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Abstract

Background: It has been shown that molecular interactions between site-specific chemical modifications such as
acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins
are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with
different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is
known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of
chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the
bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a
systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known
major acetylation sites in four core histones that are conserved in eukaryotes.

Methodology: The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the
native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on
streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions
between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative
modeling to provide insights into the molecular basis of their histone binding selectivity.

Conclusions: Our study reveals that while not all members of the bromodomain family are privileged to interact with
acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue
at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and
preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for
different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a
primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone.
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Introduction

Chromatin packages all genomic DNA in eukaryotic cells and

functions as a master regulator that governs gene transcriptional

activation and silencing. Within the highly ordered structure of

chromatin, the nucleosome is the basic unit that consists of DNA

of 147 base pairs wrapping in two superhelical turns around a

histone octamer formed by dimer of each of H3-H4 and H2A-

H2B dimers. Nucleosome core particles are linked by short

stretches of DNA bound to the linker histones H1 and H5 to form

a nucleosomal filament that is folded into higher-order structure of

chromatin fiber. Site-specific histone modifications of acetylation,

methylation, phosphorylation, ubiquitination and sumoylation

largely in the N- and C-terminal residues have been shown to

set a dynamic stage for all DNA-based processes within the

nucleus [1]. The extremely dense and versatile nature of histone

modifications argues that histone signaling is far more complex in

information content than cell-surface receptor signaling [2,3].

However, our overall mechanistic understanding of histone

signaling in gene regulation lags far behind that of cellular

signaling.

Recent studies show that site-specific modifications of histones

serve as binding sites for effector proteins and that such histone-

mediated molecular interactions individually and combinatorially

are linked to distinct functions in gene regulation [1,4]. This view

is supported by the discoveries of acetyl-lysine (Kac) recognition by

bromodomains (BRDs) [5,6] and methyl-lysine (Kme) binding by

the ‘‘royal’’ family domains of chromodomains, Tudor, MBT

domains [7,8] in histone tails, as well as PHD fingers [9].

As a highly dynamic and reversible modification, lysine

acetylation plays a key role in directing chromatin structural

changes associated with gene transcription. The functional role of

lysine acetylation in histone-directed chromatin biology is

highlighted by a large number of bromodomain (BRD)-containing
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proteins and histone acetyl-transferases (HATs) (56 BRDs in 42

proteins in humans) (Figure 1A) [6]. This basic mechanism of

protein-protein interactions mediated by BRD binding of acetyl-

lysine supports the notion that nuclear HATs in transcription

complexes are tethered to specific chromosomal sites by site-

specific BRDs mediated Kac anchoring [10–12]. Examples of

these include the assembly of multi-component chromatin

remodeling complexes such as SAGA [13] and SWI/SNF

[14,15]. This mechanism may also help understand phenotypes

linked to BRD deletion. For instance, the BRD module of yeast

Gcn5 is required for the stable association of the SWI/SNF

complex on the gPHO5 promoter [16], and is not indispensable

for activation of yeast PHD5 [17]. Deletion of a BRD in HBRM in

the human SWI/SNF complex causes decreased stability and loss

of nuclear localization [18,19]. BRDs of S. cerevisiae Bdf1 are

required for sporulation and normal mitotic growth [20]. BRD

deletion in members of RSC remodeling complex, causes a

conditional lethal phenotype [21] or a phenotypic inhibition on

cell growth [22]. Moreover, transgenic mice with lymphoid-

restricted overexpression of the double BRD protein 2 develop

splenic B-cell lymphoma and leukemia [23].

Despite its functional importance, our knowledge of the

molecular determinants for BRD recognition of acetyl-lysine

remains limited. While numerous three-dimensional structures of

the bromodomain family have been experimentally determined,

only a few are of the complexes of BRD bound to a lysine-

acetylated-peptide of a biological binding partner [6,24–28].

Nevertheless, these structural studies show that all BRDs likely

adopt a conserved structural fold of a left-handed four-helix

bundle (aZ, aA, aB and aC), and the ZA and BC loops at one end

of the bundle form a hydrophobic pocket for Kac binding that was

defined in the first BRD structure from PCAF [5]. While the BRD

residues important for Kac binding are largely conserved,

sequence variations in the ZA and BC loops enable discrimination

of different binding targets [5,6]. The high degree of sequence

variations of amino acid deletion or insertion of the ZA and BC

loops indicates that different sets of residues in these regions of a

BRD dictate its ligand binding specificity by interacting with

residues flanking the Kac in a target protein [6].

Molecular functions of these histone interaction domains are

likely conserved from yeast to human. On the basis of sequence

similarity the 14 S. cerevisiae BRDs seem to represent different

subsets of the much larger human BRD family (Figure 1A).

Because the site-specific lysine acetylation in histones, and the N-

or C-terminal sequences of histones are conserved between yeast

and human, we reasoned that knowledge of histone binding

selectivity of the yeast BRDs can help understand the ligand

binding selectivity of the human BRDs. Therefore, this unique

evolutionary relationship in protein structure-function between

human and yeast BRDs offers an attractive model system for us to

conduct a family-wide molecular profiling of histone binding

selectivity by yeast bromodomains, which we report in this study.

Results and Discussion

Yeast BRDs Binding to Native Core Histones
To explore histone binding activity of the BRDs encoded in S.

cerevisiae that represent the larger family of BRDs (Figure 1A), we

cloned and purified 14 yeast BRDs (yBRDs) as GST-fusion

proteins (Figure 1B) and assessed their binding in an overlay assay

to native core histones isolated from calf thymus (Roche) that

contain post-translational modifications. In this assay, histones run

in SDS-PAGE gels were transferred to nitrocellulose paper, which

was incubated with GST-yBRDs or GST alone (Figure 1C).

yBRDs bound to the histones on the nitrocellulose paper were

visualized in Western blotting using anti-GST antibody. This

binding study reveals that the yBRDs have preferential binding to

different histones; some such as yGcn5 and ySnf2 bind selectively

to certain histones, whereas others, i.e. yRsc2-2 and ySpt7, bind

histones only weakly, if at all. While this study yields intriguing

insights into selective histone binding by yBRDs, detailed

interpretation can be complex. This is because multiple modifi-

cations are present simultaneously in the native histones, and

yBRD binding to a particular acetylation site can be influenced

positively or negatively by other modifications on the neighboring

residues, thereby complicating the analysis of the histone binding

selectivity.

Site-Specific Histone Recognition by Yeast BRDs
To circumvent this problem, we systematically evaluated

yBRDs binding to 32 lysine-acetylated peptides derived from

known acetylation sites in four human core histones, which are

K4, K9, K14, K18, K23, K27, K36, K56, K115 and K122 of

histone H3; K5, K8, K12, K16, K20, K77 and K79 of H4; K5,

K9, K13, K21, K36 and K119 of H2A; and K5, K12, K15, K20,

K24, K85, K108, K118 and K120 of H2B. All histone peptides

consist of 15 residues with the acetyl-lysine at the center. For the

N-terminal lysine acetylation sites such as H3K4ac, H4K5ac,

H2AK5ac and H2BK5ac, a short segment of GGSG or GGS were

added at the peptide N-terminus. All peptides were biotinylated at

the N-terminus making it possible to immobilize them on a biotin

capture membrane (Promega). In a dot blot assay, individual

yBRDs binding to a complete set of the histone peptides spotted on

the membrane were evaluated with Western blotting using anti-

GST antibody (Figure 2A). To compare histone binding

selectivity, we normalized signal intensity of yBRD binding of

histones to that of GST spotted on the same membrane

(Figure 2B).

While the results agree with those from the overlay study

(Figure 1C), the dot blot assay yields more details on site-specific

histone binding by the individual yBRDs. For instance, yGcn5

BRD interactions with H3 and H4 (Figure 1C) is shown

predominately due to its preferred binding to H3K56ac,

H4K12ac and H4K16ac over other weak binding sites

(Figure 2B). Similarly, yBdf2-2 BRD binding of H2B was

determined to be at H2BK24ac, and yBdf1-1 and yBdf1-2’s H3

binding both at H3K36ac (Figure 2B). Notably, ySPT7 BRD

binding to native H3, albeit weak, was not seen at all with the

peptides. Conversely, some strong histone peptide interactions, i.e.

ySTH1 BRD to H2AK21ac, yBDF1-1 BRD to H4K20ac and

H2AK36ac were contrasted by their negative interactions with

native H4 and H2A (Figure 1C). These seeming discrepancies in

histone binding observed in the two assays may be due to one or

more of the following factors: (1) lack of some lysine acetylation in

native histones; (2) influences on BRD binding of histones by

neighboring modifications in histones; this is exemplified by a

recent report that the first BRD of the BET family protein BRDT

prefers binding to histone H4 that is dually acetylated at lysines 5

and 8 [29]; and (3) some histone binding may require more than

15-mer peptides. We further observed that a few yBRDs bind

specifically and equally well to certain histone peptides regardless

of acetylation, e.g. ySnf2, ySth1 and yBdf2-2 to H3K56 and

H3K56ac peptides. Finally, by using NMR, we confirmed a few

select BRDs’ histone peptide binding observed in the dot blot assay

such as yGcn5 specific binding to H4K16ac, ySnf2 and ySth1 to

H3K14ac, as well as ySpt7’s non-binding to H3 or H3K14ac (see

Figure S1). Overall, our results generally agree with previous

studies of individual yeast BRDs’ binding to histones using

Bromodomain/Histone Binding
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Figure 1. Binding of yeast BRDs to native core histones. (A) Sequence similarity based dendrogram of yeast (red) and human BRDs generated
using the neighbor-joining method with MEGA3 [38]. Sequences of BRDs were obtained from the SMART database [39], and aligned with SMART
BRDs’ hidden Markov models using Hmmalign [40]. (B) Purity of recombinant yeast BRDs used in the binding study, shown in SDS-PAGE. (C) Histone
overlay assay showing relative binding of yeast BRDs to four native histones from calf thymus (Roche). The GST-BRD bound to the individual native
histones was visualized by Western blot using anti-GST antibody.
doi:10.1371/journal.pone.0008903.g001

Bromodomain/Histone Binding

PLoS ONE | www.plosone.org 3 January 2010 | Volume 5 | Issue 1 | e8903



Figure 2. Binding of yeast BRDs to lysine-acetylated histone peptides. (A) Dot blot assay showing relative binding of the N-terminal
biotinylated lysine-acetylated histone peptides to yeast GST-BRDs. Lysine-acetylated histone peptides were dotted on the SAM biotin capture
membrane that was incubated with a GST-BRD. The bound GST-BRD was probed with anti GST-HRP conjugate. The labeling of the histone peptides is
indicated in the matrix at the low left corner of the panel. The first three spots in the last row were of GST (20, 10 and 5 ng each) spotted on the
membrane. 56 and 569 refer to yeast histone H3K56ac and H3K56 peptides. (B) Matrix of binding preferences computed from normalized densities.
The normalized values range from 0.2 (least preferred binder) to 1.5 (most preferred binder).
doi:10.1371/journal.pone.0008903.g002
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different approaches [30-32]. However, given that our study of

yBRDs’ histone binding was done under the same conditions, our

results lay an important foundation to elucidate the molecular

basis of hisone binding selectivity of the yeast BRDs.

Modeled Structures of Yeast BRDs
Among the 14 BRDs in yeast, three experimental structures are

available, i.e. yGcn5 BRD and yRsc4 tandem BRDs. Structures of

the remaining 11 yBRDs were modeled based on available BRD

structures. Structural comparison of all available structures of

BRDs shows that there are primarily four distinct regions where

structural variations occur in this family. The sequence conserva-

tion in the first helix Z is poor compared to that of the rest of the

domain (Figure 3A) making it hard to align this region among

different BRDs. This is reflected in our initial hidden Markov

model (HMM) analysis that fails to define the domain boundary

for the helix Z (residues 169–285) of yRsc4-2 seen in the recently

determined in the structure (PDB ID 2R0S). Since we obtained

soluble proteins for all 14 yBRDs, the domain boundary for yBRD

constructs, which was defined based on the SMART/PFAM

sequence analysis, is likely correct. With a careful consideration of

the residues in the region around the helix Z, manual alignment of

the 11 yBRDs was generated with respect to the 26 known BRD

structures (see Materials and Methods) with an emphasis on

clustered sequence neighbors at 35% sequence identity, if possible.

The structures of the 14 yBRDs, therefore, can be placed in

distinct groups based on amino acid insertion or deletion in the ZA

loop that comprises the acetyl-lysine binding pocket (Figure 3B).

Molecular Basis of Histone Binding Selectivity by Yeast
BRDs

Consistent with the highly positively charged histone sequences,

yeast BRDs’ preferred binding sequences (binders) are rich in

lysine and arginine residues on both sides of the Kac (Figure 4A,

left). For example, contiguous stretches of positively charged

residues in KacRHRKac in H4 (residues 16–20, where Kac is an

acetylated lysine) and KacDGKKRKR in H2B (residues 24–31)

are recognized by five or more BRDs, while segments with

interspersed positively charged residues are more selective

(Figure 4A, middle). Most non-binder sequences have few

positively charged residues, and some have negatively charged

residues (Figure 4A, right). Polar non-charged residues that are

capable of hydrogen bonding are seen more frequently in binders

than in non-binders. Conversely, proline residues adjacent to the

Kac appear more frequently in non-binders than in binders

indicating the importance of peptide flexibility for BRD binding.

Finally, while absent in non-binders, aromatic residues such as Tyr

in H3K36ac, H4K77ac or K2AK36ac, or Phe in H3K56ac are

present in binder sequences for four or more BRDs. Since

aromatic amino acids can engage in protein-protein interactions

by aromatic stacking or cation-p interactions with positively

charged amino acids, the yeast BRDs that interact with many

histone peptides appear to have more aromatic residues at the ZA

and BC loops than those that show limited histone binding

(Figure 3C).

Given the high occurrence of positively charged residues

flanking the Kac in the binder sequences, we reasoned that

electrostatics likely plays a key role in determining histone binding

selectivity by BRDs. We examined the molecular basis of BRD

binding of histones with the structure models of the yBRDs (see

Figure S2), which suggest that the mode of histone peptide

recognition involves two anchoring sites on the BRD surface

directing a peptide in either orientation (Figure 4B). As suggested

by a dense negative charge patch corresponding to the central

region of the ZA loop (Figure 4C), yGcn5 and yRsc4-2 likely

prefer one or more positively charged residues adjacent to the Kac

in the target sequence. Indeed, four of the six peptides recognized

by yGCN5 BRD, six of the nine peptides by yRsc4-2 and all three

peptides by yBDF1-1 contain a Lys or Arg at (Kac+/21) positions.

It is important to note that the guanidinium group of H4R17 in

the H4K16ac peptide when bound to yGcn5 BRD (PDB ID 1E6I)

does not, however, form any electrostatic interactions with the

nearby carboxylate groups of DYYD residues in the ZA loop [27].

This suggests that electrostatics in this case is primarily needed for

steering the peptide to the binding site as one also observes that

peptides with a stretch of positively charged residues are preferred.

This also explains the broader specificity of BRDs as each domain

is able to recognize more than one peptide that shares some degree

of amino acid variations.

Structure-Based Classification of Acetyl-Lysine Binding
Sites in Yeast BRDs

We performed a family-wide structural analysis of all yeast

BRDs to further identify structural properties that may explain

their histone binding selectivity, which cannot be elucidated by

sequence comparison alone. These 2 groups are clearly identifiable

when the clustering is based on experimental data (Figure 5A).

Molecular Interaction Field (MIF) analysis of the BRD structures

was carried out to quantitatively characterize the molecular

binding propensities in their peptide binding sites. Principal

Component Analysis (PCA) of the MIF data showed that the first

principal component (PC1) produced a clustering of BRDs very

similar to that obtained using experimental data (Figure 5A–B).

With the exception of yBdf1-1 BRD, all BRD with positive, or

close to zero, values of PC1 show relatively high affinity for histone

peptides. Conversely, BRDs with negative values of PC1 did not

show binding to histone peptides. The combined MIF and PCA

analysis also identified the regions in the BRD structure that

contribute the most to PC1, and thus to the correct clustering

(Figure 5C). As MIFs contain chemical information, it is possible

to identify the probe (or a combination of probes) that account for

the effect. The results for the N1+ probe indicate that binding of

positively charged groups is one of the important factors in

distinguishing BRDs that bind histones from those that do not

bind histones (Figure 5D–F), consistent with the effect of

electrostatics described above. Taken together, our study suggests

that the MIF/PCA analysis of BRD structures could provide an

automated means to identify BRDs with propensity for histone

interaction.

Concluding Remarks
BRDs likely all adopt the conserved left-handed four-helix

bundle with the ZA and BC loops forming the acetyl-lysine

binding pocket [6]. However, unlike other protein domains such as

SH2 or PTB domains that bind a modified amino acid (i.e.

phospho-tyrosine) in a consensus sequence in a target protein with

a structurally defined ligand binding pocket [3,33], the acetyl-

lysine binding site in the BRD is composed of segments (i.e. the ZA

and BC loops), which are highly flexible in three-dimensional

structure, and shows high variation in geometry and sequence

composition. Because of this extraordinarily high degree of

variation in the ligand binding site, as well as relatively modest

binding affinity (Kd of tens-to-hundreds mM), it is extremely

difficult to predict binding partners for the large BRD family with

knowledge of only three available structures of BRD and acetyl-

lysine-peptide complexes [6]. The knowledge of the structure-

function relationship of any protein domain should be generated

with biologically relevant ligands. The evolutionarily conserved

Bromodomain/Histone Binding
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histone binding activity of BRDs from yeast to human makes it an

ideal model system for a systematic genome-wide profiling of

domain/ligand selectivity by using combined experimental and

computational methods.

The study we report here suggests that there are possibly three

important factors that are responsible for histone binding

selectivity by the BRDs. These are (1) structure and dynamics of

the ZA loop of the BRD, (2) negatively charged residues at

anchoring sites, and (3) presence of aromatic residues in the

vicinity of binding sites are responsible for peptide recognition.

The last factor is possibly the least influential one as there are some

cases such as yRsc1-1, yRsc2-1 and ySnf2 BRDs where the

presence of the aromatic clusters does not favor peptide binding.

Moreover, adjacent modifications could also positively or

negatively influence binding specificity for a given acetylation site.

One example of the former is a recent report, which shows that the

first BRD of the BET family protein BRDT prefers binding to

histone H4 when dually acetylated at lysines 5 and 8 [29]. While

negative regulation by an adjacent modification has not been

reported for BRDs, it has been shown that the sequence specific

Figure 3. Molecular basis of histone recognition by the yeast BRDs. (A) Experimentally determined structures of 26 BRDs were superimposed
using MODELLER [36] resulting in a structure-based multiple alignment (top). The experimental structures were used as templates for modeling 11
yeast BRDs. The yeast BRDs (bottom) are aligned to the structural and sequence similarity of both human and yeast BRD sequences. The 4-letter code
with chain-ID and residue numbering of PDB templates are indicated on the left, while protein names are on the right (gray-box). The names of yeast
BRDs are on the left (bottom). PDB sequences with $35% sequence identity are bracketed on the left. Yeast BRD sequences are grouped as good,
intermediate and poor lysine-acetylated histone binders as indicated on the left (bottom). (B) Yeast BRD structures that deviate, due to insertion or
deletion (crescents), from the archetypical yGCN5 are shown in 4 groups based on the sequence similarity. (C) Distribution of the aromatic residues
(conserved red, non-conserved green) at the acetyl-lysine-binding pocket highlighting the differences between good and poor histone binding BRDs,
as indicated.
doi:10.1371/journal.pone.0008903.g003
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Figure 4. Influence of surface electrostatic potential of yeast BRDs on histone binding selectivity. (A) Binding of yBRDs to 15-mer acetyl-
lysine (Kac)-containing histone peptides: Binders (left) show a preference for positively charged residues (blue filled circles) on either side of Kac
compared to non-binders (middle, light blue dotted circle). Horizontal bars (left) represent the frequency with which each peptide binds a set of 14
yBRDs. The peptides are color-coded as the following: Kac (yellow), positively charged (blue), negatively charged (red), polar (green) and aromatic
(pink) amino acids. (B) Cartoon illustration of the proposed mode of BRD recognition of histone sequences through two anchoring sites ‘A’ and ‘B’
flanking the Kac. (C) Surface electrostatic potential of yeast BRDs (left panel) corresponding to their selective binding to histone peptides (right
panel). The histone peptide (black dots) is indicated on the surface of the yeast BRDs. Three views, i.e. front, top, and black are shown.
doi:10.1371/journal.pone.0008903.g004
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histone H3 recognition by the BHC80 PHD finger binding to non-

modified H3 is attenuated upon methylation of H3 lysine 4 in gene

transcriptional repression [34]. Therefore, it is conceivable that a

detailed understanding of the molecular basis of the histone

binding selectivity would require additional structural analysis of

BRDs bound to different peptides derived from their biological

binding partners.

Materials and Methods

Cloning, Expression, and Purification of Yeast BRDs
DNA fragments encoding fourteen yeast BRDs were PCR

amplified from yeast genomic DNA and cloned into the pGEX-

4T-1 vector (Amersham Biosciences). The clones were confirmed

by DNA sequence. The recombinant plasmids harboring the

respective target genes were transformed into Escherichia coli BL21

(DE3) host cells individually for protein preparation and the GST

fusion protein were purified using Glutathione Sepharose 4B

beads (Amersham Biosciences). Protein purity and amounts were

checked and normalized by SDS-PAGE and Coomassie staining.

Blot Overlay Assay
The native core histones H3, H4, H2A, and H2B from calf thymus

(Roche) were resolved on a 15% SDS-polyacrylamide gel, which were

then transferred to a nitrocellulose membrane (Amersham Biosci-

ence). The membrane was subsequently blocked with 5% skim milk in

50 mM Tris-HCl, pH 7.2, containing 150 mM NaCl and 0.2%

Tween-20 for one hour at room temperature, followed by washing

with a buffer containing 50 mM Tris-HCl (pH 7.2), 150 mM NaCl

and 0.2% Tween-20 at room temperature. The nitrocellulose

membranes were then incubated with purified individual GST-

BRD in the same buffer for 1 hour at room temperature. After

washing the bound GST-BRD was immuno-detected by Western

blots with anti-GST antibodies (Amersham Bioscience).

Dot Blot Assay
Histone binding selectivity of the yeast BRDs was assayed by a

dot blot assay. Biotinylated histone acetylated peptides dissolved in

50 mM Tris-HCl pH 7.5 were dotted onto SAM Biotin Capture

Membrane (Promega) that is allowed to air dry for 6 minutes. The

dot blot overlay assay followed the experimental procedures of the

blot overlay assay as mentioned above. The integrated density of

each spot on the SAM Biotin Capture membranes was analyzed

by Image J software and followed to transfer into 2D matrix using

Matrix2png [35] software. Empty spots and GST spots were used as

controls. For a particular membrane, the average density of 5

empty spots was taken as the background signal, B. The standard

deviation of the density of an empty spot ranged between 3–10%

from one membrane to the other. For meaningful comparison of

intensities across different membranes, the intensity of each spot

on a membrane was represented as relative intensity RI = (Xi-B)/

G, where Xi is the intensity of the ith point of membrane, and B

and G are the baseline intensities of empty spot and GST (5 ng)

respectively. However, since there were significant differences

between the RI values of GST from one membrane to the other,

the RI values of the four subtypes (Figure 2B) were scaled as (Ws) x

Figure 5. Classification of yeast BRDs based on molecular interaction properties. (A) Heat-map showing the clustering of yeast BRDs (left to
right) and histone peptides (top to bottom) based on their relative binding affinities. The scale is relative from low affinity (blue) to high affinity (red). (B)
Values of the first principal component (PC1) from the CPCA analysis of the Molecular Interaction Fields (MIFs) of all yeast BRDs (see text). (C) The blue
contours refer to the regions in the BRD structure corresponding to PC1 (yGcn5 BRD is used as a representative structure). The H4K16ac peptide is shown
in yellow. (D), (E), and (F) Molecular Interaction Field (MIF) for the N1+ (sp3 amine NH cation) probe mapped as a red contour on yGcn5, yRsc4-2, and
yBdf1-2 BRDs, respectively. Note the strong N1+ signal in yGcn5 and yRsc4-2 (good histone binders) versus yBdf2-1 (poor histone binder).
doi:10.1371/journal.pone.0008903.g005
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(RI) where Ws is the scaling factor. We used Ws as 1.00, 0.95, 0.50

& 0.20 respectively for the four subtypes (Figure 2C).

Comparative Protein Structure Modeling
All known experimental BRD structures (23 X-ray and 3 NMR)

were downloaded from the June-2009 PDB release and used as

comparative modeling templates for eleven yBRDs. Three-

dimensional experimental structures are available for three

yBRDs, i.e. yGcn5, yRsc4-1 and yRsc4-2. The templates were

superposed using the MALIGN3D command of MODELLER

[36] to generate structure-based multiple alignments for modeling

the remaining 11 yBRDs. To generate the respective modeling

alignments, the sequences of each of the 11 yBRDs were manually

adjusted to align to the template structural-alignment, based on

consensus obtained from different multiple alignments (MUSCLE,

hmmalign, MODELLER sequence-to-structure MALIGN2D) of

(26+11) sequences. MODELLER was used to build models.

Structural analyses were carried with the modeled structures. Low-

resolution electrostatic potential surfaces were generated using

PyMol with default parameters.

Molecular Interaction Field Characterization of Yeast BRD
Structures

Molecular Interaction Field (MIF) analysis of the BRD

structural models was carried out with program GRID [37].

Due to the complexity of the MIF data, Principal Component

Analysis (PCA) was used to identify regions of the binding site that

account for most of the MIF variation in the yeast BRD family.

PCA is an established statistical procedure to analyze complex

datasets and capture their main features. PCA works by linearly

transforming the data to a different coordinate system in such a

way that, projecting the dataset onto the coordinates (called

Principal Components), the variance is maximal on the first

principal component and decreases as we move to the other

components. The Principal Components can be used to cluster the

data in an unsupervised way and to reduce the complexity

inherent to the datasets. The complex datasets generated by

computing MIFs for all BRDs with different chemical probes were

collected into one matrix, which was analyzed using PCA. The

first principal component (PC1) was used to cluster the yeast BRDs

using a neighbor-joining algorithm. The loadings of PC1 were

used to identify the regions in the BRD structures that contribute

to the PC1-based clustering.

Supporting Information

Figure S1 Binding of yeast BRDs to histone peptides. Binding of

yeast BRDs to various histone peptides as evaluated by NMR.

Superposition of 2D 1H-15N HSQC spectra of individual yeast

BRDs in the free form (black signals) and in the presence of a

lysine-acetylated (right column) or non-acetylated (left column)

histone peptide (red signals) derived from known acetylation sites.

The protein concentration was ,0.25 mM, and the molar ratio of

protein:peptide was ,1:5.

Found at: doi:10.1371/journal.pone.0008903.s001 (3.49 MB TIF)

Figure S2 Electrostatic potential surfaces of bromodomains.

Comparison of electrostatic potential surfaces of (A) experimen-

tally determined structures of BRDs that are known to bind to

lysine-acetylated peptides; (B) modeled structures of yBRDs that

are shown to interact with histone peptides (G group); and (C)

modeled structures of yBRDs that do not show to bind to histone

peptides (B group).

Found at: doi:10.1371/journal.pone.0008903.s002 (7.95 MB TIF)
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