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Abstract

Background: The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including
hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell
lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.

Methodology/Principal Findings: We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-
tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally
derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin
induced inhibition of cyclin E–dependent kinase activity in some cell lines, but the ability to do so did not correlate with
sensitivity. Inhibition of cyclin E–dependent kinase activity was related to incorporation of p27Kip1 into cyclin E–containing
complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with
its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein
S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR
Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic
pathway was downregulated in all four cell lines studied.

Conclusions/Significance: We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of
signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or
promoting sensitivity will be highly challenging.
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Introduction

The Target of Rapamycin (TOR) is a nutrient-sensing kinase that is

conserved from yeast [1] and Drosophila [2] to mammals. mTOR, the

mammalian version of TOR, acts as a regulator of global translation,

autophagy, ribosomal biogenesis, cell size, cell metabolism and gene

expression [3–5]. Dysregulation of mTOR signaling contributes to the

pathobiology of human cancer [6–8]. While activating mutations in

mTOR itself have not been documented in cancer cells, modifications

of upstream components that regulate mTOR and downstream

effectors of the mTOR pathway have been observed.

Rapamycin was first identified as an antifungal agent [9] but

was more recently shown to have immunosuppressive and

chemotherapeutic properties [10]. Upon entering the cell,

rapamycin binds its intracellular receptor FKBP12, which forms

a complex with mTOR [5]. This interaction inhibits the kinase

activity of mTOR, thereby blocking the phosphorylation of

effector molecules, including p70 S6 kinase (p70S6K) and

eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-

BP1) [5]. A consequence of mTOR inactivation in many cell types

is inhibition of G1 progression [5].

Although rapamycin and its analogs show antitumor activity

across a variety of human cancers, rapamycin resistance is a

frequently observed characteristic of many cancers and cancer cell

lines. Mechanisms of rapamycin resistance include mutations in

FKBP12 and constituents of the mTOR pathway, including

S6K1, 4E-BP1, p27kip1 and PP2A-related phosphatases [11–13].

However, these mechanisms do not necessarily account for all

instances of rapamycin resistance.

In the case of hepatocellular carcinoma, initial clinical data

came from patients who were placed on rapamycin or related

drugs post-liver transplantation as immunosuppressive therapy

[14]. The apparent salutary effect of these drugs was followed by

the observation that activation of the mTOR pathway may be a
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predictor of poor prognosis [15,16]. Several investigators have

explored the mechanism by which rapamycin exerts anti-tumor

effects on hepatocellular carcinoma [17–20], but studies on

rapamycin resistance are lacking. Furthermore, data on the effects

of mTOR inhibition on gene expression in cancer cells are

extremely limited.

The starting point for our studies was a series of observations

made using the in vivo models of liver regeneration and liver

development [21]. While the former was highly sensitive to mTOR

inhibition by administration of rapamycin to the whole animal, liver

growth and hepatocyte proliferation in the late gestation fetal rat

was not. We found that rapamycin administration to fetuses in situ

potently inhibited mTOR signaling to ribosomal protein S6

phosphorylation, thus indicating that resistance could not be

accounted for by factors directly involving mTOR activity [21].

Given the potential relationship between fetal development and

oncogenesis, we proceeded to characterize a panel of hepatic cell

lines, ranging from non-tumorigenic to highly tumorigenic, for their

response to rapamycin. Our hypothesis was that these heteroge-

neous but related cell types would vary in their sensitivity to

rapamycin with regard to cell proliferation, but that they would

show common characteristics associated with resistance to the

growth inhibitory effects of the drug.

Methods

Reagents
Rapamycin was purchased from LC Laboratories (Woburn,

MA). The Quant-iT PicoGreen dsDNA Assay Kit were purchased

from Invitrogen Corporation (Carlsbad, CA). Reagents for protein

determination were obtained from the following sources: Bio-Rad

protein assay kit, Bio-Rad (Hercules, CA); bicinchoninic acid

(BCA) assay, Pierce Chemical Co. (Rockford, IL). Antibodies

directed towards S6, phosphorylated S6 (Ser235/236), phosphor-

ylated 4E-BP1 (Ser65 and Thr36/47), phosphorylated-Akt

(Ser473 and Thr308) and total Akt were from Cell Signaling

Technology, Inc. (Danvers, MA). Antibodies to 4E-BP1, cyclin E1,

CDK2 and cyclin E1-agarose conjugate were obtained from Santa

Cruz Biotechnology (Santa Cruz, CA). p27 antibody was from BD

Biosciences (San Jose, CA).

Cell Culture Conditions
Culture conditions have been described previously for the

following cell lines: H4-II-E hepatoma cells [22]; GN5, GN6,

GP6, GP7, GP7TB, and GN6TBC2 [23,24]; WB-F344 [25];

WB311 [26]; the transplantable hepatocellular carcinoma (THC)

1682-C,1682-A and 252 cell lines [27]; THC H5D cell line [28].

Cells were plated at densities that would yield 60 to 80 percent

confluence at the time of each experiment.

[3H]-thymidine incorporation into DNA was determined as

previously described [29]. Previously described methods were

employed for immunofluorescent detection of BrdU incorporation

into DNA [30], flow cytometry [30] and determination of

doubling times [31].

Biochemical Analyses
For Western immunoblotting and cell cycle studies, cell lysates

were prepared and analyzed as described previously [32]. Cyclin

E1/CDK2 kinase activity was determined using immunoprecip-

itated proteins bound to antibody-Sepharose beads [32]. Protein

synthesis was measured as the incorporation of [3H]-leucine into

protein [33]. Cell lines were plated into six well plates (46105 per

well) and allowed to attach overnight. Rapamycin (50 nM) and

[3H]-leucine (1 mCi/ml) were added and allowed to incubate for

6 hr prior to cell lysis. Results were normalized to DNA content,

which was measured using the fluorescent Quant-iT PicoGreenH
dsDNA Assay Kit with lDNA (0–500 ng/ml) as standard.

RNA Isolation and Microarray Hybridization
Cells were plated at 106 cells per 100 mm plate and allowed to

attach overnight. Vehicle (DMSO) or rapamycin (50 nM) was

added for 24 hr. Total RNA was prepared from triplicate plates

using TRIzol reagent (Invitrogen Corporation). For the WB-F344

and WB311 cells, gene expression was analyzed using the

Affymetrix GeneChipH Rat Genome 230 2.0 Array (Affymetrix,

Santa Clara, CA). Microarray fluorescence signals were normal-

ized using Robust Multiarray Average [34]. For the GN5 and

H5D cells, analyses were carried out with the RatRef-12

Expression BeadChips. The fluorescence signals were normalized

using quantile normalization implemented in BeadStudio (Illu-

mina Inc., San Diego, CA).

Affymetrix microarray data analysis was performed using the

GeneSpring GX 7.3 software (Agilent Technologies, Inc., Santa

Clara, CA). Illumina data analysis was performed using PartekH
software, version 6.3 (Partek Inc., St. Louis, MO). For gene

expression comparisons, genes with an average expression value

less than 100 for both comparison groups for Affymetrix data or

detection p-values .0.01 from BeadStudio for Illumina data, or

fold-change less than 1.2 fold (up or down-regulated), were

excluded from further statistical analyses. A two-sample t-test using

p-value cut-off of 0.05 with multiple test correction (Benjamini and

Hochberg false discovery rate) was applied for each gene to

determine if the gene was differentially expressed in the pairwise

comparisons [35]. Triplicate control and rapamycin samples for

each cell line were used in these comparisons.

Hierarchical clustering for the Affymetrix and Illumina analyses

was performed using GeneSpring 7.0 and GeneSpring R 2.0.1,

respectively (Agilent Technologies). Clusters and heat maps were

generated after median-centralization of log2-transformed gene

expression data across all samples. Gene ontology and pathway

terms (www.geneontology.org) were examined to identify biolog-

ical themes associated with each set of genes regulated by

rapamycin. Significantly altered genes from each comparison

were classified into categories based on the gene ontology slim

terms and mapped to the Kyoto Encyclopedia of Genes and

Genomes (KEGG) Biopathway Database (http://www.genome.

ad.jp/kegg/pathway.html). For the Fisher exact test, p-values were

employed to determine the enriched gene ontology categories and

overrepresented pathways. Data analysis was performed at the W.

M. KECK Foundation Biotechnology Resources Laboratory (Yale

University, New Haven, CT). The list of differentially expressed

genes in each cell line was used for the network/pathway

reconstruction analyses, which were performed as previously

described [36].

The microarray studies described in this paper have been

deposited in the NCI’s Gene Expression Omnibus (GEO; [37])

and comply with the Minimal Information About a Microarray

Experiment (MIAME) standard developed by the MGED Society

(http://www.mged.org/Workgroups/MIAME/miame.html). The

data may be accessed through the GEO SuperSeries accession

number GSE17677 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE17677).

Statistical Analyses
Data are shown as the mean and standard deviation. For data

other than those derived from microarray analysis, differences

between groups were assessed by one-way analysis of variance

(ANOVA) with a Bonferroni post-hoc test using Prism 2.01

Hepatic Rapamycin Resistance
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software (GraphPad Software, San Diego, CA). Chi square

analysis was performed using standard methods.

Results

Cell Proliferation and Rapamycin Sensitivity
We first characterized the panel of hepatic cell lines for the

effect of rapamycin on cell proliferation using incorporation of

[3H]-thymidine into DNA. We initially focused on the WB-F344

cell line, the liver cell line from which many of the other cell lines

studied were derived. A comparison of the WB-F344 cells with the

spontaneously derived WB311 cells (Fig. 1) showed a marked

difference in rapamycin sensitivity. Half-maximal inhibitory

concentration (IC50) was approximately 10 nM for the WB-F344

cells and above 200 nM for the WB311 cells. The thymidine

incorporation results were validated by immunohistochemical

staining for BrdU incorporation. Nuclear labeling indices showed

that the proliferation of the WB-F344 cells was inhibited by 30%

with rapamycin (20 to 200 nM). WB311 cells were not affected. In

flow cytometry studies, rapamycin increased the percentage of

WB-F344 cells in G1 phase (66 to 76%) while the percent of cells

in both the S (23% to 16%) and G2/M (11 to 8%) phases

decreased. In contrast, there was no effect on cell cycle distribution

of the WB311 cells. In neither case did rapamycin induce a

hypodiploid peak as would have been expected with induction of

apoptosis.

The thymidine incorporation analyses were extended to eleven

other cell lines (Table 1). Response to rapamycin varied widely.

IC50 values ranged from below 20 nM to above 200 nM. Percent

inhibition at the highest rapamycin concentration tested (200 nM)

ranged from 25 to 70%. The dose at which maximal inhibition

was observed ranged from below 20 nM to 200 nM. These three

indicators of sensitivity were correlated in some cases and not in

others. For example, the H4-II-E cells (referred to as H4) and WB-

F344 cells showed high sensitivity in all three measures. WB311

cells were uniformly resistant. In contrast, the GN5 and GN6 cells

showed maximal inhibition at a low rapamycin concentration and

a degree of inhibition that was significant. The THC H5D cells

(referred to as H5D) showed an IC50 above 200 nM, but percent

inhibition at 200 nM and the maximal inhibitory concentration

both suggested relative sensitivity.

Doubling time was determined for six of the cell lines (Table 1).

There was no correlation between doubling time and rapamycin

sensitivity.

Signaling Downstream and Upstream of mTOR
We examined the effects of rapamycin on the phosphorylation

of mTOR targets in cell lines with high, intermediate and low

sensitivity to rapamycin. The phosphorylation of S6 was abolished

with rapamycin treatment in all cells (Fig. 2A). In all cases,

rapamycin induced a modest decrease in the levels of total S6, but

this was not sufficient to account for the loss of S6 phosphory-

lation. Rapamycin also induced a loss of 4E-BP1 phosphorylation

at the mTOR-dependent Ser65 site in all cell lines except for H4

(Fig. 2B). Phosphorylation at Thr36/47 was sensitive in all cell

lines (Fig. 2B). Analysis for total 4E-BP1 (Fig. 2B) showed a

rapamycin-induced shift from the hyperphosphorylated b and c
forms to the hypophosphorylated a form in all cell lines. The S6

and 4E-BP1 findings were interpreted as indicating that mTOR

signaling was sensitive to rapamycin in both sensitive and resistant

cells and that the sensitivity of cells could not be accounted for by

the ability of rapamycin to induce dephosphorylation of these

mTOR targets.

We examined the basal Akt phosphorylation (Thr308 and

Ser473) and content in several cell lines. Results (Fig. 3) revealed

no correlation between rapamycin sensitivity and phospho-Akt.

Total Akt abundance was similar among most cell lines with the

exception of the H4 cells, which showed very low levels.

Cell Cycle Control and Rapamycin Sensitivity
We hypothesized that rapamycin responsiveness would be

accounted for by rapamycin-induced changes in the expression or

activity of cell cycle components involved in G1 progression. Initial

studies were carried out on the highly sensitive H4 cells (IC50

below 5 nM). The kinase activity of cyclin E1/CDK2 complexes

was determined after cyclin E1 immunoprecipitation using lysates

made from H4 cells exposed to DMSO vehicle or 20 nM

rapamycin for 24 hr. Kinase activity was decreased approximately

5-fold following rapamycin treatment (Fig. 4A). Rapamycin did

not change the amount of either cyclin E1 or CDK2 protein in the

complex (Fig. 4A).

Figure 1. The effect of rapamycin on DNA synthesis in hepatic cell lines. WB-F344 cells (left panel) and WB311 cells (right panel) were
exposed to vehicle (C) or rapamycin (0 to 200 nM) for 24 hr. [3H]-thymidine incorporation is shown as the mean 61 standard deviation for triplicate
determinations.
doi:10.1371/journal.pone.0007373.g001

Hepatic Rapamycin Resistance
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We assessed the role of p27Kip1. Levels of p27 in H4 cell lysates

showed a slight increase in response to rapamycin (Fig. 4B). The

amount of p27 that was co-immunoprecipitated with cyclin E1

increased approximately 3.5-fold higher in response to rapamy-

cin (Fig. 4B). Based on these results, we hypothesized that

rapamycin resistance might be accounted for by low expression

of p27. Lysates from cell lines cultured under basal conditions or

exposed to 100 nM rapamycin for 24 hr were analyzed. Results

showed that levels of p27 did not predict rapamycin sensitivity

(Fig. 4C).

Table 1. Hepatic cell lines, mode of transformation, tumorigenicity and sensitivity to rapamycin.

Cell line Mode of Transformation Reference Tumorigenic
Rapamycin
IC50 (nM)

% Inhibition
at 200 nM

Maximal Inhibition
(Dose, nM)

Doubling
Time (hr)

H4-II-E Rat Hepatoma H35 [22] No 2–5 70 10 24

WB-F344 None (parental) [23] No 10 68 20 42

GN5* NNN, GGT- [23] Yes 20 55 20 21.6

GN6* NNN, GGT- [23] Yes 20 63 20

THC 1682-A Choline-deficient diet [27] Yes 20 68 50

GP7* Solid Tumor, GGT+ [23] Yes 50 59 100

GN6TBC2* Solid Tumor, GGT- [24] Yes 50 50 50

THC 1682-C Choline-deficient diet [27] Yes 100 67 50

GP7TB* Solid tumor, GGT+ [24] Yes 100 53 50

WB311* Spontaneous [26] Yes .200 25 200 15.5

GP6* NNN, GGT+ [23] Yes .200 50 50

THC 252 2-acetylamino-fluorine [27] Yes .200 25 200 26.4

THC H5D Azo dye [28] Yes .200 40 20 26.6

Mode of transformation and tumorigenicity are based on published data. IC50 for rapamycin was determined by [3H]-thymidine incorporation. Maximal inhibition (dose)
refers to the lowest concentration of rapamycin at which maximal inhibition of [3H]-thymidine incorporation was observed. NNN, N-methyl-N’-nitro-N-nitrosoguanidine;
GGT, gamma-glutamyl transpeptidase; THC, transplantable hepatocellular carcinoma. *, derived from the parental WB-F344 cell line.
doi:10.1371/journal.pone.0007373.t001

Figure 2. The effect of rapamycin on mTOR signaling in hepatic cell lines. Panel A: Duplicate cell lysates (5 mg protein) from cells with high
sensitivity to rapamycin (WB-F344, H4), intermediate sensitivity (H5D, GN5) and resistance (WB311, THC252) were examined for phospho- and total S6
after exposure to DMSO or rapamycin (50 nM) for 24 hr. Panel B: A similar analysis was carried out for phosphorylated (Ser65; Thr36/47) and total 4EBP-1.
doi:10.1371/journal.pone.0007373.g002

Hepatic Rapamycin Resistance
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We examined the regulation of the cyclin E1-dependent kinase

activity in the rapamycin sensitive WB-F344 cells, the resistant

WB311 cells and two cell lines with intermediate sensitivity, GN5

and H5D. The ability of rapamycin to induce incorporation of p27

into cyclin E1 containing complexes was examined (Fig 5A). The

WB-F344 cells showed a marked increase in the amount of p27 in

the cyclin E1 complex upon exposure to rapamycin. A similar

effect was seen in the faster growing GN5 cells. In contrast,

WB311 cells showed very low levels of p27 while H5D cells

contained high levels of p27 complexed to cyclin E1 in the basal

state. Repeat analysis with triplicate samples, this time immuno-

blotting the immunoprecipitates for cyclin E1 and p27 (Fig. 5B),

revealed that only the WB-F344 cells showed an increase in the

amount of p27 relative to cyclin E1 in the immunoprecipitated

complexes.

Triplicate immunoprecipitates prepared as for the above

experiment were analyzed for cyclin E1-dependent kinase activity

(Fig. 5C). The kinase activity of the WB-F344, WB311, and H5D

cells were all significantly reduced upon rapamycin exposure. The

GN5 cells exhibited minimal inhibition that was not statistically

significant. The WB311 result was unexpected given that their rate

of DNA synthesis was not inhibited by 100 nM rapamycin.

Effect of Rapamycin on Global Protein Synthesis
Given that rapamycin inhibits global protein synthesis in a

spectrum of cell types [33], we hypothesized that inhibition of

protein synthesis by rapamycin would correspond to its anti-

proliferative potency. Cells were exposed to 50 nM rapamycin for

6 hr, during which they were also incubated with [3H]-leucine

(Fig. 6A). Results were normalized to DNA content so as to reflect

protein synthesis per unit cell number. H4 cells showed a decrease

in protein synthesis of nearly 50% in response to rapamycin.

However, none of the other cell lines studied showed an inhibitory

effect. The experiment was repeated with a higher rapamycin dose

and longer period of rapamycin exposure (200 nM for 24 hr).

Results (Fig. 6B) showed an absence of rapamycin effect on

incorporation of [3H]-leucine into protein in all cell lines,

including H4 cells.

Gene Expression Effects of Rapamycin in Hepatic Cells
WB-F344 and WB311 cells were exposed to DMSO vehicle or

rapamycin (50 nM) for 24 hr and processed for microarray

analysis with Affymetrix GeneChipH Rat Genome 230 2.0 Arrays.

Clustering analysis (Fig. 7A) showed that the WB-F344 and

WB311 segregated based on the analysis of a total of 2,346 gene

features that were significantly different across the four experi-

mental groups. The dendrogram also showed that the control and

rapamycin groups segregated for the rapamycin sensitive WB-

F344 cells but not for the resistant WB311 cells.

In the WB-F344 cells, 2,034 probes (7.0% of total number of gene

features on the Affymetrix chip) were differentially expressed in

response to rapamycin. Of these, 679 were upregulated while 1,355

were downregulated. In the WB311 cells, 1,236 probes (4.4% of the

total) were affected by rapamycin; 752 were upregulated and 484

downregulated. This difference in the magnitude of rapamycin

effect was significant by chi-square analysis. The number of genes

that showed a greater than 2-fold (Fig. 7B) or 3-fold (Fig. 7C) change

confirmed that rapamycin effect on gene expression in WB-F344

cells was greater than in the WB311 cells.

We extended these analyses to two additional tumorigenic cell

lines, GN5 and H5D, that displayed intermediate sensitivity to

rapamycin. This allowed us to assess the effect of rapamycin

independent of effects on cell proliferation. The GN5 cells and the

H5D cells are fast growing relative to the WB-F344 cell line and

slow growing compared to WB311 cells. As in the prior

experiment, cells were exposed to DMSO vehicle or rapamycin

(50 nM) for 24 hr. Analyses for this experiment, done at a different

time than the analyses of the WB-F344 and WB311 cells, used

Illumina RatRef-12 Whole Genome Expression BeadChips.

Clustering analysis of the results (Fig. 7D) showed that the GN5

and H5D cells segregated separately based on the analysis of a

total of 1,293 gene features that were significantly different across

the four experimental groups. Control and rapamycin groups

segregated for both cell lines. In the GN5 cells, 777 probes (3.5%

of the total number of genes on the chip) were affected by

rapamycin (387 upregulated, 390 downregulated.) In the H5D

cells, 636 probes (2.9% of the total) were affected (355 upregulated

and 281 downregulated). The total number of genes altered in the

GN5 cells and the number of genes showing a greater than 1.5-

fold change were significantly greater than for the H5D cells. The

list of all genes that showed differential expression in response to

rapamycin for all four cell lines is provided in Table S1.

Gene ontology analysis (Fig. S1A–S1C) showed considerable

variability across the four cell lines. However, several gene

ontology terms related to cell metabolism, cell proliferation and

cell death (Table S2) were affected in all of the cell lines studied.

Pathway analysis (Tables S3A–S3C) revealed that genes involved

Figure 3. Akt phosphorylation and content in hepatic cell lines. Cell lysates were examined for phosphorylated (Ser308 and Thr437) and total
Akt. b-actin was used as a control for loading and transfer.
doi:10.1371/journal.pone.0007373.g003
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in a number of biochemical and metabolic pathways were

regulated in multiple cell lines. The glycolysis/gluconeogenesis

pathway was uniformly affected with phosphoglycerol kinase-1

(Pgk1) being downregulated by rapamycin in all four cell lines.

Pathway network reconstruction was performed to identify critical

genes affected by rapamycin among the interphase of connected

pathways (Fig. S2A–S2D). Results revealed that rapamycin did not

target a specific pathway or gene across all cell lines. We did not

identify underrepresented or overrepresented pathways that could

account for rapamycin responsiveness.

Figure 4. The effect of rapamycin on cyclin E1-containing complexes, cyclin E1-dependent kinase activity and levels of p27 in
hepatic cells. Panel A: Triplicate cell extracts were prepared from H4 cells exposed to DMSO or 20 nM rapamycin for 24 hr. Extracts (200 mg) were
immunoprecipitated with antibody to cyclin E1 and assayed for kinase activity using histone H1 as substrate. Controls for the activity assay included
no substrate, no sample or immunoprecipitation with an irrelevant rabbit IgG. A separate immunoprecipitation was carried out to assess cyclin E1
and CDK2 in the immunoprecipitated complexes. Panel B: Triplicate cell extracts obtained as for Panel A were immunoprecipitated with cyclin E1
antibody followed by immunoblotting for p27. The same extracts were analyzed by direct immunoblotting for p27 content in the lysates. Panel C:
Hepatic cell lines were examined for p27 content after exposure of the cells to DMSO (filled bars) or 100 nM rapamycin (unfilled bars) for 24 hr. Cell
lysates (8.8 mg protein) were analyzed by direct immunoblotting for p27. p27 content is shown in the bar graph as density of the p27 signal for
triplicate lysates (mean + standard deviation). *, P,0.05 versus H4 and WB by ANOVA. The p27 content was not affected by exposure to rapamycin
for any cell line as determined by ANOVA.
doi:10.1371/journal.pone.0007373.g004

Hepatic Rapamycin Resistance
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Discussion

The mTOR pathway is dysregulated in 40–50% of human

hepatocellular carcinomas [14]. Owing to its potential as a

chemotherapeutic agent, a substantial body of work has been

devoted to understanding the mechanisms of resistance to the anti-

proliferative effects of rapamycin and its analogs [11–13]. For our

laboratory, the starting point for the present work was a series of in

vivo studies showing that adult hepatocytes are sensitive to the

growth inhibitory effects of rapamycin while late gestation fetal

hepatocytes are resistant [21]. We hypothesized a relationship

between fetal liver development and mechanisms involved in

hepatic carcinogenesis. In order to test this hypothesis, we

characterized the response to rapamycin among a panel of hepatic

cell lines ranging from non-tumorigenic to highly tumorigenic.

The goal was to identify a unifying mechanism that could be

studied for its relevance to both fetal liver development and

hepatic carcinogenesis. The ultimate goal was to extend our

observations to liver cells that may represent precursors in the

process of hepatic carcinogenesis.

A consistent finding across all cell lines was that the phosphor-

ylation of S6 was sensitive to rapamycin. The effect on 4E-BP1

phosphorylation was less consistent but did not account for

Figure 5. The effect of rapamycin on cyclin E1-associated p27
and cyclin E1-dependent kinase activity in hepatic cell lines.
Panel A: Duplicate cell lysates (200 mg protein) were prepared from each
cell line following exposure to DMSO or 100 nM rapamycin for 24 hr.
Lysates were immunoprecipitated with cyclin E1 antibody and analyzed
by immunoblotting for p27 content. Panel B: Triplicate lysates (100 mg
protein) were immunoprecipitated with cyclin E1 antibody followed by
immunoblotting for p27 and cyclin E1 levels. p27 content corrected for
the amount of cyclin E1 in the immunoprecipitates is shown as the
mean + standard deviation for DMSO (filled bars) or rapamycin (unfilled
bars). *, P,0.005, control versus rapamycin by unpaired t-test. Panel C:
Triplicate cell lysates from cells treated as above were immunoprecip-
itated with cyclin E1 antibody and assayed for kinase activity using
histone H1 as substrate. The graph shows quantitation of the
autoradiogram as mean + standard deviation for cells exposed to
DMSO (filled bars) or rapamycin (unfilled bars). *, P,0.05 versus
corresponding control as determined by ANOVA.
doi:10.1371/journal.pone.0007373.g005

Figure 6. The effect of rapamycin on global protein synthesis in
hepatic cell lines. Rapamycin sensitive cells (H4, WB-F344), resistant
cells (WB311, THC252) and cells with intermediate sensitivity (GN5, H5D)
were exposed to DMSO (solid bars) or rapamycin (unfilled bars) for 6 hr
(Panel A) or 24 hr (Panel B). Protein synthesis was measured as
incorporation of radiolabeled leucine into protein. Results, normalized
per unit DNA, are shown as the mean + standard deviation for triplicate
analyses. *, P,0.05 versus corresponding control as determined by
ANOVA.
doi:10.1371/journal.pone.0007373.g006
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rapamycin sensitivity. This was particularly apparent in the marked

effect on Ser65 phosphorylation in the WB-F344 and WB311 cells,

which showed marked sensitivity and resistance with regard to DNA

synthesis, respectively. In addition, the highly sensitive H4 cells

showed no effect of rapamycin on phosphorylation at this site. This

was unexpected given that only H4 cells responded to rapamycin

with a significant inhibition of protein synthesis. The 4E-BP1

findings take on added significance with the recent development of

potent mTOR kinase inhibitors that target the ATP binding site of

mTOR. Studies using these inhibitors raised the possibility that

rapamycin was exerting differential affects on S6 versus 4E-BP1

phosphorylation that could account for sensitivity to mTOR

inhibition [13,38]. This was not the case in our studies.

We have performed preliminary studies with one of these

agents, Torin1 (data not shown). In studies on the WB-F344 and

WB311 cell lines, we found that Torin1 and rapamycin had

similar effects on 4E-BP1 and S6 phosphorylation but discrepant

effects on DNA synthesis. The WB-F344 cells were sensitive to

both agents, but the WB311 cells only showed significant

inhibition of DNA synthesis in response to Torin1. These results

support the conclusion from the present studies that the locus of

rapamycin resistance in hepatic cells is downstream from mTOR

complex 1 (mTORC1) but not from 4E-BP1 or S6 kinase. An

alternative explanation is that pathways parallel to those involving

mTORC1, possibly involving an mTOR complex other than

mTORC1 or mTORC2, may account for resistance to rapamy-

cin’s antiproliferative effects. An example of such a mechanism

may be the alternatively spliced form of mTOR termed mTORb
that was recently identified and assigned a role in the control of

cell proliferation [39].

Our finding that Akt content did not correlate with rapamycin

sensitivity is consistent with prior studies [40]. However, the same

was true for phosphorylated Akt. Contrary to findings in other

systems, Akt activation state, which may reflect ‘‘dependence’’ on

mTOR signaling, was not a predictor of rapamycin response in

the hepatic cells we examined [40].

Rapamycin induced the non-tumorigenic WB-F344 cells to

arrest in G1, similar to other rapamycin sensitive cell types [5].

Figure 7. The effect of rapamycin on gene expression in hepatic cells. Cells were exposed to DMSO vehicle (V) or rapamycin (R; 50 nM) for
24 hr. RNA was prepared and analyzed by microarray using Affymetrix GeneChipH Rat Genome 230 2.0 Array for the WB-F344 and WB311 cells, or
RatRef-12 Whole Genome Expression BeadChips for the GN5 and H5D cells. Panel A: Analysis of gene expression in the WB-F344 and WB311 cells. Red
and green reflect high and low expression, respectively. A dendrogram of the cluster analysis is shown above the heat map. Panel B: The number of
genes that were increased or decreased more than 2-fold is shown for the WB-F344 cells (filled bars) and the WB311 cells (unfilled bars). *, significant
difference versus WB-F344 results as per chi square analysis. Panel C: Analysis for genes that showed a greater than 3-fold change. Panel D:
Hierarchical clustering for the GN5 and H5D cells. Red and green reflect high and low expression levels, respectively. The yellow color represents
genes that were unchanged. A dendrogram of the cluster analysis is shown above the heat map.
doi:10.1371/journal.pone.0007373.g007
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Our data in these cells indicated that incorporation of p27 into

cyclin E1-containing complexes with resulting inhibition of cyclin

E1-dependent kinase activity may have accounted for this G1

arrest. A corollary finding was the apparent deficiency of p27 in

the highly rapamycin resistant WB311 cells. However, H5D cells,

which displayed intermediate sensitivity, showed high levels of p27

in cyclin E1 complexes that were unaffected by rapamycin.

Among the cell lines that showed a rapamycin-induced inhibition

of cyclin E1-dependent kinase activity, there was evidence for both

p27-dependent and p27-independent regulation of cyclin E1/

CDK2 activity. These findings indicate heterogeneity across

hepatic cells in vitro with regard to the effects of rapamycin on

cyclin E1-dependent kinase activity.

It was striking that rapamycin induced short-term inhibition of

leucine incorporation into protein in only one of the cell lines, the

H4 cells. This was unexpected given the consistent effect of

rapamycin on 4E-BP1 phosphorylation at the Ser65 and Thr36/

47 sites, an effect that was absent only in the H4 cells.

Furthermore, none of the cell lines showed inhibition of leucine

incorporation into protein at 24 hr, a time point at which some

cells showed growth arrest and 4E-BP1 phosphorylation was

persistently inhibited. This is not the first circumstance in which

4E-BP1 phosphorylation in hepatic cells has been dissociated from

activation of translation. This has been seen in liver regeneration

[41], and our own laboratory made a similar observation in

translation activation in the liver of rats refed following a period of

starvation [42]. The finding that WB-F344 cells were highly

sensitive to rapamycin but did not show sensitivity at the level of

protein synthesis is particularly noteworthy. This result indicates

that resistance to rapamycin-induced inhibition of protein

synthesis cannot account for resistance at the level of DNA

synthesis. Furthermore, the absence of an effect of rapamycin on

the accumulation of protein incorporating radiolabeled leucine

may indicate the absence of a rapamycin effect on autophagy.

Such an effect would be expected to alter the steady state

incorporation of radiolabeled leucine into protein. That being

said, a direct examination of the effects of rapamycin on

autophagy in these hepatic cell lines may be warranted.

The role of TOR in the regulation of gene transcription has

been mostly characterized in yeast [43,44] where the nuclear

localization and the activity of several nutrient and stress-

responsive transcription factors are regulated by mTORC1-

dependent phosphorylation [45]. In mammalian cells, mTOR-

mediated transcriptional control has been associated with

regulation of the expression of relatively few genes. The genes

that are best characterized for rapamycin responsiveness include

Polymerase I, IGF-II and ribosomal DNA [46–48]. We undertook

a broader analysis of rapamycin effect on gene expression so as to

identify genes, groups of genes (ontology analysis) or pathways that

could account for rapamycin responsiveness. We observed that

genes associated with the mTOR pathway were generally not

affected at the mRNA level by rapamycin in either sensitive or

resistant hepatic cell lines. In addition, none of the known effectors

and downstream targets of TOR in yeast, such as Gln3, Ure2 and

Tip41 [44], were affected. Most importantly, the genes that were

modulated in the sensitive WB-F344 cells but not the resistant

WB311 cells included very few candidates that could account for

rapamycin resistance at the level of cell cycle control, cell

proliferation, translation or apoptosis. The differential expression

of genes induced by rapamycin was greatest in the most sensitive

WB-F344 cells. While this might be consistent with an impaired

effect of rapamycin on gene expression in resistant cells, it may

well be accounted for by the absence of rapamycin-induced

growth inhibition in the resistant cells. It was striking that the

genes most potently affected in the sensitive cells were, in general,

not associated with cell growth. Finally, we identified several

rapamycin-affected genes that have not previously been consid-

ered rapamycin sensitive. In particular, the gene encoding

phosphoglycerol kinase-1, an enzyme in the glycolytic pathway,

was downregulated in response to rapamycin in the four cell lines

tested.

Despite the highly heterogeneous response to rapamycin seen in

the panel of hepatic cell lines that we studied, a uniform finding

was that rapamycin was effective in blocking mTOR signaling to

S6 and 4E-BP1 in all cell lines. The precise effect of rapamycin on

4E-BP1 phosphorylation varied but could not account for

rapamycin response. More importantly, cell proliferation, cell

cycle regulation at the level of cyclin E-dependent signaling, global

protein synthesis and gene expression were heterogeneous among

the different cell lines. We deliberately chose related hepatic cells

with diverse characteristics to identify rapamycin response without

the bias inherent in studying any single cell line. Our observations

lead to the conclusion that different tumorigenic hepatic cell lines

possess mechanisms of rapamycin resistance that are not

dependent on alterations in the direct actions of mTOR on its

targets. Resistance to the anti-proliferative actions of this drug

seems to depend on dysregulation of G1-to-S progression but not a

specific mode of cell cycle dysregulation. However, mechanisms of

rapamycin resistance at the level of the cell cycle vary, implying a

level of complexity that will present challenges to the efficacy of

rapamycin in the treatment of liver cancer.

Supporting Information

Figure S1 Gene Ontology Analysis. Panel A. Gene ontology

biological process terms responsive to rapamycin (50 nM, 24 hr) in

hepatic cell lines. The bars indicate the number of differentially

expressed genes per cell line for each significant Gene Ontology

(GO) term sub-category. C, cell growth and/or maintenance;

M, metabolism; CM, cell communication; D, development;

NNNNAM, nucleobase, nucleoside, nucleotide and nucleic acid

metabolism; PM, protein metabolism; T, transport. Panel B. Gene

ontology molecular function terms responsive to rapamycin

(50 nM, 24 hr) in hepatic cell lines. The bars indicate the number

of differentially expressed genes per cell line for each significant

Gene Ontology (GO) term sub-category. NAB, nucleic acid

binding; CA, catalytic activity; TA, transporter activity; TFA,

transcription factor activity; B, binding. Panel C. Gene ontology

cell component terms responsive to rapamycin (50 nM, 24 hr) in

hepatic cell lines. The bars indicate the number of differentially

expressed genes per cell line for each significant Gene Ontology

(GO) term sub-category. CI, cell:intracellular; C, cytoplasm; EES,

external encapsulating structure.

Found at: doi:10.1371/journal.pone.0007373.s001 (0.42 MB

PPT)

Figure S2 Bipartite Network of Pathways Analysis. Panel A.

Bipartite network of pathways and genes representing targets of

mTOR in WB-F344 cells. Pathways are represented by circles and

genes by squares. Gray circles indicate pathways that were not

significant while red and blue circles indicate significant pathways

that are overrepresented and underrepresented, respectively. The

intensity of the squares with green shading indicates the degree of

pathway membership ranging from light green (genes connected to

few pathways) to dark green (the hubs). Pathway sub-networks are

related to bladder cancer, TGF-beta signaling, tight junction,

metabolism and aminoacyl-tRNA biosynthesis biological func-

tions. The Akt, Prkca, Ccnd1 and myc genes were connected to

significant pathways. Panel B. Bipartite network of pathways and
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genes representing targets of mTOR in WB311 cells. Symbols are

those used for Figure 1A. Pathway sub-networks are related to

metabolism and cellular biological functions. The Ccnd1 and myc

genes were connected to pathways that were not significant. Panel

C. Bipartite network of pathways and genes representing targets of

mTOR in GN5 cells. Symbols are those used for Figure 1A.

Overrepresented pathway sub-networks were not identified, while

the neuroactive ligand receptor interaction pathway was under-

represented. The Nfkbia, Hsd3b7, Tgfb2, Tgfb3, Tgfa, and Maoa

genes were connected to pathways that were not significant. Panel

D. Bipartite network of pathways and genes representing targets of

mTOR in H5D cells. Symbols are those used for Figure 1A. The

neuroactive ligand receptor interaction pathway was underrepre-

sented. Overrepresented pathway sub-networks are related to

metabolism, Alzheimer’s disease, melanogenesis, thyroid cancer

and prostate cancer. The Mapk3 gene was connected to pathways

that were not significant.

Found at: doi:10.1371/journal.pone.0007373.s002 (0.87 MB PPT)

Table S1 Genes that show differential expression in response to

rapamycin. Results are shown for the WB-F344 (Table S1A),

WB311 (Table S1B), GN5 (Table S1C) and H5D (Table S1D) cell

lines. Note that for Tables S1A and S1B, some genes have more

than one Affymatrix Probe ID while some have neither a gene title

nor a gene symbol.

Found at: doi:10.1371/journal.pone.0007373.s003 (0.80 MB

XLS)

Table S2 Gene ontology terms and associated genes sensitive to

rapamycin among all four hepatic cell lines tested. MF, molecular

function; BP, biological process. In the Probe ID column, the top

number is the Affymetrix platform ID and the bottom is the

Illumina platform ID.

Found at: doi:10.1371/journal.pone.0007373.s004 (0.04 MB

DOC)

Table S3 Pathways affected by rapamycin in hepatic cell lines.

Table S3A. Results are given for the WB-F344 and WB311 cell

lines (Table S3A) and for the GN5 and H5D cell lines (Table S3B).

Grey highlighting denotes pathways common to all cell lines

studied. Table S3C. Effect of rapamycin on genes in the

glycolysis/gluconeogenesis pathway. Results are given for all four

hepatic cell lines studied.

Found at: doi:10.1371/journal.pone.0007373.s005 (0.10 MB

DOC)
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