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Abstract

Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which
requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA
biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are
maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive
identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and
their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed
innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis
identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1,
and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling
of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors
or differences in sample purity. Similarly, we observe ,96% primary-to-model concordance in copy number calls in the
high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant
differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution,
the genome-wide conservation of a patient’s tumor genetics in various pre-clinical models, and therefore supports their use
for the development and testing of personalized targeted therapies.
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Introduction

The discovery of cancer specific somatic DNA mutations has led

to the development of highly effective therapies targeting the

corresponding altered protein via monoclonal antibodies or

specific inhibitors. These therapies have enhanced activity with

a reduced toxicity for the patient in comparison to cytotoxic

agents. Recent advances in high throughput sequencing now

drives the discovery of actionable mutations in driver genes [1,2],

genes mediating drug sensitivity [3–5] or supports new indications

for targeted therapies [6]. In 2011, several clinical trials have

resulted in the approval of therapies for BRAF+ Melanoma

(vemurafenib), ALK+ Non-Small cell lung cancer (crizotinib) and

JAK2+ myelodysplasia (ruxolitininb). It is anticipated that the

number of clinically approved targeted therapies will increase in

the future with our improved ability to discover targets and the

effective repurposing of existing drugs for new indications.

Glioblastoma (GBM) is one of the most devastating cancers: it is

the most common primary brain malignancy in adults, accounting

for over 14,000 deaths per year in the United States [7]. The

standard of care includes surgery followed by chemoradiotherapy.

Unfortunately, these treatments are rarely curative and the vast

majority of tumors recur locally within a few months. A recent

integrated multidimensional genomic analysis has shown that the

genetic landscape of glioblastoma is rather heterogeneous with

80% of the patients affected in one of three main signaling

pathways, TP53, PIK3CA and RB [8]. Importantly, the specific

alterations affect different genes in these pathways through various

somatic events such as point mutations, copy number aberrations

or transcriptional deregulation. These molecular profiles led to
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a classification of GBM tumors which have already proven useful

in designing more rationalized targeted therapies. An example is

the discovery of IDH1 as a promising new target for younger GBM

patients [9,10]. Current clinical trials in GBM targeting EGFR,

VEGF, PDGFRA are all leveraging recent molecular genetic

information of GBM [11].

The description of the molecular aberrations in tumors has

become so comprehensive that we can rationalize the development

of novel targeted therapies. Patient derived pre-clinical tumor

models are the optimal tools to understand the mode of drug

action as well as resistance mechanisms. In most cancers, stable

cell lines cultured in vitro show a distinct expression profile from

primary GBM tumors [12] therefore raising concerns about their

validity as clinical models. In GBM studies, neurosphere cultures

grown in growth factor supplemented serum-free media are closer

to the primary tumor than serum-fed cell cultures [13], specifically

from a cellular and transcriptional perspective. Finally, in vivo

(xenograft) expansion of various glioma cell lines leads to more

consistent and more physiologic transcriptional profiles than

in vitro, with an advantage for intra-cranial over heterotopic mouse

xenografts [14]. Therefore, there are significant phenotypic and

transcriptional differences between the various tumor models and

primary tumors. These differences are seriously undermining our

ability to measure and understand candidate drug effects in pre-

clinical studies. However, beyond the phenotypic resemblance, the

genetic validity of the tumor model is equally important. Indeed

most recent therapies in oncology drugs are designed for particular

genetic indications, targeting mutated genes, and the correspond-

ing mutations need to be present and maintained in the pre-

clinical model to ensure their utility. It is still unclear whether pre-

clinical models maintain faithfully the entire DNA mutational

profile, including the clonal heterogeneity sometimes found in

primary tumors, and can therefore be used to develop and study

DNA-guided targeted therapies.

Intra-tumor heterogeneity results from the appearance of

distinct mutations in different clones of the tumor, and their

subsequent evolutionary selection, as the disease progresses or

responds to treatment [15–17]. This heterogeneity is a major cause

of resistance to standard treatments. Indeed, single agent therapies

do not address the molecular heterogeneity, and the process of

tumor evolution, which frequently leads to the recurrence of the

tumor. Intra-tumor heterogeneity has only been recently studied at

the molecular level, through deep sequencing [15,16], genomic

profiling of large tumor sections [18,19] or even single cell analysis

[20]. In GBM, specific investigations of tyrosine kinase receptors

amplifications have revealed the presence of independent events in

different cells of the same samples [21–23]. These observations

have important implications on the interpretation of whole-sample

genomic studies and their applications to investigate cancer

progression and drug sensitivity. For this reason, the development

of proper pre-clinical models that can recapitulate and maintain

the clonal structure found in primary tumors is critical to generate

the knowledge required for the development of meaningful

treatment combinations. Because these models, such as cell-lines

or mouse xenografts, are generated, grown and maintained in

experimental conditions different from the primary tumor

physiological conditions, they can themselves undergo clonal

selection. An initial selection or a genetic drift can both be

detrimental to the utility of these models. The potential variability

in mutational profile, including mutation type and prevalence,

between primary tumors and pre-clinical models has been only

partially investigated. Copy number studies of matched GBM

primary and xenograft tumors has provided an estimate of the

global genetic validity of the model [24,25]. However, large

genetic differences between a primary GBM tumor and derived

model have also been observed. The well studied glioma cell line

U87 for example, shows extensive DNA alterations, which likely

resulted from in vitro clonal selection leading to a mutational profile

clearly different from a GBM primary tumor [26]. Similarly,

genetic drift has been observed after expansion of clonal cell

populations in vitro [27]. Elsewhere, it has been observed that

in vitro growth of GBM cells selects against EGFR amplification

and mutations, in contrast to in vivo xenograft models [28]. In

breast cancer, whole genome sequencing of matched primary and

xenografts are in good agreement, however there is some evidence

of clonal evolution in the xenograft, suggesting that additional

work is needed to understand the origin and significance of these

differences [29].

Here we describe the results of a whole exome sequencing

(WES) of four patient’s primary glioblastoma and their respective

tumor models: one neurosphere culture, one laminin cell culture

and two xenografts (Figure S1). We identify both somatic

mutations and copy number aberrations by comparisons with

normal DNA obtained from the patient’s white blood cells. We

present an extensive comparison of the primary and model tumor

genetic profiles. We develop original analysis methods to perform

accurate comparisons and overcome technical variability. Our

results illustrate the heterogeneity of the disease from the

molecular standpoint and suggest that the pre-clinical models

studied maintain their respective parental tumor genetic profiles,

regardless of known expression differences [14]. This work

therefore confirms, at a resolution superior to previous reports,

that pre-clinical models can support laboratory investigations and

testing of DNA-guided therapies for the treatment of GBM.

Materials and Methods

Human Tumor Collection
Human tissue samples were obtained from 4 newly diagnosed

glioblastoma patients under a UCSD Institutional Review Board

approved the study. All patients signed a written consent form

approved by the Institutional Review Board. No treatment was

administered prior to obtaining tissue samples. The samples were

de-identified, banked as frozen tissue and used to extract DNA

(DNAeasy kit QIAGEN) for the present study. Fresh tumor tissues

were used to generate tumor sphere cultures and xenografts as

described below.

1) Sample SK01600 was resected from a 57-year-old female

presented with a large right frontal mass. The pathology

showed classical features of glioblastoma. Molecular bio-

markers detected in SK01600 include trisomy of chromo-

some 7, EGFR amplification (FISH) and overexpression

(IHC), PTEN and RB1 hemizygous loss and c-MET gain

(+1) (FISH).

2) Sample SK00115 was resected from a 64-year-old male,

who presented with a right inferior frontal mass. Pathology

showed dense hyper cellularity with astrocytic morphology

with small monomorphic and anaplastic cells, florid

glomeruloid microvascular proliferation, and pseudopalisad-

ing necrosis. Immuno-histochemistry analysis reveals loss of

p16, PTEN, and p53 as well as a wild type PDGFR-A. Wild

type EGFR and cMyc copy number was confirmed by

fluorescent in situ hybridization.

3) Sample SK00102 was resected from a 47-year-old male with

a right frontal mass. Pathology showed moderate to high

cellularity, widespread microvascular proliferation, geo-

graphic zones of necrosis and infiltration into white matter.

Matched Primary Tumors and Models Genetic Analysis
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4) Sample SK00072 was resected from a 60-year-old male who

presented with a left occipital mass. Pathology showed

moderate to focally high cellularity, pleomorphic astrocytic

tumor cells, necrosis, and infiltration into white matter.

Molecular biomarkers detected in SK00072 include trisomy

of chromosome 7, loss of chromosome 10, EGFR amplifi-

cation (FISH) and over-expression (IHC), RB1 and

CDKN2A deletions (FISH), PDGFR-A and –B overexpres-

sion (IHC).

Short-term Tumor Cultures
SK01600 and SK00115 GBM cells cultures were derived from

above described primary GBM tissues as follows. Tumor speci-

mens were washed in HBSS and mechanically minced, then

dissociated using the MACS Neural Tissue Dissociation Kit

(Miltenyi). Cells were subsequently washed, filtered through a 40-

mm strainer and plated in low-attachment plates and grown as

neurosphere (SK01600) in NeuroCult NS-A proliferation media

(Stemcell Technologies) supplemented with 10 ng/mL rhbFGF

(StemGent) and 20 ng/mL rhEGF (Stemcell Technologies) [13].

Alternatively, tumor cells were plated in laminin-coated plates

(SK00115) and grown in adhesion using the above-indicated

media [30]. Tumor cells were incubated at normal oxygen levels,

at a temperature 37.0uC and 5% CO2. Samples were collected at

passage 6 (SK01600) and passage 3 (SK00115). The DNA was

extracted using DNAeasy DNA extraction kit (QIAGEN).

Xenograft Model
SK00072 and SK00102 primary GBM tissues were directly

passaged in vivo as mouse xenografts. Fresh tumor tissues were

washed in HBSS and mechanically minced. Tissue aggregates

were suspended in HBSS and mixed one to one with Matrigel (BD

Biosciences) for injection. Six to eight week-old immuno-compro-

mised NSG mice (The Jackson Laboratory) were injected at the

flank [31,28]. Tumors were removed when size reached 1–

1.5 cm3. DNA extraction was performed using DNAeasy DNA

extraction kit (QIAGEN). For in vivo tumor maintenance, part of

the tumor was mechanically dissociated as described above and

reinjected subcutaneously into mice. The xenografts studied were

collected at the first passage in vivo. All in vivo experiments were

conducted under a protocol approved by UCSD IACUC (In-

stitutional Animal Care and Use Committee).

Data Generation
Three microgram of genomic DNA were fragmented to

,150 bp (Covaris S2, Covaris, Inc., Woburn, MA). The

fragmented DNA was then subjected to SOLiD library prepara-

tion and SureSelect Exome capture by hybrid selection following

the manufacturer’s instruction (see Methods S1 for details). The

captured exome libraries were sequenced for a single end on the

SOLID 3.0 instrument (Applied Biosystems) for 50 cycles for the

forward read and 35 cycles form the reverse read. We generated

more than 250M reads per sample (Table S9). The sequencing

data is available at the NCBI short read archive database accession

number SRA049073.1.

Data Analysis
The reads were aligned to the human hg19 reference genome

using Bioscope 1.3.1 (Life Technologies, Carlsbad, CA) followed

by post-alignment improvements steps implemented in Picard or

GATK [32]. The alignment quality is summarized in Figure S2

and Table S1. For patients with xenografted samples, the reads

were also aligned to mm9 mouse reference genome and only reads

aligning the human genome specifically or with a better alignment

based on pairing and matching information were kept for

subsequent analysis. The germline, somatic and loss of heterozy-

gosity variants were called using VarScan 2.5.5 [33], using default

filters and were annotated using the SeattleSeq server. Variants

with a significantly lower alternate allele base quality were likely

false positive were identified using mixture modeling (MCLUST)

[34] and discarded. Low confidence somatic variants were

removed by applying a minimum right-tailed Fisher exact P-value

of 0.05 as determined by VarScan. We removed germline variants

incorrectly called somatic, by requesting a maximum of 5%

alternate allele frequency in the normal DNA. Germline In-

sertion/deletions (indels) were called with more stringent criteria,

requiring 106 coverage, 3 reads supporting the variant and less

than 5% mutant reads in the germline. After calling all somatic

mutations, the mutant allele frequency in the primary and model

tumors were compared and assessed via Fisher Exact test, with

a false discovery rate of 0.05, as estimated from a permutation test.

The difference in the mutant allele frequencies between the

primary and model tumors was also used to estimate the amount

of normal DNA contamination in the primary, assuming a pure

model sample (Methods S1). Copy number aberrations were called

from the exome sequencing data using ExomeCNV method [35],

after correction for GC content (Figure S3 and Methods S1).

Large chromosome arm copy number aberrations were called

when .20% of the targeted base pairs of a chromosome arm were

consistently called as CNA. Focal amplifications were called from

high confidence (HC) calls. HC amplified (respectively deletions)

segments are segments with a logR ratio higher (respectively lower)

than the 95th (respectively 5th) percentile of the logR ratio of copy

neutral segment. More details are available as supplementary

method (Methods S1).

Genotyping Array Data Analysis
Omni2.5-Quad IDAT intensities were processed to genotypes

using GenomeStudio (version 2010.3) using default cluster

positions (HumanOmni2.5-4v1_D.egt) and the default GenCall

score cutoff of 0.15 for Infinium arrays. Genotypes were exported

in reference genome PLUS orientation (build hg19) based on

HumanOmni2.5-4v1_D.bpm. We converted 1000 Genomes Pro-

ject SNPs (kgp identifiers) to rsIDs by matching chromosome,

position, and alleles in dbSNP132. We restricted SNPs to those

that are present and biallelic in dbSNP132, and did not evaluate

indels. We excluded 17,959 SNPs that were present in duplicate

on the chip, 11,536 SNPs that had more than 2 alleles in dbSNP,

and 405,516 SNPs, which were not reported in dbSNP132. This

resulted in a total of 2,016,730 SNPs. Due to questionable strand

orientation, a previously reported problem, we additionally filtered

61,690 A/T and C/G SNPs that overlapped with the targeted

region of the sequencing.

Results

We performed whole exome capture using hybrid selection [36]

of 12 samples (4 blood, 4 primary and 4 models) from 4 GBM

patients (SK01600, SK00115, SK00072 and SK00102). High-

throughput sequencing resulted in ,69% of the targeted bases

covered at 106or more, for an average on-target coverage of 596
across all 12 samples, therefore allowing accurate base calling at

the majority of the coding portion of the genome (Table S2). We

first assessed the quality of the resulting calls by analyzing germline

single nucleotide variants (SNV) comparing the results of

sequencing and microarray genotyping at 62,550 positions in-

vestigated by the two methods. Of those, 52,905 were confidently

Matched Primary Tumors and Models Genetic Analysis
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called by sequencing of patient SK00072 germline DNA, passing

our quality review. Ninety-seven percent of them had a consistent

call between the two methods. Across all four patients, we

estimated that ,90% of the germline SNVs identified are present

in dbSNP(132) (Table S3), which is slightly lower than expected

(95%) for Caucasian patients [32]. A close inspection of the novel

SNVs reveals a bi-modal distribution of the quality score of the

alternate allele, contrasting with the single distribution at known

SNPs (Figure S4). This indicates that a subset of the novel SNPs is

of lower confidence and possibly resulting from sequencing errors.

We separated the two distributions using normal mixture

modeling [34]. The resulting set of high quality SNPs are now

,95% in dbSNP, and their transition to transversion ratio is ,3.1

(Table S3), closer to expected [32], therefore indicating an

improvement in the accuracy of the SNV calls. Learning from this

analysis of germline variants, we subsequently applied this strategy

to filter all somatic calls.

Primary Tumors Mutational Landscape
We compared the variant calls between tumor and normal

DNA [33] restricting our analysis to the positions located on the

capture targets. We identified a total of 682 somatic mutations

across all patients, ranging from 130 to 191 per patient (Table S4).

Of these, 384 are located in coding exons or a predicted splice site

with 234 (61%) missense, 12 (3%) nonsense, 3 (,1%) frameshift, 1

(,1%) in-frame deletion, 5 (1%) splicing and 129 (34%)

synonymous mutations (Figure 1A). This distribution leads to

a non-synonymous to synonymous ratio of 1.98 consistent with the

positive selection of driver mutations. These numbers and

distributions are also in agreement with the mutational profile

observed in exomes of GBM and other solid tumors [8,37]. In

order to determine which of these mutations are more likely to

play a role in GBM progression, we used information from larger

repositories such as COSMIC [38] or TCGA [8]. Ten of the 250

non-synonymous mutations have been previously identified in

Figure 1. Mutational Landscape of the primary tumors. (A) The cumulative distribution of the somatic mutations identified on the targeted
exons of the four patients primary tumors is reported as a function of their class and predicted protein changes. (B) Circular diagram [48]
representing all 23 chromosomes and their cytogenetic map (outer circle, grey scale bands and red centromeres). The logR tumor/normal coverage
ratios (black dots) and the inferred CNA (red: amplification, blue: deletion, blue bars: Loss of Heterozygosity) identified in the 4 primary tumors (from
outer to inner circle: SK01600, SK00115, SK00102, SK00072) using whole exome sequencing data are represented. (C) Chromosome-arm level copy
number aberrations are observed in the 22 autosomes when .20% of a chromosome arm is reported as deleted (blue) or amplified (red). (D) A focal
deletion of ,10 Mb (set of blue segments) including a large (4.3 Mb) CNA segment affects PIK3R1 gene in SK00115 primary tumor. The LogR ratio of
tumor/normal coverage (x axis) at each exon capture probe (grey dots) allows the identification of DNA segments deleted (blue bars) or amplified
(red bars). (E) Similar to (D), a focal amplification of EFGR containing segment (red) is identified in addition to the chromosome 7 trisomy in patient
SK01600 primary tumor. Some segments may appear to overlap as a result of the plotting resolution.
doi:10.1371/journal.pone.0056185.g001
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cancer samples (Table 1), among these, three PTEN mutations in

two patients were previously found in gliomas and three TP53

mutations in one patient were previously identified in various

cancer types [38]. We also identified one patient with an EGFR-

C326S mutation, a position previously seen mutated in glioblas-

toma [39], as well as one patient with a NRAS-Q61K mutation,

common in melanoma but never seen in gliomas. Expanding our

investigation to 2,850 genes known to be mutated in gliomas [8],

we note a total of 59 non-synonymous or splice-site mutations in

53 genes (Tables S5 and S6). Apart, from PTEN, GPR98 is the only

recurrently mutated gene. This gene spans more than 600 kb and

mutations in its sequence are more likely to be passenger.

Therefore, except for mutations in PTEN, the four patients seem

to have mostly divergent sets of mutations contributing to the

genetic make-up of their cancer.

Large chromosomal aberrations such as chromosome 7 trisomy

or a loss of chromosome 10 are an important characteristic of

glioblastoma mutational landscape. Although traditionally assayed

through cytogenetic assays or Comparative Genomic Hybridiza-

tion (CGH) and more recently with next generation sequencing

[35,40], copy number aberrations (CNAs) can also be identified

via exome sequencing strategies, using notably coverage differ-

ences, between tumor and normal DNA as well as evidence of loss

of heterozygosity. Applying ExomeCNV [35], a segmentation

strategy to evaluate the copy number and Loss of Heterozygosity

(LOH) status of consecutive exons, we were able to call 32 large

(chromosome arm level) CNAs in the four primary tumors

(Figure 1B, 1C). All 4 patients showed a loss of chromosome 10

and an amplification of chromosome 7. Half of the patients also

show evidence of a loss of one allele in chromosome 6q, 13q or

15q. Deletions of 12p, 14q, 17p or amplification of 2p and

chromosome 19 were also observed each in a single case. The

majority of these large CNAs are consistent with the most

frequently recurring CNAs in glioblastoma [8]. We also identified

23 high confidence focal CNAs (8 amplification and 15 deletions)

in regions outside of large CNAs. Six of them encompass genes of

the Cancer Gene Census [41] (Table S7). Patient SK00115 shows

a 4.3 Mb deletion around PIK3R1 (Figure 1D). PIK3R1 has been

identified as a candidate cancer driver gene and is mutated in

,9% of GBM patients [39,8], but the loss of one allele, as seen

here, has not been reported. Other CNAs deleted or amplified

more than 2 fold in one or more sample are affecting 72 cancer

genes and correlate well with array CGH diagnostic results

obtained on three patients (Table S8). Notably, we could verify the

4-6-fold amplification of EGFR locus in SK01600 primary tumor,

encompassing a 5 MB segment (Figure 1E). This focal high-level

amplification occurs in 40% of glioblastoma conjointly with the

more common trisomy of chromosome 7. It is important to note

that, in contrast with CGH and whole genome sequencing

strategies, whole exome sequencing can introduce some bias in the

estimation of CNAs: exons are not evenly distributed along the

genome, which can lead to issues in resolving focal amplifications

using whole exome sequencing coverage data [40]. Our results

suggest however that exome-based CNA calls are a good indicator

of the presence of CNAs genome-wide and can therefore be used

in cases where the amount of available DNA is scarce, a frequent

situation in oncology translational studies.

Taken together our results reveal common molecular markers of

GBM primary tumors, including nucleotide substitutions, small

insertions and deletions as well as CNAs. Our results of both gene

mutations and copy number alterations illustrate the heterogeneity

observed across 4 patients, which is typical of the diversity of

glioblastoma seen in the clinic. Some of these mutations are

considered clinically actionable, such as alterations in the PI3K

pathway (loss of PTEN or PIK3R1, amplification of PIK3CA) for

which targeted therapies are currently in clinical trials in several

cancer types. Having established a comprehensive mutational

profile of the primary tumor, we can now use the same, high-

resolution assessment, to study the maintenance of this profile in

the corresponding pre-clinical models.

Comparison to the Tumor Model Mutational Profile
We applied the strategy described above for the primary tumors

to identify somatic mutations in each tumor model derived from

the four patients. The number of mutations in the SK01600 cells

and SK00115 in vitro cultures was 184 and 194 respectively in

close agreement with the findings in the primary tumor (165 and

196 respectively –Figure S5). In contrast, we noticed 1.8 and 3.6

fold excess in the number of mutations in the two xenografted

Table 1. Somatic non-synonymous mutations observed in the primary tumors and overlapping with known COSMIC (v55) entries.

Patient NCBI37 Alleles Number of reads (ref:mut) Gene Type
Codon
change Cancer Type

Reference/
Mutant Germline Primary1

SK01600 chr7:55223610 G/C 7:0 32:18 EGFR missense C326S Glioma 2

SK00115 chr10:89692792 C/A 217:0 43:45 PTEN missense D92E Glioma

SK00115 chr17:7577143 AGT/2 14:0 7:4 TP53 In frame
deletion

L265 Large intestine

SK00115 chr17:7578205 C/A 16:0 17:7 TP53 missense S215I Various non gliomas

SK00115 chr17:7578458 G/A 18:0 9:3 TP53 missense R158C Glioma2

SK00102 chr1:115256530 G/T 96:0 82:25 NRAS missense Q61K Various non gliomas

SK00102 chr10:89685288 T/A 10:0 2:2 PTEN missense H61Q Glioma2

SK00102 chr10:89711875 G/A 123:0 34:42 PTEN missense G165R Glioma

SK00102 chr16:3790512 G/A 13:0 19:6 CREBBP nonsense R1303* Various non gliomas

SK00072 chr1:159504907 C/G 27:0 36:14 OR10J5 missense K297N Various non gliomas

1Can includes normal DNA contamination and effect of copy number.
2The same position but not the same mutation was found in Glioma.
doi:10.1371/journal.pone.0056185.t001
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Figure 2. Comparative evaluation of the somatic mutations between primary and model tumors. (A) The cumulative distribution of the
somatic mutations identified on the targeted exons of the four patients’ primary tumors (P) as well as tumor models (N: Neurospheres, C: Cell culture,
X: Xenograft) is reported as a function of their class and predicted protein changes. The mutations were identified after excluding mouse reads from

Matched Primary Tumors and Models Genetic Analysis
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patients’ SK00102 and SK00072 data. (B) A statistical comparison of the somatic mutations called between primary and model identifies shared
mutations at constant mutant allele frequencies (black), shared mutations with changing mutant allele frequency (red) as well mutations specific to
the primary (green) or the tumor model (blue). (C–F) Mutant Allele frequency differences between the primary tumor (x axis) and the model tumor (y
axis) of patient SK01600 (C), SK00115 (D), SK00102 (E), SK00072 (F) at all positions identified as somatically mutated in either sample and covered by
$30 reads. Mutations are classified as shared with constant frequency (black), with changing frequencies (red), specific to the primary tumor (green)
or to the tumor model (blue).

Figure 3. Comparative evaluation of the CNAs between primary and model tumors. (A) The evaluation of the copy number status at all
base pairs called in high-confidence CNA segments in both primary and model tumors identifies positions with a consistent (grey), lower (blue) or
higher (red) copy number call in the model when compared to the primary tumor (Table S10). (B) Average copy number status (blue-red color scale,
log2 ratio) at 72 genes of the cancer gene census showing more than 2 fold copy number difference in one or more sample. (C) Euclidian distance
based dendrogram classifying the 8 tumor samples using the logR ratio of high-confidence CNA called in one or more sample.
doi:10.1371/journal.pone.0056185.g003
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tumors, SK00102 and SK00072 respectively. We suspected that

mouse DNA contaminated the xenograft tumor samples, which

led to their unspecific capture and alignment to the human

genome, especially at genes of strong orthology. Using mouse to

human alignment comparison, we were able to identify the most

likely species of origin of each sequenced fragment (Methods and

Figure S6). As expected, the resulting filter does not significantly

change the number of somatic mutations identified in SK00102

and SK00072 primary tumors – from 191 and 130 to 189 and

121, respectively – whereas it significantly decreases the number of

somatic mutations in the xenograft samples – from 338 and 468 to

201 and 220 respectively (Table S9). Thus, in all the subsequent

analysis, we used reads filtered for murine contamination for all

SK00102 and SK00072 samples (germline, primary and xeno-

grafts). Comparing the total number of somatic variants identified

in all 8 samples, we note that SK00072 primary tumor shows

fewer somatic mutations (Figure 2A) and a reduced mutant allele

frequency (p,7 1024) (Figure S7). These observations suggest that

SK00072 primary tumor DNA sample contains normal DNA

leading to a reduced sensitivity to detect somatic mutations. This

conclusion is confirmed by the histological analysis of the tissue,

indicating parenchymal infiltration within this tumor specimen

(Methods). Contamination of the tumor DNA with normal DNA is

a recurrent challenge for the sensitive detection of somatic

mutations via high throughput sequencing. Therefore, it is

important to know whether the derivation of pre-clinical models,

in addition to preserving the tumor clonal heterogeneity, can have

a purifying effect by selecting tumor cells only.

The total number of somatic mutations is in agreement between

all three types of tumor models and their respective tumor of

origin, suggesting an equivalent mutational load and the absence

of hyper-mutator phenotype acquired during the derivation of the

model. In order to refine this vision, and detect rare somatic

differences between primary and model, we implemented a strict

statistical comparison of the fraction of mutant allele supporting

reads at all positions identified as somatic mutations in each set of

matched samples. We were able to distinguish between shared

mutations showing no significant changes in frequencies (referred

to as shared constant), shared mutations with a significant change

in frequency (referred to as shared changing), and mutations

identified only in the model or the primary (referred to as unique),

at a false discovery rate of 0.05. On average across all 4 pairs, 98%

of the mutations identified in the primary were shared with the

model (Figure 2B). Reciprocally, only ,2% of the mutations

identified in the model were unique and not found in the primary,

with the exception of patient SK00072 for which 11% (23/213) of

the mutations are unique to the model. This result is not surprising

given the lack of sensitivity to detect somatic mutations in

SK00072’s primary tumor due to normal DNA contamination.

This observation supports the idea of a purifying process during

the derivation of the xenograft, either through the preparation of

the sample or during its expansion in vivo. For the remaining three

pairs of samples, a discrepancy of ,2% between primary and

model is within the range observed when comparing mutations

detected in control split-sample experiments (Table S9), and below

our FDR threshold, therefore pointing to a systematic bias rather

than true genetic differences.

Out of the 1005 mutations shared between primary and model,

293 were covered by 30 reads or more in both samples and

showed a high correlation in mutant allele frequency between

primary and model (r.0.7) (Figure 2C–F). Furthermore, 48 out

the 49 of the mutations covered at 306with a significant change

in mutant allele frequency (FDR=0.05) show a unidirectional

change, a modest enrichment in the model, suggesting a higher

purity of these samples when compared the primary rather than

true allele frequency differences due to clonal selection. These

results suggest therefore the absence of strong clonal selection

using either in vitro or in vivo models. Using the differences in allele

frequency, and assuming the purity of cancer cells in the tumor

models, we can establish that the primary tumors were contam-

inated with 9%, 11%, 25% and 41% of normal DNA in patient

SK01600, SK00115, SK00102 and SK00072, respectively, which

is consistent with the reduced sensitivity in detecting mutations in

SK00072 primary tumor.

We next evaluated whether CNAs were conserved between

primary and model. Restricting the primary-model comparison to

high confidence CNA calls, we observed that 97, 94 and 97% of

the base pairs in CNAs are consistently called between primary

and model in samples SK01600, SK00115, SK00102, respectively

(Figure 3A and Table S10). In contrast only 77% of the high

confidence CNAs base pairs show this level of consistency between

the two SK00072 samples, while 14% are called in the primary at

a lower copy number than in the model. This result is consistent

with the presence of normal cells in SK00072 primary tumor,

which affects the sensitivity of CNA detection. Although the global

landscape of structural variants is important to study the

mechanisms of cancerogenesis and clonal selection, our ability to

interpret the biological consequences of CNAs is limited to the

coding portion of the genome, where gain and losses of specific

alleles have a frequently demonstrated oncogenic potential. In

order to validate our method for the accurate estimation of more

biologically significant CNAs, we performed a specific inspection

of the copy number status at 450 genes from the cancer gene

census [41]. We could identify 72 genes with a copy number

change of more than 2 fold in one or more samples (Figure 3B).

Consistent with the previous results, there is a very strong

correlation between the copy number observed in the primary and

in the tumor model. Interestingly, the copy number estimation in

SK00072 primary tumor is lower than in its matched xenograft,

again highlighting how contamination of the primary sample with

normal DNA can underscore the sensitivity of the mutational

analysis. We observed the strong amplification of EGFR and

neighboring gene IKZF1 in the primary tumor of patient

SK01600, but it seems to be partially lost in the matched

neurosphere culture. This result is consistent with the frequent loss

of EGFR amplification in serum-fed culture [28], as well as growth

factor supplemented serum-free culture [42].

Overall, using genome-wide high-confidence CNA calls as

a molecular signature, we observed that primary and tumor

models are more related to one another that to another patient

sample (Figure 3C). We do not observe a closer relationship

between in vivo models and primary than between in vitro model

and primary therefore showing that, from a genetic perspective,

in vitro and in vivo models are both faithfully matching the primary

tumor.

Discussion

High-throughput DNA sequencing now offers the opportunity

to obtain a detailed molecular profile of a biological sample such as

the ones we studied here. This recent technology has been

evolving at fast pace, and some systematic errors and samples

preparation difficulties can make their use challenging. This is

especially true for studies aimed at comparing longitudinal

samples, between primary tumor and relapse, or between primary

and tumor-model. Systematic errors, often platform dependent,

can lead to false positive rates sometimes as high as 10% [43]. We

present here novel analytical methods that can increase our
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confidence in the mutations detected through exome sequencing,

by identifying mouse reads, correcting for mutant allele base

quality, accounting for GC bias in CNA calls or performing a strict

statistical comparison between two samples instead of relying on

simple identification of the mutants. Through these improvements,

our results support the global maintenance of the primary tumor

genetic profile in the chosen pre-clinical model.

We demonstrate that intra-tumor clonal heterogeneity is

conserved in the various models. The maintenance of tumor

heterogeneity is important to understand the mechanism of

resistance occurring in the patient during therapy. Recent study

of post-relapse leukemia have shown the presence of the resistant

clone in earlier samples [15]. Such studies have yet to be

performed in glioblastoma, and xenografts would be an advanta-

geous model for this, as the tumor can be isolated at different

stages of the progression. Similarly, the number of passages of

in vitro and in vivo models is thought to cause important genome

remodeling, principally through large structural rearrangements

and polyploidy. Model cell lines, maintained in the laboratory for

decades, such as U87, show highly remodeled genome, with little

in common with the genome of primary tumors. Stable late

passage models tend to mimic more closely the biology of the

primary tissue, but early passage models are highly valuable for

identifying the optimal targeted therapy within the lifespan of the

patient [44]. Therefore, although we did not strictly address the

genetic drift of the tumor through passages, our results suggest that

a moderate number of passages (1 for in vivo, 3 to 6 for in vitro) do

not have detectable consequences on their genomes. One

exception seems to be the maintenance of EGFR copy number

in vitro, which is affected by the presence of EGF in the medium.

As more inhibitors of growth factors such as nilotinib for PDFGRA,

are being tested in clinical trial, it is crucial to carefully select the

laboratory conditions in which pre-clinical experiments are being

performed and to ensure that the presence of the marker can be

maintained in vitro.

Molecular profiling of patients and patient-derived samples has

become a central part of personalized medicine. Several centers

are promoting the clinical sequencing of patients’ samples to guide

treatment [45]. As an increasing number of targeted therapies are

approved, drug resistance will become increasingly problematic

and repeated molecular profiling on relapse biopsies will be

needed to choose the appropriate second line of therapy and

hopefully convert cancer in a manageable disease under surveil-

lance [46]. For these reasons, that directly impact the care of the

cancer patients, the availability of representative pre-clinical model

to study drug sensitivity and resistance becomes crucial. Two

recent drug screening studies of fully characterized cell lines

illustrate the utility of combining genomic and pharmacological

information [4,3]. This approach has limitations, as it does not

recreate the micro-environmental niche in which the primary

tumor resides and grows and that may as well affect treatment

response [47,30]. Nonetheless, our results indicate that both

patient-derived in vitro cultures and in vivo xenografts represent

robust pre-clinical models systems reflecting the genomic diversity

of primary GBMs, and highlight their utility in defining tumor

genetics predictors of drug response and drift of tumors from

selective pressures (e.g. treatments). Hence, ensuring our compre-

hensive understanding of the molecular forces at play in these

models, will favor the successful translation of these discoveries to

the clinical care where molecular profiling will become standard.

Supporting Information

Figure S1 Experimental Design. The matched blood and

primary tumor’s DNA from 4 patients were analyzed in addition

to the patient derived neurospheres (SK01600), laminin cell

culture (SK00115) or mouse xenografts (SK00102 and SK00072).

(JPG)

Figure S2 Sequencing Quality Assessment. (A) The Reads
were sequenced on SOLiD4 instrument and aligned to the

reference genome using BioScope. The duplicate reads were

identified using Picard MarkDup and custom scripts (Methods).

(B) Coverage depth cumulative distribution for all 12 samples

(matched germline, primary tumor, and tumor model). (C)
Capture enrichment specificity. The fraction of bases sequenced

on or near (+/2250 bp) the Agilent SureSelect 50MB kit targets is

indicated (Table S12).

(JPG)

Figure S3 SK00115 tumor model shows GC induced
bias in the coverage distribution. Normalized average

coverage per GC% of targets for all four patients. Germline

(black), primary tumor (red), and tumor models (blue) are

displayed.

(JPG)

Figure S4 Alternate allele’s base quality score filtering.
(A) Distribution of the average alternate allele’s base quality score

for germline variants present in dbSNP132. (B) Same as (A) for

novel germline variants. (C) Variants are filtered out (red) when

they belong to the lower quality distribution as determined by

mixed model deconvolution.

(JPG)

Figure S5 Identification of somatic mutations in the
tumor models. (A) The number and distribution of mutations

in the tumor models matches the primary except for xenograft

samples, suggesting mouse DNA contamination. (B) The total

number of somatic mutation before filtering of the mouse reads

(grey) and after filtering of the mouse reads (black).

(JPG)

Figure S6 Filtering of the Mouse contaminating reads.
A succession of filters (green arrow: pass, red arrow: do not pass)

compares pairing information as well as matching score to

determine the species of origin of each read. (*) Match score

(M)=# of Matches - # of Mismatches.

(JPG)

Figure S7 SK00072 primary tumor shows a significantly
lower mutant allele frequency. (A) Distribution of the

mutant allele frequency at mutations shared between primary

and model. (B) Student T-test p-value (red scale –log10 (P-value))

of the 6 possible comparisons from (A), showing SK00072 as

significantly lower mutant allele frequency.

(JPG)

Table S1 Sequencing read mapping statistics.
(XLSX)

Table S2 Target Coverage Statistics.
(XLSX)

Table S3 Quality of the germline coding variants
identified on target.
(XLSX)

Table S4 Distribution of the somatic variants by
sample and class.
(XLSX)
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Table S5 Non-synonymous or splicing coding mutations
in genes mutated in gliomas samples in the COSMIC
database.

(XLSX)

Table S6 Number of non-synonymous and splice-site
somatic mutations identified in each patient in genes
known to be mutated in glioma in the COSMIC
database.

(XLSX)

Table S7 High confidence focal copy number events
detected outside of large CNA regions.

(XLSX)

Table S8 Array CGH results obtained from patients
SK00072, SK01600 primary tumors and SK00102 xeno-
graft derived neurosphere cultures. (ND: not determined).

(XLSX)

Table S9 Comparison of somatic mutations called in
the primary tumor or in the tumor model.

(XLSX)

Table S10 Contingency table comparing the amount of
DNA sequence (bp) in high confidence copy numbers
segments called as copy number neutral (Neu), deleted

(Del) or amplified (Amp) status or where copy number
could not estimated with confidence (NC).
(XLSX)

Table S11 Total number of variants detected by VarS-
can on the targeted regions.
(XLSX)

Table S12 Exome Capture Specificity.
(XLSX)

Methods S1 Additional description of material and
methods used or developed in this study.
(DOCX)
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