sequence was identified as a loop region, whereas aa(144–

160) was also found to be rich in a-helices. This fragment may

therefore influence the subcellular distribution of HCV core

protein. It is thus possible that either there is another NES in this

region that enhances the effect of the NES in aa(109–133)

identified in this study, or that this sequence affects the subcellular

distribution of core due to interaction with membranes and/or

lipid droplets.

We investigated the possibility of another NES being present in

the aa(109–160) region of core, by constructing three new plasmids

encoding protein fragments aa(109–160), aa(134–143), and aa(144–

160) of core (Figure 7A). Huh7 cells were transfected with these

plasmids and, 40 hours later, we determined the subcellular

distribution of the encoded proteins by fluorescence microscopy.

Figure 5. Identification of a functional, ‘‘non-classical’’ NES’’ in the core protein. (A) CLUSTAL W (1.81) software was used for multiple
sequence alignment analysis, leading to the identification of a ‘‘non classical’’ NES sequence in domain II of the core protein. The potential NES signal
aa(109–133) in core was compared with known viral NES sequences. Underlined regions correspond to hydrophobic amino-acid residues, and letters
in bold typeface identify the conserved LXL motifs. The frame delineates a region of the export sequence containing amino-acid residues L(119),
I(123) and L(126), which were replaced by alanine residues (the corresponding immunofluorescence analyses are shown in Figure 6). (B) The amino-
acid sequences of the fragment corresponding to the putative NES aa(109–133) in HCV core proteins are well conserved in different HCV genotypes.
The consensus sequences are shown, for each virus genotype, and were obtained by the alignment of 1245 sequences corresponding to the putative
NES for HCV type 1A, 2078 sequences for HCV type 1B, and 95, 264, 60, 12 and 121 sequences for HCV types 2, 3, 4, 5 and 6, respectively. Sequences
were obtained from the Los Alamos Data Bank (National Institutes of Health). (C) Schematic diagram of the plasmids used to investigate the
functionality of the putative export sequence of core, aa(109–133). The SV40 NLS was used as a nuclear reporter, and the NES of the HIV Rev protein
was used as a control export signal. The sequences shown were fused to either EGFP or m-Cherry, to allow the visualization of proteins in transfected
cells. (D) Subcellular distribution of the proteins encoded by the plasmids depicted above. Huh7 cells grown on coverslips were transfected with the
appropriate plasmids; 40 h after transfection, the cells were fixed in 4% PFA and examined by fluorescence microscopy. Panels a-c represent proteins
labeled with EGFP, d-f the equivalent proteins labeled with m-Cherry. Proteins containing only the SV40 NLS were present mostly in the cell nuclei (a,
d); proteins containing the control SV40 NLS and Rev NES were found in both the nucleus and the cytoplasm (b, e). The core sequence containing a
putative NES, aa(109–133), is functional, because it was exported from the nucleus to the cytoplasm (c, f), like HIV Rev NES (b,e). Staining of nuclei
with DAPI. (E) Graphical representation of nonparametric one-way ANOVA of the ratios of fluorescence between the nucleus and cytoplasm for the
three plasmids. Cytoplasmic fluorescence is significantly higher for both EGFP-NLSSV40-NESRev and EGFP-NLSSV40-core aa(109–133).
doi:10.1371/journal.pone.0025854.g005
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The aa(109–160) core protein fragment was found predomi-

nantly in the cytoplasm, whereas aa(134–143) and aa(144–160)

were found solely in the nucleus (Figure 7B). These experiments

showed clearly that aa sequences (144–160) and (134–143) did not

function as additional NES. Indeed, in the absence of the aa(109–

133) sequence identified in this study, these core protein fragments

were not exported from the nucleus. We therefore conclude that

the cytoplasmic distribution of core requires a functional NES

within aa(109–133). However, the presence of this sequence is not

sufficient and an additional fragment aa(140–160) is also required

to maintain the protein in the cytoplasm.

The hydrophobic C-terminal DII of HCV core, containing this

sequence, is required for the binding of core protein to lipid

droplets and membranes, and for core protein folding and

stability. Indeed, residues of two amphipathic helices, aa(119–

136) and aa(148–164), in DII are critical for this association, as

shown by extensive mutational analyses. Therefore, the core

fragment aa(109–160) is found mostly in the cytoplasm, because,

Figure 6. Fluorescence is predominantly nuclear for the protein encoded by the mutated NES. (A) The subcellular distribution of the
proteins encoded by the construct with the mutated nuclear export sequence in HCV core was investigated by immunofluorescence. Mutations were
introduced into the NES, as shown in Figure 5 A: amino-acid residues L(119), I(123) and L(126) were replaced by alanine residues (underlined within
the frame). (A) Plasmids containing the EGFP, NLSSV40-core aa(109–133) and EGFP NLSSV40-mutated core aa(109–133) sequences were used to
transfect Huh 7 cells, as described for Figure 5. After transfection (40 h), the cells were fixed with 4% PFA and examined by fluorescence microscopy.
Upper panel represents immunofluorescence analyses of the subcellular distribution of the protein produced by the wild-type EGFP-NLSSV40-core
aa(109–133) construct, lower panel shows the distribution of the corresponding construct with a mutated NES. The protein encoded by the wild-type
construct (W.T) was found in both the nucleus and the cytoplasm; the protein encoded by the mutated construct (Mut) was found mostly in cell
nuclei. Staining of the nuclei with DAPI. (B) EGFP-tagged core protein encoded by the wild type core aa(1–173) construct was found in both the
nucleus and the cytoplasm (upper panel); the protein encoded by the mutated construct (Mut) was found mostly in cell nuclei (lower panel). Staining
of the nuclei with DAPI. Graphical representation of subcellular distribution of the fluoresecence signal, based on a nonparametric t-test is shown on
the right side of each panel. The graph shows the ratios of fluorescence between the nucleus and cytoplasm for the two plasmids encoding the wild-
type and mutated proteins.
doi:10.1371/journal.pone.0025854.g006
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in addition to the NES, it mediates interactions of core with the

cytoplasmic lipid droplets and/or membranes via specific sites in

the aa(140–160) sequence.

The nuclear export mediated by the core NES is
CRM-1-dependent

Proteins containing NES are recognized by the CRM-1 export

receptor, a member of the karyopherin superfamily of importin-b
nuclear transport receptors. CRM-1 exports cargo proteins

containing an NES from the nucleus to the cytoplasm. Leptomycin

B is a potent and specific nuclear export inhibitor that alkylates

CRM-1, specifically inhibiting the CRM-1-dependent nuclear

export of proteins such as HIV Rev.

We therefore investigated whether the nuclear export mediated

by the NES in aa(109–133) was sensitive to LMB, and thus

dependent on the CRM-1-dependent export pathway. Huh7 cells

were transfected with a plasmid encoding this sequence and,

40 hours later, cells were treated with 2 or 10 ng/ml LMB. We

found that, at both concentrations used, LMB inhibited the

nuclear export mediated by the core aa(109–133) sequence

(Figure 8). Nuclear export driven by the HIV Rev protein NES,

used as a control, was inhibited by LMB to a similar extent,

whereas aa sequences containing the SV40 NLS were always

nuclear. The EGFP-tagged control protein was found in both the

cytoplasm and nucleus, and this passive distribution was not

sensitive to LMB treatment. The aa(109–133) region of the core

protein may therefore be considered a functional NES, operating

in a CRM-1-dependent manner.

Following the transfection of Huh7 cells with a plasmid

encoding an EGFP-labeled core aa(1–173), the protein was found

in both the nucleus and cytoplasm, unless translocation had been

blocked by LMB. This treatment increased the proportion of core

found in the nucleus although the protein was also present in the

cytoplasm in several cells (data not shown). The subcellular

distributions of core protein in the presence and absence of LMB

were confirmed by confocal microscopy (Figure 9).

In addition, mutation of the hydrophobic residues L(119), I(123)

and L(126) in the NES region of core protein aa(1–173)

significantly increased the nuclear localization of this protein, to

levels greater than observed for the wild-type protein (Figure 6B).

Thus, the mature core protein produced in transfected

hepatoma cells is located in both the cytoplasmic and nuclear

compartments. The translocation of the protein from the nucleus

follows the CRM-1-dependent pathway, because it is inhibited by

LMB. Similarly, mutations of the three hydrophobic amino acids

of the NES region spanning aa(109–133) significantly increase the

nuclear localization of the core protein.

Detection of core in the nucleus by electron microscopy
In a recent study of HCV infection, we detected HCV particles

by immunoelectron microscopy during the entry of the virus into

Huh 7.5 cells (P.Maillard, M.Walic et al. PloS One in press). In

addition, core and some non structural proteins of other

Flaviviruses are trafficked to the nucleus at very early phase of

infection. These findings prompted us to investigate whether HCV

core protein could also be directed to the nucleus at such early

stages of infection. For electron microscopy analysis, virus particles

produced in Huh 7.5 cells were concentrated by pelleting through

the sucrose cushion and cells were infected with concentrated virus

preparations as described in the Materials and Methods section.

Virus core protein was stained with the ACAP27 monoclonal

antibody, followed by an anti-mouse IgG secondary antibody

labeled with colloidal gold. HCV core protein was observed in the

cell nucleus 20 minutes after infection, where it was located close

to the nuclear membrane or the nuclear pores, as shown by

immunostaining with anti-core antibodies (Figure 10 A–C).

Taking into account the time after infection, the intranuclear

core protein was almost certainly derived from internalized virus

particles rather than represented HCV core protein produced de

novo in infected cells.

Quantitative analyses performed on HCV-infected and non

infected cells after staining with anti-core antibodies confirmed the

specificity of our observations and showed that a larger proportion

of the gold-labeled HCV core was present in the cell nucleus than

elsewhere in the cell at this stage of infection (Figure 10 D). No

such staining was observed when unrelated monoclonal antibodies

Figure 7. Core protein fragment aa(134–160) contains no other functional NES. (A) Three plasmids encoding the core fragments aa(109–
160), aa(134–143) and aa(144–160) fused to EGFP were constructed as described in the Materials and Methods section. (B) Analysis of the subcellular
distribution of the corresponding proteins encoded by the plasmids shown in (A). Cells were transfected with plasmids encoding corresponding
EGFP-labeled proteins, grown for 24 h, fixed in 4% PFA and analyzed by fluorescence microcopy. Core protein fragment aa(109–160) was located in
the cytoplasm (a), whereas proteins corresponding to core fragments aa(134–143) (b) and aa(144–160) (c) remained in the nucleus. Staining of the
nuclei with DAPI. Bar represents 10 mm.
doi:10.1371/journal.pone.0025854.g007
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were used. These observations suggest that, at very early stages of

HCV infection, at least some of the HCV core protein is directed

to the nucleus.

Detection of core in the nucleus by immunofluorescence
analysis after LMB treatment

In most studies in the HCVcc in vitro replication system, HCV

core protein has not been found in the nucleus. However, if

PA28c, an activator of the proteasome, which is responsible for

ubiquitin-independent degradation in the nucleus, was inhibited or

absent, very small amounts of core could be detected, by

immunofluorescence microscopy, in the nuclei of HCV-infected

Huh7 cells.

We investigated whether the NES identified was functional in

the JFH1 HCVcc cell culture model. Immunofluorescence

microscopy detected HCV core in the cytoplasm of infected cells,

but no evidence of a nuclear localization of core was obtained at

various times after infection, consistent with previous findings. We

therefore used a small interfering RNA to silence the PA28c gene,

to determine whether this treatment increased the amount of core

protein in the nucleus, as previously reported.

PA28c expression was successfully transiently knocked down by

a specific siRNA targeting PA28c, but not by a control, unrelated

siRNA (Figure 11A). Despite careful analysis, no core was

detected, by immunofluorescence microscopy, in the nucleus of

either siRNA-silenced cells or cells transfected with a control RNA

(Figure 11B). Instead, HCV core protein was concentrated in the

perinuclear area of the cell, in both silenced and untreated cells.

Nevertheless, the treatment of infected cells with LMB, which

was maintained in the culture medium for several hours to block

the nuclear export of core protein, resulted in the detection of core

within the nucleus in several cells, distributed as single points at

several sites in the nucleus (Figure 12). We detected HCV core in

the nucleus only when LMB was added at early time points (2–4 h)

after infection, but not when the drug was added 48 hours after

infection.

These findings clearly demonstrate that at least some core

protein is targeted to the nucleus in the JFH1 HCVcc infection

model, at early stages of infection. Core seems to be exported from

the nucleus via the CRM-1-dependent pathway, because a nuclear

distribution of this protein was observed only in LMB-treated cells.

Leptomycin B affects HCV production
As core was detected in the nucleus of HCV-infected cells

treated with LMB, we investigated the possible effects of LMB

treatment on virus multiplication. We infected Huh 7.5 cells with

HCVcc in the presence or absence of 10 ng/ml LMB or added the

drug to the cell supernatant at various time points after infection.

Cells were then grown in the medium containing LMB until

32 hours post infection, and intracellular HCV RNA was

quantified by RT-qPCR. Incubation with the drug for eight hours

was needed for efficient inhibition of infection (Figure 13 A).

Infection levels were about 60% lower than control infection levels

when the drug was added during the first six hours of infection. By

contrast, the percentage inhibition was only 20% if LMB was

added eight hours after infection (not shown) and 0% if added

twenty-four hours after infection (Figure 11 C). Control experi-

ments excluded a cytotoxic effect of LMB or its solvent on Huh 7.5

cells (Figure 13 B, D).

Overall, these data showed that early LMB treatment

influenced HCV RNA production, suggesting that the early

shuttling of core between the cytoplasm and the nucleus might be

important for virus multiplication.

Discussion

We provide here the first demonstration that a functional NES

is present in HCV core protein. We show that amino acids 109 to

133 are responsible for the active export of the HCV core protein

out of the nucleus, via a CRM-1–mediated nuclear export

pathway. This NES was functional in transfected cells and in an

in vitro model of HCV replication (HCVcc). The trafficking of core

protein into the nucleus early in infection may help to establish

Figure 8. Nuclear export of core NES is mediated by CRM-1.
Huh7 cells were transfected with a plasmid encoding EGFP-tagged NLS
SV40 (a, b), EGFP-tagged NLS SV40 and HIV Rev NES (c, d) or the plasmid
encoding EGFP-tagged NLS SV40 and putative core NES, aa(109-133) (e,
f). Cells transfected with the EGFP-tagged control plasmid pEGFPC1 are
shown (g, h). Twenty-two h after transfection, the cells were treated for
4 h with 10 ng/ml LMB (b, d, f, h; +LMB). The cells were subsequently
washed, fixed and analyzed by immunofluorescence microscopy. The
bar represents 10 mm.
doi:10.1371/journal.pone.0025854.g008
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infection and facilitate the interaction of core with nuclear

molecules, with potentially important pathological consequences.

HCV core protein is thought to be a major viral factor

promoting liver disease during HCV infection and the malignant

transformation of hepatocytes, leading to the development of

HCC through interactions with several host cell factors involved in

a wide range of cellular processes. Indeed, in various experimental

systems, HCV core has been reported to affect transcription

mediated by various gene promoters and apoptosis, thereby

contributing to cell transformation. The oncogenic activity of core

might be related to its nuclear localization. In liver biopsy samples

from HCV-infected patients, HCV core has been found mostly in

the cytoplasm, being only rarely detected in the nucleus of infected

hepatocytes. Nevertheless, a nuclear location of truncated core

proteins was detected in tumor tissues from patients with HCV-

related hepatocarcinoma. Similarly, the nuclear accumulation of

core has been observed in transgenic mice producing the HCV

core protein and developing HCC.

Taking into account the role of HCV core as a viral factor of

major pathological significance and understanding the mecha-

nisms regulating its subcellular distribution and trafficking are of

critical importance. Several studies on transfected cells have shown

the HCV core protein to be located in the cytoplasm or nucleus,

depending on its length. Consistent with this dual localization,

many studies have reported interactions with molecules located in

either the cytoplasm or the nucleus.

Our findings confirmed that, in an in vitro transfection system

based on human Huh7 and HepG2 hepatoma cell lines or

immortalized Fa2-N4 human hepatocytes, the aa(1–173) and

aa(1–160) core proteins were found in both the nucleus and the

cytoplasm. These proteins were found exclusively in the nuclei of

non human cells (CHO, ARL-6) and in human cells of non hepatic

origin (HEK-293). By contrast, the shorter core proteins aa(1–120)

and aa(1–140) were found exclusively in the nucleus. Thus, the

nuclear/cytoplasmic subcellular distribution of core proteins aa(1–

173) and aa(1–160) was specific to human cells of hepatic origin.

Our observations suggest that core protein may contain signals for

specific transport mechanisms controlling its distribution between

the nucleus and the cytoplasm that are functional in human

hepatic cells.

The differences in the distribution of the protein between the

nucleus and cytoplasm in the cell types tested may reflect the

availability and/or functionality of the carrier proteins in these cells.

Indeed, the subcellular distribution of a given protein may be

controlled by the differential expression of carrier proteins in various

tissues or host species, and may depend on the differentiation status

of the cell.

The nucleocytoplasmic trafficking of various proteins and RNA

is controlled by importins and exportins (also called karyopherins)

from the importin-b superfamily of proteins. These proteins can

therefore gain entry into the nucleus only if they possess the

appropriate NLS recognized by nuclear importin receptors, or if

they react directly with the nuclear pore complex. Consistent with

the nuclear localization of core in several experimental systems,

three NLS have been identified in the N-terminal domain of this

protein. These signals consist of clusters of basic amino acids in the

aa(5–13), aa(38–43), and aa(58–71) regions; they are functional

and able to target core to the nucleus.

For reentry into the cytoplasm, proteins must contain the

sequences required for interaction with export factors (exportins),

enabling them to leave the nucleus via the nuclear pore. The

nuclear export of proteins is mediated mostly by NES, leucine-rich

aa sequences recognized by soluble export receptors, such as

Exportin1 (CRM-1). No functional export signal, directing

Figure 9. Subcellular localization of core in LMB-treated cells. (A) Production of the EGFP-labeled core protein aa(1–173) in Huh7 cells results
in the presence of this protein in both the cytoplasmic (a) and nuclear (b) compartments. Huh7 cells were transfected with a plasmid encoding EGFP–
labeled aa(1–173) protein and, 40 h later, cells were treated with 10 ng/ml LMB. The inhibition of nuclear export by LMB induced an increase in the
accumulation of HCV core protein in the nucleus (c). (B) Subcellular localization of core protein, with and without LMB treatement, confirmed by
confocal microscopy analyses. Huh7 cells were transfected with a plasmid encoding the EGFP-labeled core protein aa(1–173), as described in (A).
Slides correspond to the panels shown in A: the cytoplasmic (a) and nuclear (b) distribution of the core protein in non treated cells and its nuclear
localization after LMB treatment (c). The bar indicates 20 mm.
doi:10.1371/journal.pone.0025854.g009
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translocation of the core protein from the nucleus to the cytoplasm

has been identified in the core sequence to date, although the

presence of such a signal has been suggested.

We used NetNES software to search for a classical leucine-rich

NES in HCV core, and found such a signal in the C-terminal part

of the immature form of core at aa(179–187). This protein is

always found in cytoplasmic compartment and, thus, the role of

this signal remains unclear. In addition, this NES sequence is

removed when the mature core protein is generated by cellular

peptide peptidase processing.

In addition to this classical leucine-rich NES in the C-terminus

of the immature core protein, we identified a second, ‘‘atypical’’

NES in the mature form of core, by sequence alignment, as

previously reported by Rowland et al. for the identification of NES

in the PPRSV nucleocapsid protein. Indeed, multiple sequence

alignments of the HCV core with other viral NES, generated with

CLUSTAL W, led to the identification of a candidate NES

sequence at aa(109–133). Consistent with the putative biological

role of this NES, this sequence contains a cluster of hydrophobic

residues with a sequence similar to those of the NES of HSV

ICP27, HIV Rev, equine infectious anemia virus Rev, feline

immunodeficiency virus Rev and porcine reproductive and

respiratory syndrome virus N protein. Moreover, this signal was

well conserved in consensus sequences from various HCV

genotypes.

We provide evidence that the NES identified at aa(109–133) is

functional in transfected hepatoma cells and can export core

protein fragments from the nucleus to the cytoplasm. First, a

peptide corresponding to aa(109–133) of HCV core, like the NES

of the HIV Rev protein, counteracted the nuclear translocation

driven by the strong NLS of SV40 large T-antigen. The nuclear

export of this NES, observed by fluorescence microscopy, was

confirmed by quantitative analyses. LMB treatment inhibited

nuclear export of the core NES, demonstrating that the aa(109–

Figure 10. Nuclear localization of core protein in HCV infection, as demonstrated by electron microscopy. For electron microscopy
analysis, virus particles produced in Huh 7.5 cells were concentrated from the cell supernatant by centrifugation through a sucrose cushion for 4 h at
32,000 rpm in an SW 32 Ti rotor. Concentrated virus preparation was incubated with Huh 7.5 cells at 4uC. The cells were then transferred to 37uC and
incubated for a further 20 min. Cells were washed, fixed with 4% PFA and stained with monoclonal anti-core antibody ACAP27, followed by
secondary, colloidal gold-labeled anti-mouse IgG. Nanogold staining was enhanced by incubation with the HQ silver enhancement kit, and cells were
post-fixed by incubation with 1% osmium tetroxide (for details, see the Materials and Methods section). Non infected cells were also incubated with
anti-core antibodies. Panels A, B and C, show representative pictures of HCV core localization in HCVcc-infected cells. The presence of one silver-
enhanced gold particle is indicated. LD, lipid droplet; M, mitochondrion; NP nuclear pore. (D) Quantitative evaluation of HCV core labeling (gold
particles) in the perinuclear vs other areas of HCV-infected and non infected cells, from randomly selected intracellular zones of equivalent area. Thirty
cells were considered for each analysis.
doi:10.1371/journal.pone.0025854.g010
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133) nuclear export signal functions in a CRM-1-dependent

manner. Indeed, ‘‘atypical’’ NES sequences may also function in a

CRM1-dependent manner.

Export signals essentially consist of several closely spaced leucine

residues, but other hydrophobic amino acids, such as methionine,

isoleucine, valine, phenylalanine and tryptophan, may replace

leucine in the recognition motifs. Using comprehensive alanine-

scanning mutagenesis we showed that the replacement of the

Leu(119), Ile(123) and Leu(126) residues by alanine modified the

export capacity of our NES. Indeed, whereas the wild-type

chimeric protein encoded by the plasmid (EGFP-NLSSV40-

NEScore) carrying the intact aa(109–133) sequence was exported

into the cytoplasm, the protein encoded by the mutated construct

was mostly found in the nucleus. These observations, validated by

quantitative analyses, confirmed that the aa(109–133) core

sequence acted as a functional NES, targeting the protein from

the nucleus to the cytoplasm.

The functionality of the NES at aa(109–133) was further

analyzed in the context of mature HCV core protein. Firstly, LMB

treatment also modified the subcellular distribution of core aa(1–

173), increasing its accumulation in the nucleus. Secondly,

mutations of the hydrophobic residues Leu(119), Ile(123) and

Leu(126), with the replacement of these residues by alanine

residues, modified the export capacity of the protein. Our

quantitative studies confirmed that the proportions of the protein

located in the nucleus (as opposed to the cytoplasm) were

significantly higher for the mutated protein than for the wild-

type protein. These data provide experimental evidence for a role

of the identified NES in the CRM-1-dependent nuclear export of

HCV core.

CRM-1 has been identified as the export receptor, the principal

mediator of nuclear export, allowing the nuclear-cytoplasmic

shuttling of proteins and RNA between cellular compartments.

CRM-1-dependent transport is well conserved throughout eu-

karyotes and LMB is a recognized inhibitor of the active export of

most molecules from the nucleus. Indeed, the ‘‘steady-state’’

localization of proteins does not always reflect the biological

importance of their site of action. The use of LMB to block CRM-

1-mediated nuclear export results in the detection of the NES-

containing protein in the nuclear compartment, although its

‘‘steady-state’’ location appears to be exclusively or predominantly

cytoplasmic, with the equilibrium of bidirectional transport

favoring nuclear export. Nevertheless, CRM-1-mediated transport

is a highly regulated process and this regulation includes the

masking of NES, phosphorylation and heterodimerisation of the

protein and the formation of disulfide bonds by an oxidative

process. The availability of specific cofactors may also influence

this regulation. The presence of such cofactors may contribute to

the observed differences in the subcellular distribution of core

proteins in various cell types (see above).

In our study, both the NES aa(109–133) and the adjacent

hydrophobic sequence in domain II were required for a

cytoplasmic distribution of core. Indeed, we found that only a

relatively long core protein fragment, aa(109–160), was located in

the cytoplasm, with shorter core fragments lacking either NES or

this adjacent hydrophobic sequence being found in the nucleus.

We showed that no other NES capable of enhancing core export

from the nucleus was present in the adjacent (133–160)aa

sequence. However this core fragment, in addition to the NES,

was necessary for a cytoplasmic distribution of the protein. As this

Figure 11. Cytoplasmic localization of core in HCV-infected cells by immunofluorescence without LMB treatment. (A) Silencing of the
proteasome activator PA28c. Huh 7.5 cells were transfected with an siRNA targeting PA28c or a control non targeting siRNA 18 h before infection with
JFH1. For analysis of the expression of PA28c by immunofluorescence, cells were stained with rabbit anti-PA28c antibody, followed by Alexa Fluor
488-conjugated anti-rabbit IgG. Staining for HCV core was carried out 48 h after infection, with the monoclonal anti-core antibody ACAP-27, followed
by Alexa Fluor 568-tagged anti-mouse IgG (in red). (a) Non treated HCV (JFH1)-infected Huh 7.5 cells; (b) HCV-infected cells transfected with control,
non-targeting siRNA before infection; (c) cells with PA28c knockdown due to transfection with a specific PA28c-targeting siRNA. (B) Expression of
core in Huh7.5 cells after silencing of the PA28c proteasome activator. JFH1-infected cells were stained with rabbit anti-lamin B antibody and Alexa
Fluor 488-conjugated anti-rabbit IgG as a secondary antibody, to outline the cell nuclei, and with ACAP27 anti-core antibody followed by Alexa Fluor
568-conjugated anti-mouse IgG, for subcellular localization of HCV core. (d) JFH1-infected Huh 7.5 cells without PA28c silencing, (corresponding to
the image shown in (a) panel A); (e) HCV-infected cells transfected with control, non-targeting siRNA before infection (corresponding to the image
shown in (b) panel A); and (f) cells with PA28c knockdown with a PA28c-specific siRNA before infection with HCV (corresponding to (c) in panel A).
Staining of the nuclear membrane with anti-lamin B (green) and with anti-core antibody (red), as described above. No nuclear staining of core was
detected, in either siRNA-silenced cells or in cells transfected with a control si-RNA.
doi:10.1371/journal.pone.0025854.g011
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hydrophobic core fragment contains specific sites interacting with

LDs and membranes, these interactions are probably required, in

addition to our NES aa(109–133), for the maintenance of core

protein in the cytoplasm. Consistent with this notion, the aa(120–

150) core protein (containing a hydrophobic fragment interacting

with LDs/membranes but not the NES) was found in the nucleus

Figure 12. Intranuclear localization of core in HCV-infected cells treated with LMB. Huh 7.5 cells were infected with the JFH1 strain of
HCVcc and, 2 h after infection, 10 ng/ml LMB was added, with maintenance of this concentration of LMB in the cell culture until 48 h post infection.
(A) Detection of intranuclear core in LMB-treated cells. Several cells are shown in which core is present in the nucleus (designated a-i). These cells
were analyzed further: 18 cross sections of images were taken to visualize the intranuclear localization of core, at different levels within the nucleus.
(B) Cut view of Z stacks from the cells shown in A with the same designation (a–i). Images were captured with an Axioplan 2 microscope with
Apotome (Zeiss) and Axiovision 4.6. Orthogonal views were obtained from Z-stack images, with a resolution of 0.33 mm. The nuclear membrane is
stained with rabbit anti-lamin B antibody, followed by anti-rabbit IgG tagged with Alexa Fluor 488 (in green), for better visualization of the
intranuclear localization of core. HCV core protein is stained with anti-core ACAP27 antibody, followed by Alexa-Fluor 568 labeled anti-mouse IgG (in
red). Bar represents 10 mm. Negative controls for these studies (without LMB treatment) are shown in Figure 11, in which no core was detected in the
nucleus, whether or not PA28c was silenced.
doi:10.1371/journal.pone.0025854.g012
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rather than the ER. Similarly, C-terminally truncated core

proteins with NES, but lacking the hydrophobic fragment of

DII, accumulated in the nucleus, thereby probably contributing to

the development of HCC. Collectively, our observations indicate

that both a nuclear export signal aa(109–133) and the adjacent

hydrophobic sequence in domain II are required to target core

protein to the cytoplasm and to keep it in this compartment.

The identification of a NES that was functional in transfected

Huh7 hepatoma cells raised questions about the role of this signal

in HCV infection. In the context of the infectious cell culture

model in Huh7.5 cells (HCVcc), HCV core protein was found to

colocalize with lipid droplets and membranes, but was not

detected in the nucleus in most studies. However, knockdown of

the PA28c proteasome activator gene, blocking ubiquitin-inde-

pendent nuclear degradation, led to the detection of a very small

quantity of HCV core in the nuclei of infected Huh7 cells on

immunofluorescence analysis.

Our key findings for transfected cells are consistent with the

data obtained in the HCVcc replication model. First, our

immunoelectron microscopy studies based on staining with anti-

core antibodies provided evidence for a nuclear location of core as

early as 20 minutes after the start of infection. This suggests that

the nuclear trafficking of core takes place very early in the viral

cycle, shortly after internalization of the virus. Second, the use of

LMB to block CRM-1-dependent export resulted in the detection

of HCV core protein in the nuclei of a number of JFH1-infected

cells on confocal microscopy. Nuclear staining for HCV core was

observed as several ‘‘spots’’ when various nuclear images (virtual

cross sections) were analyzed by confocal microscopy. In

particular, core was detected within the nucleus only if LMB

treatment was applied early in infection (2 h post infection), and

no core was detected in the nucleus if LMB was applied late in

infection (48 h post infection). Intranuclear core was also observed

in Huh7.5 cells in which PA28c expression was knocked down but

only after LMB treatment.

Early LMB treatment also decreased HCV RNA production,

suggesting that the early shuttling of core between the cytoplasm

and the nucleus may be important for virus multiplication. LMB

Figure 13. LMB treatment influences virus production. (A). Cells were treated with 10 ng/ml LMB for various time periods to determine the
incubation time required to affect infection. Cells were infected with HCVcc (JFH1) and the drug was added immediately after infection. Cells were
grown in the medium containing LMB, for the time indicated and HCV RNA was then extracted and quantified by RT-qPCR. The values are expressed
as a percent of the amount of HCV RNA present in cells grown without LMB. (B). Control experiments carried out to demonstrate that the incubation
of cells for 2–8 h with 10 ng/ml LMB (shown in (A) had no toxic effect on cell viability. Cell viability after LMB treatments was determined by counting
live and dead cells after trypan blue staining, or by measuring cellular ATP present in culture wells as described in Materials and Methods. Untreated
cells and cells treated with 10% DMSO (to induce cell death) were used as negative and positive controls, respectively. The results are expressed as a
percent of the value obtained for an untreated control. (C). Treatment with LMB early in infection significantly decreases infection levels. Cells were
infected with HCVcc 2 h at 37uC in the presence of 10 ng/ml LMB (T0) or infected with HCVcc and then treated with the drug at the indicated time
points after infection (2 h, 4 h, or 6 h) and then incubated for a further 8 h. The treatment of cells with LMB 0–6 h post infection significantly
decreases infection levels, whereas the same treatment (for 8 h) applied 24 h after infection has no effect on intracellular HCV RNA levels, as shown
by comparison with the untreated control. (D) Control experiments for (C) showing that the application of LMB or its solvent (ethanol) at the same
concentrations and for the same time period as used for (C) does not influence cell viability, as demonstrated by comparison with an untreated
control. DMSO (at a concentration of 10%) was used as a positive control, to decrease cell viability. Values are expressed as a percent of untreated
control.
doi:10.1371/journal.pone.0025854.g013
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had no toxic effect on the cells tested, but we cannot rule out the

possibility that LMB treatment also influences other cell processes,

in addition to core protein shuttling.

We conclude that the NES identified in HCV core protein is

functional in the HCVcc replication system. Our electron

microscopy studies suggest that some HCV core, derived from

invading virus particles, is transported into the nucleus at very

early stages of the viral life cycle. In addition, a fraction of core

protein can be detected by immunofluorescence, in the nucleus, a

few hours after infection, subsequently being exported to the

cytoplasm in a CRM-1-dependent manner, as this export is

blocked by LMB, a drug widely used to dissect nuclear export

pathways.

Examples of viral proteins known to shuttle through the nuclear

pore complex and for which the CRM-1-dependent pathway is

known to export the corresponding viral RNA include HIV Rev

and T-cell leukemia virus type 1 Rex. Structural and nonstructural

proteins of several members of the flavivirus family, such as

Japanese encephalitis virus (JEV), Dengue virus (DENV), and

Kunjin virus (KUN), have also been shown to be actively

translocated to the nucleus or to the nucleoli of infected cells,

even when these viruses multiply entirely in the cell cytoplasm.

This phenomenon may affect virus infectivity or disease

pathogenesis. Indeed, DENV NS5 RNA polymerase can be

detected in the nucleus very shortly after infection, and this protein

is exported from the nucleus in a CRM-1-dependent manner.

Nuclear NS5 suppresses the production of IL-8, a cytokine playing

an important role in the antiviral response.

DENV core protein also localizes to the nucleus (and nucleoli) at

very early stages in the viral life cycle, due to its bipartite NLS. The

mechanisms of DENV nuclear export remain unknown, as this

process is insensitive to LMB, suggesting that it does not require a

functional NES [65]. Indeed, many other pathways exist for

protein import and export, including the calreticulin pathway.

Nevertheless, the nuclear localization of DENV core may regulate

its replication cycle and apoptosis (see for review. Consequently,

the construction of recombinant vaccines based on viral proteins

deficient in nuclear trafficking signals could potentially lead to

attenuation of the virus.

Our findings are consistent with the hypothesis that at least

some HCV core protein is trafficked between the cytoplasmic and

nuclear compartments early in HCV infection. Recombinant

viruses mutated in the NES region investigated here, showed

impaired virus production, producing less than 1% of the wild type

virus in the HCVcc in vitro model. These observations provided

evidence that this sequence is of importance for virus life cycle.

The absence of the NES identified in this study and/or of the

hydrophobic fragment of domain II (which act together to keep

the protein in the cytoplasm) may account for the nuclear

localization of the C-terminally truncated core proteins in patients

with HCV-induced HCC and contribute to the cell transforma-

tion.
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