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Abstract

Previous reports have implicated an induction of genes in IFN/STAT1 (Interferon/STAT1) signaling in radiation resistant and
prosurvival tumor phenotypes in a number of cancer cell lines, and we have hypothesized that upregulation of these genes
may be predictive of poor survival outcome and/or treatment response in Glioblastoma Multiforme (GBM) patients. We have
developed a list of 8 genes related to IFN/STAT1 that we hypothesize to be predictive of poor survival in GBM patients. Our
working hypothesis that over-expression of this gene signature predicts poor survival outcome in GBM patients was
confirmed, and in addition, it was demonstrated that the survival model was highly subtype-dependent, with strong
dependence in the Proneural subtype and no detected dependence in the Classical and Mesenchymal subtypes. We
developed a specific multi-gene survival model for the Proneural subtype in the TCGA (the Cancer Genome Atlas) discovery
set which we have validated in the TCGA validation set. In addition, we have performed network analysis in the form of
Bayesian Network discovery and Ingenuity Pathway Analysis to further dissect the underlying biology of this gene signature
in the etiology of GBM. We theorize that the strong predictive value of the IFN/STAT1 gene signature in the Proneural
subtype may be due to chemotherapy and/or radiation resistance induced through prolonged constitutive signaling of
these genes during the course of the illness. The results of this study have implications both for better prediction models for
survival outcome in GBM and for improved understanding of the underlying subtype-specific molecular mechanisms for
GBM tumor progression and treatment response.
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Introduction

Glioblastoma multiforme (GBM) remains the most common

primary brain malignancy and carries the worst prognosis [1]. In

recent years, several groups have investigated molecular and

genetic characteristics of these tumors in order to develop both

prognostic and predictive biomarkers. Most of the biomarkers

identified to date have been prognostic in that they help to

determine estimates of survival (prognosis) independent of

treatment. Predictive markers, on the other hand, inform

regarding sensitivity to specific therapies. Predictive markers in

GBM are quite limited, with the only established marker being the

methylation status of O(6)-methylguanine-DNA-methyltransferase

(MGMT) which is a predictor of temozolomide [2] and radiation

resistance [3]. However, studies from other cancers have identified

predictive markers with potential application in GBM.

Signal transducer and activator of transcription 1 (STAT1), the

putative downstream effector of interferon (IFN), and interferon-

related genes have been identified as key regulators of radiation

resistance in preclinical models of head and neck squamous cell

cancer [4,5] and have been identified as radiation inducible in a

wide variety of cancer cell lines, including glioma [5,6]. Moreover,

IFN/STAT1 signaling has been associated with not only

metastatic potential, but also resistance to adriamycin chemother-

apy and radiation in a murine model of melanoma [7].

Importantly, these results have been confirmed in breast cancer

patients in which an ‘‘IFN-related DNA damage resistance

signature’’ (IRDS) provided an improved outcome classification

in terms of locoregional failure following adjuvant radiation and

efficacy of adjuvant chemotherapy [8]. Because of the results of

these experimental studies, and the observation that the IRDS

gene expression pattern is also seen in high grade glioma primary
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tumors [8], we have hypothesized that up-regulation of these genes

in GBM patients may be predictive of poor survival outcome and/

or treatment response. To test this hypothesis, we have utilized

gene expression data and clinical data from the Cancer Genome

Atlas Project (http://cancergenome.nih.gov/) to test the associa-

tion between an IFN/STAT1 pathway signature derived from the

IRDS with survival outcome of GBM patients.

We have constructed an 8 gene set associated with the IFN/

STAT1 pathway: STAT1, IFI44, IFIT3, OAS1, IFIT1, ISG15,

MX1, and USP18 [8]. Survival analysis as a function of gene

expression data was performed used Cox Proportional Hazards

models. We have created single gene models, and we have created

multiple gene models with various model selection techniques. In

addition, previous reports indicate the presence of molecular

subtypes of GBM (Classical, Mesenchymal, Proneural, and Neural

[9]) which show distinct clinical and molecular characteristics.

Thus we have also performed subtype-specific survival analysis to

test whether survival outcome of GBM due to IFN/STAT1 genes

is subtype-specific.

Results

Single Gene Models
Single gene Cox models were built with age as a covariate for each of

the genes in the hypothesized signature except for IFIT3 which was

missing from the gene-averaged expression data set. Table 1 shows the

resulting models in the full data set (all samples) and the Proneural data

set. The results for the other three subtypes are in Table S1. These results

show an increased hazard for death for all of these genes in both the full

and Proneural data sets, with significance at a level of 0.05 found for

MX1 in the full data set, and significance found for all genes except IFIT1

and USP18 in the Proneural data set. The full and Proneural models are

concordant, with MX1 showing the strongest effect in both, and a

similar relative ranking of gene effects in each. The single gene results

were not significant in the other subgroups tested (with the exception of

the Neural group which had a significant effect for USP18, HR = 1.75,

p = 0.02). In order to visualize the survival effects for the various single

gene models, predicted survival curves for individuals at the 3rd quartile

(75%) and 1st quartile (25%) of the expression distribution for each gene

were graphed in Figure 1 for the Proneural model and in Figure S1 for

the full model. The survival curves were generated using the median age,

see details in the Methods section.

Multiple Gene Models
Because the genes in the STAT1/IFN signature are highly

correlated (see correlation among genes in the full and Proneural

data sets in Tables S2 and S3) and functionally related, we

expected that a multi-gene model may take into account the

complexities of the joint effects on survival of this signature. We

used various methods for creating multi-gene models including

stepwise regression with and without age adjustment, and elastic

net which estimates a joint multi-gene model with a penalty for

larger coefficients and more complex models. The results are

shown in Table 2 which shows analysis in the full data set (all

samples) and analysis in each of the four subtypes.

The first observation is that the multi-gene models confirm the

single-gene results which show that the effect of this gene signature is

most pronounced in the Proneural subgroup. In addition, the MX1

gene shows the largest effect in both the full and Proneural models

(as it did in the single gene analysis). Of note is the fact that IFIT1

and USP18 are both added to the Proneural model for all three

model selection methods (and IFIT1 is also added to the full model

for the stepwise methods); these genes show non-significant effects in

the single-gene analysis, but in the multi-gene analysis show effects

in the opposite direction (high expression increases survival). Thus

the multi-gene analysis shows that IFIT1 and USP18 may

additionally be involved in survival prediction, even though they

were not significant in the single-gene analysis. The inclusion of

these genes in the multi-gene model is probably due to IFIT1 and

USP18 having effects in the opposite direction (protective) after

accounting for the main effect of MX1, a complex phenomenon

that can only be captured with a multi-gene model.

The elastic net results for the Proneural model show that a

similar gene set is selected (as compared to the stepwise results),

thus showing consistency between these two model selection

techniques; however, more genes are added in the elastic net

model with a higher R2 (82.1% as compared with 59.1% in the

stepwise model). Another observation is that the models with and

without age are similar, with the same genes added and with the

same effect direction. This result indicates that the gene signature

proposed here gives predictive value above and beyond age, the

most commonly-used risk predictor for GBM, and furthermore,

the effects on survival for these genes are largely independent of

age. Another observation is that the models for the Neural and

Proneural subtypes are quite different, with effects in the opposite

direction for several genes, illustrating that the effect of this gene

signature on survival is highly subtype-dependent. Figure 2

summarizes the results of the stepwise models in terms of total

explained variance (R2) with and without age for the full analysis

and analysis in each subgroup.

A test of the proportional hazards assumption of the Cox model,

which requires that the hazard ratio for a term in the model be

constant in time, was Tables S4 and S5, respectively). These tests

showed that age showed a significant violation of the proportional

hazards assumption, but none of the genes showed significant

violations. To account for the proportional hazards violation for

age, we examined the models without age, which showed no such

violation (See Table S9 and Table 2, column 2). The full model

and Proneural model showed the same genes added to the model

with effects in the same direction and of similar size. Thus we

conclude that the predictive value of these multi-gene models is

present even when removing age which shows a proportional

hazards violation.

Probe Set Gene Expression Analysis
In order to verify that the survival models built here are valid in

multiple gene expression platforms and not dependent on the

specific algorithm used to build a gene-averaged, cross-platform

gene signature [9], we also built survival models that included

probe set expression data from two of the gene expression

platforms in the TCGA project (Affymetrix and Agilent). Elastic

net was used to build multi-gene models from the probe sets

assigned to the eight genes in our signature along with age, and the

resulting hazard ratios and model R2 values are shown in Table S6

for the Affymetrix probe sets and Table S7 for the Agilent probe

sets. In comparing the discovered models for probes sets with the

gene-averaged models (Table 2 column 3), there is remarkable

agreement in terms of the genes (probe sets) added to the models,

direction of effects, and total explained variance (R2). Thus we

conclude that the models built here are robust to platform used for

gene expression profiling, with similar models discovered regard-

less of platform or gene expression summarization method.

Evaluation of Survival Prediction Model for Proneural
Subtype in Validation Data Set

In order to test the predictive ability of our discovered models in

an independent data set not used for model building, we generated

predicted survival times in a validation data set using the model

IFN/STAT1 Survival Gene Signature in Proneural GBM
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built using stepwise regression in the Proneural subtype, including

genes up to IFI44 (i.e. age, MX1, IFIT1, and IFI44). We chose this

model because USP18 (the gene added after IFI44) is not present

in the validation set, and we wanted the models between

prediction and validation to be comparable. Plots of predicted

versus actual survival time for both the discovery and validation

data sets are shown in Figure 3. It can be seen from this figure that

the predictive value of the multi-gene model in the Proneural

subtype is retained in the validation set, with a correlation between

predicted and actual survival times of 0.64 (95% confidence

interval of 0.45, 0.77) in the discovery set and 0.39 (95%

confidence interval of 0.16, 0.57) in the validation set. Thus

although the prediction is a bit lower in the validation than the

training set, as usually occurs when moving from training to testing

sets, the 95% confidence interval for the correlation is greater than

zero for both. If prediction models with just age are built, then a

correlation between predicted and actual survival times of 0.45

(95% confidence interval of 0.21, 0.64) and 0.30 (95% confidence

interval of 0.07, 0.51) are obtained in the discovery and validation

sets, respectively, and thus higher predictive accuracy is achieved

using the discovered gene expression model for prediction. Table

S8 shows the results of directly fitting the discovered Cox model

for the discovery Proneural sample in the validation Proneural

sample (and also including terms to allow for potential study-

specific survival rates in the four different studies included in the

validation sample). The fitted model results are shown as hazard

ratios and p-values for all of the parameters as well as total

explained variance (R2) for the full model (28.2%) and a reduced

model without the gene expression variables (20.3%).

Network Analyses and Biological Interpretation of STAT1/
IFN Gene Signature

In order to provide biological context and interpretability of the

STAT1/IFN gene signature, functional annotation networks were

produced using IPA (Ingenuity Pathway Analysis, see Methods

section) for the eight gene signature. Figure 4A illustrates the set of

known functional relationships among the eight genes in the

STAT1/IFN gene set and Figure 4B shows how these genes

interact in the Interferon signaling cascade. The genes in the gene

signature are bold-faced and underlined in 4A and bold-faced and

shaded in 4B. In 4A, additional genes (a maximum of ten) are

added by IPA to make connections among query (signature) genes

separated by at most one gene. The IPA networks show most of

these genes to be downstream targets of the Interferon/STAT1

Table 1. Single Gene Cox Proportional Hazards Models with
age adjustment for seven genes available in the TCGA
discovery (gene-averaged) data set.

Gene All Proneural

HR p value HR p value

IFI44 1.14 (0.98,1.33) 0.089 1.55 (1.16,2.06) 0.003

IFIT1 1.03 (0.92,1.16) 0.579 1.04 (0.80,1.33) 0.789

ISG15 1.14 (0.99,1.30) 0.060 1.50 (1.14,1.96) 0.004

MX1 1.15 (1.01,1.30) 0.034 1.86 (1.37,2.52) ,.0001

OAS1 1.14 (0.97,1.33) 0.097 1.70 (1.19,2.41) 0.003

STAT1 1.14 (0.94,1.37) 0.170 1.62 (1.11,2.35) 0.011

USP18 1.07 (0.87,1.31) 0.513 1.09 (0.69,1.70) 0.710

Estimated hazard ratios (95% confidence interval in parentheses) and p-values
are given for each gene, and significant effects are shown in boldface.
doi:10.1371/journal.pone.0029653.t001

Figure 1. Survival Curves for age-adjusted Cox Proportional Hazard models for 1st quartile (red) and 3rd quartile (blue) gene
expression values for each gene in the Proneural subtype.
doi:10.1371/journal.pone.0029653.g001
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signaling cascade, and indeed MX1, IFI44, ISG15, OAS1, and

STAT1, which are predicted to be up-regulated with increased

Interferon signaling, are shown to have significantly increased

hazard ratios in the single gene analysis (Figure 1 and Table 1).

Interestingly, the two genes not found to be significant in the single

gene analysis, USP18 and IFIT1, are found to be significant in the

multi-gene analysis for Proneurals (Table 2), with effects in the

opposite direction (higher expression is protective, after correcting

for the MX1 main effect). USP18 is a ubiquitin specific peptidase

which specifically processes ISG15 (shown with the protein-protein

interaction in Figure 4). USP18 has been demonstrated to be a

regulator of susceptibility for interferon signaling and drug-

induced apoptosis [10], and also to regulate EGFR-related

expression and cancer cell survival [11], and thus may serve as

an important counterbalance in this molecular signature. Inter-

estingly, in the Bayesian Networks discovered for the full and

Proneural data sets, shown in Figure 5 (A and B, respectively), the

USP18-ISG15 interaction and the STAT1-ISG15 interactions are

discovered, which lends support to the role of USP18 as a

modulator of STAT1 signaling. Indeed these interactions are

documented to exist as listed in Figure 4A (STAT1 -. ISG15 is a

known protein-DNA interaction, and USP18 – ISG15 is a known

protein-protein interaction). The Bayesian Networks also show

connections between USP18 and IFIT1 (either directly in the full

network or indirectly through ISG15 in the Proneural network),

which may provide an explanation for why IFIT1 has a negative

(protective) effect on survival in the Proneural subtype, as does

USP18, after taking into account the MX1 main effect (see

Table 2). Another general observation in comparing the two

discovered networks in Figure 5 is that many of the edges overlap,

suggesting that the Proneural subtype mechanisms dominate the

behavior of the full sample.

Discussion

Survival models for GBM patients from the Cancer Genome

Atlas Project (TCGA) have been constructed using a hypothesized

gene expression signature shown in previous experimental cell line

studies to predict for radiation and chemotherapy resistance in

tumor cells. Survival models were built for all GBM patients and in

subtype-specific analyses, with and without age as a covariate,

using single gene and multi-gene models. Our working hypothesis

that over-expression of this gene signature predicts poor survival

outcome in GBM patients was confirmed. In addition, it was

demonstrated that the dependence of survival outcome on IFN/

STAT1 gene expression was highly subtype-dependent, with

strong dependence in the Proneural subtype and no detected

dependence in the Classical and Mesenchymal subtypes. Addi-

tionally, the gene expression signature was shown to be almost

invariant with age in predicting survival outcome, with little

change in the signature in models with and without age. The

multi-gene model constructed in the discovery set for the

Proneural subtype was confirmed in an independent validation

data set with a correlation between predicted and actual survival

time of 0.39.

The dependency on the Proneural subtype for the IFN/STAT1

gene set highlights the context specificity for this signaling cascade

and helps explain the apparent paradoxical downstream effects

that IFN signaling promotes. In many model systems, IFN/

STAT1 signaling promotes anti-proliferation and pro-apoptosis

predominantly through the transcriptional modulation of key

components of growth and apoptosis signaling including IRF1,

Fas, FasL, TRAIL, p21waf1, and caspase-2, -3, and -7 [12,13].

For this reason, it has been traditionally thought that STAT1 may

Table 2. Multi-gene Cox Proportional Hazards models for all
samples and specific subtypes using three different model
selection methods: Stepwise regression with age as a
covariate (SW with age), stepwise regression without age (SW
no age), and Elastic Net.

HR (LB,UB)

Model Term SW with age SW no age Elastic Net

All Age 1.03 (1.02,1.04) NI 1.02

MX1 1.29 (1.06,1.57) 1.44 (1.19,1.75) 1.09

IFIT1 0.88 (0.74,1.04) 0.79 (0.67,0.94) NI

R2 19% 7% 31%

Proneural Age 1.04 (1.02,1.06) NI 1.03

MX1 2.12 (1.13,3.97) 2.44 (1.48,4.03) 1.88

IFIT1 0.42 (0.23,0.76) 0.6 (0.4,0.92) 0.64

IFI44 1.82 (0.97,3.41) 2.3 (1.28,4.15) 1.5

USP18 0.46 (0.23,0.95) 0.36 (0.19,0.68) 0.6

ISG15 1.93 (0.77,4.81) NI 1.27

OAS1 NI NI 1.02

R2 61% 47% 82%

Neural Age 1.06 (1.01,1.1) NI 1.03

USP18 4.06 (1.47,11.19) 1.65 (1.04,2.62) 1.3

MX1 0.48 (0.22,1.05) NI NI

IFIT1 NI NI 1.06

IFI44 NI NI 1.05

R2 37% 14% 44%

Classical Age 1.01 (0.99,1.04)

R2 3%

Mesenchymal Age 1.05 (1.02,1.08) 1.03

R2 15% 24%

Hazard ratios with confidence limits are given for each term added to each
model. If the term was not added to a given model, NI is displayed for ‘‘not
included’’. The total explained variance for each model (R2) is also displayed.
doi:10.1371/journal.pone.0029653.t002

Figure 2. Bar plot of total explained variance (R2) for survival
models discovered using stepwise selection with genes only
(‘‘No Age’’) or with genes and age (‘‘Age’’) for all GBM patients
and by subtype.
doi:10.1371/journal.pone.0029653.g002
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function as a tumor suppressor. However, several reports have

demonstrated that prolonged IFN signaling or constitutive STAT1

signaling promotes not only tumor growth, but also resistance to

chemotherapy and radiation [4,5,7,8,14]. Given that the standard

of care for patients following surgical resection and histopathologic

diagnosis of GBM is involved field external beam radiotherapy

alone or concurrent with temozolomide chemotherapy [15,16] the

overall survival data for patients whose pretreatment gene profiling

was employed in the discovery and validation analyses described

here is likely consistent with the predictive importance of these

findings.

It has been hypothesized that constitutive activation of STAT1

promotes a ‘‘switch’’ from a cytotoxic signaling pathway to a pro-

tumor survival phenotype. We suspect that this switch may be

occurring in the Proneural subtype of GBM because it is this

subtype that is thought to be the predominant secondary GBM

subtype [9] that arises by progressive transformation from a lower

to a higher grade glioma. It is possible that the more chronic

natural history of the Proneural subtype yields a context in which

constitutive IFN/STAT1 signaling generates the chemotherapy/

radiation resistant phenotype. Indeed, only the Proneural subtype

of GBM showed no improvement in outcome with intensive

adjuvant therapy [9]. Therefore, targeting STAT1 for this

molecular subtype may reverse this resistance to chemoradiation.

A novel therapeutic approach for patients with GBM that has

recently gained favor is the use of oncolytic viruses [17,18],

reviewed in [19]. Although the outcomes from multiple clinical

trials have been less than optimal, there have been several reports

of long-term (.5 yrs) clinical remissions in an otherwise

unclassified cohort of patients. Whether or not GBM patients

who display an elevation in IFN/STAT1-mediated gene activa-

tion have a heightened resistance to virus-mediated infection and

oncolysis remains to be determined, but if this proves to be so, it

could form a rational basis for prescreening GBM patients for this

therapy. Speaking more generally, we are optimistic that the IFN/

STAT1 mechanism shown in this report to be related to disease

progression in Proneurals could be exploited in future research for

either tailored treatment selection in this subgroup or for rational

design of novel therapeutic agents.

Materials and Methods

Data
Clinical and gene expression data was obtained from the

Cancer Genome Atlas Project. Gene expression data from three

separate microarray platforms was summarized by gene using a

method described elsewhere [9]. In this list of genes one was

missing from the 8-gene set (IFIT3). The validation data set was

derived from four separate studies as described in [9]. The

summarized clinical data for the validation set was kindly provided

by Neil Hayes. In addition, gene expression data for individual

probe sets for the Affymetrix and Agilent platforms were analyzed

as well; these data were obtained through the TCGA data portal.

Of the 202 samples in the original data set, 2 were non-GBM, and

eight were removed for having prior glioma, leaving 192

individuals containing data for the gene-summarized gene

expression and clinical characteristics, and 191 individuals

containing gene expression data in the Affymetrix and Agilent

platforms. Filtering out prior glioma was performed to be

consistent with the original goals of the TCGA to characterize

primary GBMs. 246 individuals were included from the validation

data set. More detailed clinical characteristics of the both samples

are contained in [9]. In addition, the number of patients by

subtype are given in Table S9 for discovery and validation sets.

The assignment of subtype is done using a gene expression-based

classification algorithm in [8].

Statistical and Network Analysis
Single gene Cox proportional hazards models were fit using

Proc PHReg in SAS version 9.2 with predicted survival curves

generated using the median age and the 1st and 3rd quartiles of

gene expression for each gene. In particular, the survival curves

were predicted based on exponentiating Breslow’s baseline

cumulative hazard rate at a median value of age. The parameter

Figure 3. Graph of predicted and actual survival times in Proneural subtype for the discovery data set (left) and the validation data
set (right) using the age-adjusted stepwise selection model (up to IFI44). The correlation between predicted and actual survival values is
0.64 (0.45, 0.77) in the discovery set and 0.39 (0.16, 0.57) in validation set.
doi:10.1371/journal.pone.0029653.g003

IFN/STAT1 Survival Gene Signature in Proneural GBM
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Figure 4. Functional Annotation networks from IPA (Ingenuity Pathway Analysis) that show documented gene relationships among
the genes in the hypothesized eight gene STAT1/IFN gene set (A) and that show the functional relationships among these genes as
they relate to Interferon signaling (B) (genes in eight gene signature are shaded).
doi:10.1371/journal.pone.0029653.g004

Figure 5. Discovered Bayesian Network for the full set of GBM (A) and the Proneural subtype (B). Growth-shrink algorithm was used and
80% bootstrap support for presence of edges and 50% bootstrap support for edge direction were required for the full sample (A), and 50% each were
required for the Proneural subtype (B). With the more stringent criteria for the Proneural subtype (80% bootstrap support for edge presence) the
OAS1-.MX1 and ISG15-.IFIT1 edges were discovered.
doi:10.1371/journal.pone.0029653.g005

IFN/STAT1 Survival Gene Signature in Proneural GBM
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estimates for the gene categories used in the exponentiation have

been estimated in the presence of the effect of age. For building

multi-gene models, forward stepwise regression using the Cox

proportional hazards model was performed using the coxph

routine in the Survival package in R version 2.10.1. The step

function in the R stats package was used to do forward selection

with the stopping criteria being a non-decreasing Akaike

Information Criteria (AIC) value. Model R2 was calculated to

account for censoring using a formula given in [20]. Violation of

the proportional hazards assumption was tested using the cox.zph

function which computes a test for each model parameter and a

global model test using a method described in [21].

Penalized survival analysis using Elastic Net was performed using

the glmnet package in R. For generating predicted survival times

from the discovered multi-genic Cox models in both the discovery

and validation sets, a procedure described in [22] was used after

designating the exponential parametric form. The value of the

tuning parameter for the Elastic Net method is selected such that

mean cross-validation error is minimized. This was implemented

using the function cv.glmnet available in the package glmnet.

Functional annotation networks were generated using Ingenuity

Pathway Analysis or IPA (www.ingenuity.com), which provides a

graphical representation of the molecular relationships between

genes. The network was generated initially using the 8 gene set,

and was expanded with a maximum of 10 genes that are

connected to the initial genes. Molecules are represented as nodes,

and the biological relationship between two nodes is represented as

an edge (line). All edges are supported by at least 1 reference from

the literature, from a textbook, or from canonical information

stored in the Ingenuity Pathways Knowledge Base. Direct

relationships are indicated by solid lines and indirect through

dashed lines. Line beginnings and endings illustrate the direction

of the relationship (e.g. arrow head indicates gene A influences

gene B). Nodes are displayed using various shapes that represent

the functional class of the gene product. Edges are displayed with

various labels that describe the nature of the relationship between

the nodes (e.g., P for phosphorylation, T for transcription).

Bayesian Networks were discovered using the growth-shrink algorithm

implemented in the package BNLearn version 1.9 in R with a custom

routine for finding bootstrap support for edge presence and direction.

Supporting Information

Figure S1 Survival Curves for age-adjusted Cox Proportional

Hazard predicted survival for 1st quartile (red) and 3rd quartile

(blue) gene expression values for each gene in the full data set.

(TIF)

Table S1 Single Gene Cox Proportional Hazards Models with age

adjustment for seven genes available in the TCGA discovery (gene-

averaged) data set for Classical, Mesenchymal, and Neural subtypes.

Estimated hazard ratio and p-values are given for each gene.

(DOC)

Table S2 Correlation of gene expression values (lower diagonal

is the correlation, upper diagonal is the p-value for the test of zero

correlation) for the genes in the full TCGA data set.

(DOC)

Table S3 Correlation of gene expression values (lower diagonal is the

correlation, upper diagonal is the p-value for the test of zero correlation)

for the genes in the Proneural subtype of the TCGA data set.

(DOC)

Table S4 Test of proportional hazards violation for individual

model terms and global model test for single gene Cox models in

Full and Proneural data sets.

(DOC)

Table S5 Test of proportional hazards violation for individual

model terms and global model test for stepwise multi-gene Cox

models in Full and Proneural data sets.

(DOC)

Table S6 Cox Proportional Hazard model hazard ratios and

model R2 for expression models built with age and individual

Affymetrix probe set variables using Elastic net regularization.

(DOC)

Table S7 Cox Proportional Hazard model hazard ratios and

model R2 for expression models built with age and individual Agilent

probeset variables using Elastic net regularization. Note the following

probe sets in the analysis but were not selected in any of the models

and thus not included in the table: for OAS1 (A_23_P64828,

A_24_P253162, and NM_016816_1_1099), for ISG15 (A_23_P811,

A_23_P815, A_23_P819, A_23_P404628, A_32_P99533, A_32_

P99534, NM_005101_1_144, and NM_005101_1_275), and for

IFIT3 (A_23_P35404, A_23_P35405, and A_23_P35412).

(DOC)

Table S8 Cox Proportional Hazard model for the Proneural

sample in the validation set using the stepwise selection variables

found for the Proneural sample in the discovery set (with the

exception of USP18 which is not present in the gene-averaged

validation gene expression sample, see Table 2), and including a

factor variable for study center to allow for study-specific survival

rates. Estimated hazard ratios and p values are shown for each

term in the model, and the full model R2 as well as the reduced R2

when only including age and center variables are shown.

(DOC)

Table S9 Patient Characteristics in discovery (TCGA) and

validation data sets. For the discovery set, only GBM samples

without prior glioma were used.

(DOC)
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