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Abstract

The intracellular parasite Toxoplasma has an indirect life cycle, in which felids are the definitive host. It has been suggested
that this parasite developed mechanisms for enhancing its transmission rate to felids by inducing behavioral modifications
in the intermediate rodent host. For example, Toxoplasma-infected rodents display a reduction in the innate fear of predator
odor. However, animals with Toxoplasma infection acquired in the wild are more often caught in traps, suggesting that
there are manipulations of intermediate host behavior beyond those that increase predation by felids. We investigated the
behavioral modifications of Toxoplasma-infected mice in environments with exposed versus non-exposed areas, and found
that chronically infected mice with brain cysts display a plethora of behavioral alterations. Using principal component
analysis, we discovered that most of the behavioral differences observed in cyst-containing animals reflected changes in the
microstructure of exploratory behavior and risk/unconditioned fear. We next examined whether these behavioral changes
were related to the presence and distribution of parasitic cysts in the brain of chronically infected mice. We found no strong
cyst tropism for any particular brain area but found that the distribution of Toxoplasma cysts in the brain of infected animals
was not random, and that particular combinations of cyst localizations changed risk/unconditioned fear in the host. These
results suggest that brain cysts in animals chronically infected with Toxoplasma alter the fine structure of exploratory
behavior and risk/unconditioned fear, which may result in greater capture probability of infected rodents. These data also
raise the possibility that selective pressures acted on Toxoplasma to broaden its transmission between intermediate
predator hosts, in addition to felid definitive hosts.
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Introduction

Toxoplasma gondii (from here on referred to as Toxoplasma) is an

obligate intracellular parasite [1], capable of infecting all

mammals, with an indirect life cycle where cats and other felids

constitute the definitive hosts. In infected felids, parasites will

invade the epithelial cells of the intestine, where they undergo both

sexual and asexual reproduction. Felids are the only mammals

known to shed Toxoplasma oocysts with their feces [2], which will

contaminate the surrounding environment. When oocysts are

ingested by a mammal other than a cat, such as a wild rodent

(intermediate host), an extra-intestinal cycle is initiated, where

asexual (clonal) reproduction occurs and small cysts form in

various tissues, most notably in the brain. In the intermediate host,

infection will persist in a chronic, latent state. If a non-infected cat

then consumes an infected intermediate host, the Toxoplasma life

cycle is completed [3].

Given that sexual reproduction occurs exclusively in felids, it

can be argued that this parasite would be under strong selective

pressure to develop mechanisms to increase its transmission from

the intermediate to the definitive host. This increase in

transmission rate could be related to the presence of parasitic

cysts in the brain of intermediate rodent hosts. Several studies have

shown that Toxoplasma-infected rodents exhibit a number of

modifications in their behavior [4,5,6,7] and, most notably, that

they display an altered response to feline predator odor, with loss

of the typical aversion and even the development of attraction

[8,9,10]. This attraction/loss of aversion to cat odor has been

suggested as a mechanism through which Toxoplasma enhances its

transmission from the intermediate to the definitive host.

However, the fact that wild rodents with naturally acquired

Toxoplasma infection are more frequently caught in traps [11]

argues for additional manipulations of the behavior of the

intermediate host, which could increase capture in general and

not only capture by felids. The aims of this study were to

investigate the existence of behavioral modifications that could

lead to increase capture probability of Toxoplasma-infected rodents,

and to determine whether these behavioral modifications were

correlated with specific cyst localizations in the brain.

To address these questions, we investigated the behavior of mice

chronically infected with Toxoplasma in two different environments,

each with exposed areas that animals typically avoid and non-

exposed areas that animals prefer. We found that chronically

infected mice with brain cysts display a plethora of behavioral

alterations in these environments. We then used principal

component analysis to identify, in an unsupervised manner, the

main factors that explain the behavioral changes observed. Finally,

we analyzed cyst distribution across the whole brain of infected
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animals and investigated whether there was a correlation between

the behavioral changes and cyst distribution and localization.

Our results demonstrate that chronic infection by Toxoplasma

changes the microstructure of exploratory behaviors and risk/

unconditioned fear, and that these changes are related to cyst

presence and cyst localization. These data could explain the

increased capture probability reported for infected rodents in the

wild, and raise the possibility of selective pressures acting on

Toxoplasma to increase transmission not only to its feline definitive

host, but also to predator hosts in general.

Results

Animals with brain cysts display alterations in weight
gain during the acute stage of infection

We injected C57BL/6J female mice intraperitoneally with

transgenic Toxoplasma gondii ME49 tachyzoites, previously shown

to display infection dynamics similar to the parental strain [12],

and monitored them for 9 weeks (see Materials and Methods).

Infected animals that developed brain cysts (‘‘Brain cysts’’ group)

went through an acute stage of infection characterized by weight

loss (Figure 1A, F(7.70,176) = 47.5, p,0.05), followed by a recovery

stage that led to the chronic phase of the disease. Seven weeks after

parasite injection, animals with brain cysts had returned to the

initial weight (dotted line in Figure 1A). In control animals injected

with saline (‘‘Saline’’ group), as well as animals injected with

parasites but that did not develop brain cysts (‘‘No-cysts’’ group),

weight loss was not observed. Moreover, weight loss in the first two

weeks after injection was predictive of brain cyst development,

since brain cysts were found exclusively in infected animals with

more than 5% weight loss (Figure 1B, F(2,46) = 138, p,0.05).

Accordingly, animals that developed brain cysts (Figure 1C) tested

positive for the presence of anti-Toxoplasma antibodies in a latex

particle agglutination test using blood serum. However, all animals

in the No-cysts group tested negatively for the presence of

antibodies, similarly to what was observed in the Saline group

(data not shown). Therefore, animals in the Saline and No-cysts

groups were considered as controls for injection and infection,

respectively.

The infection efficiency varied according to parasite load

injected, with higher parasite loads resulting in a higher proportion

of cyst-containing animals (Figure 1D). However, the number of

brain cysts formed was not dependent on the injected parasite load

(Figure 1E, H(2) = 2.72, ns, p = 0.26; average of 22.362.70 cysts/

brain), similar to what has been previously reported for lower

inoculum sizes [6,13]. Taken together, these data showed that

chronic Toxoplasma infection resulted in the formation of parasite

cysts in the brain, which could be predicted by the loss of weight

during the acute phase of infection.

Chronic Toxoplasma infection alters exploratory
locomotion

To determine whether there were general alterations in

exploratory behavior in chronically infected animals (9 weeks

post-infection), we analyzed their performance in the open field

test (reviewed in [14]), consisting of a novel arena with more

exposed areas (center of the arena) and less exposed areas (border

of the arena). Each animal was placed at the center of the square

arena, and spontaneous behavior was measured for 10 min (Video

S1 and Video S2).

Animals with brain cysts showed an increase in the total

distance travelled in the arena when compared with control

animals (Figure 2A, FwR(2, 25.5)R = 6.95, p,0.05). Furthermore,

the animals with cysts moved at higher average speed within the

arena, relative to control groups (Figure 2B, HR(2)R = 13.7,

corrected for multiple comparisons p,0.02, maximum speed

was not different across groups). Animals with brain cysts reached

higher locomotion speeds as early as the first second of a

locomotion segment (Figure 2C, FR(2, 46)R = 9.49, p,0.05), and

showed an initial acceleration during that first second of

movement which is double that of control groups.

As expected, animals in the injection control group (Saline)

displayed a latency to move (average of 1.7160.59 s) immediately

after being placed in the center of the arena (Figure 2D, Video S3

and Video S4), which is the characteristic response during the first

contact with an exposed area in a novel environment [15].

Interestingly, this latency period was reduced in No-cysts animals

(0.3760.20 s), and absent in all of the cyst-containing mice

(Figure 2D, 0.060.0 s, HR(2)R = 12.8, corrected for multiple

comparisons p,0.02).

Animals from both control groups habituated to the test

environment, as indicated by the decline in distance covered, in

blocks of 2 minutes, over the 10 minute test. However, animals

with brain cysts did not habituate (Figure 2E, main effect of

treatment FR(2,46)R = 8.86, p,0.05, post hoc tests significant

between treatment groups for mins 4, 6, 8, 10). This was

confirmed when analyzing the coefficient of variation for each

animal over time: animals with brain cysts showed significantly less

minute-to-minute variability when compared to control groups

(Figure 2F, FwR(2,20.9)R = 5.62, p,0.05).

Overall, the results described above show that animals with

chronic Toxoplasma infection displayed more exploratory locomo-

tion, with higher locomoting speed and acceleration. They also

show decreased latency to first move in a novel environment and

different habituation to that environment.

Micro-structure of exploratory locomotion is affected in
chronically infected animals

We observed an overall increase in distance travelled and

average locomotion speed in mice with brain cysts. However, these

effects could result from animals moving more or faster, or from

changes in the structure of their locomotion. We found that these

changes reflected a disruption of the way animals organized their

exploratory movements. Detailed analysis of movement segments

or bouts (Figure 3, see Material and Methods) showed that, when

compared to control groups, locomotion of cyst-containing mice

was characterized by a reduction in the number of movement

bouts (Figure 3A, FR(2,45)R = 9.18, p,0.05) and an increase in

their duration (Figure 3B, HR(2)R = 14.8, corrected for multiple

comparisons p,0.02).

Further analysis of the distribution of bout duration frequencies

showed that control groups exhibited similar movement structure,

with shorter bouts occurring more frequently than longer bouts

(Figure 3C,D). This structure was altered in animals containing

brain cysts, with a marked decrease in the number of short bouts,

an increase in the frequencies of intermediate and long duration

bouts, and the appearance of very long bouts, which were absent

in the control groups (Figure 3D, Saline FR(3.07, 27.6)R = 41.8; No-

cysts FR(3.60, 68.3)R = 40.8; Brain cysts FR(4.10, 73.8)R = 13.2,

p,0.05). Post hoc tests showed that, in control groups, short bouts

([0–5] s) outnumbered bouts of intermediate duration ([21–40] s)

while in cyst-containing animals no such difference was found.

These results demonstrated that chronic Toxoplasma infection

drastically modifies the organization and the structure of

exploratory locomotion in mice. Infected animals moved uninter-

ruptedly for longer periods of time in a novel environment with

exposed areas.

Toxoplasma Modifies Host Behavior
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Figure 1. Dynamics of Toxoplasma infection in C57BL/6J mice. (A) Weight variation during infection. Acute infection resulted in severe weight
loss in the first two weeks, followed by a recovery phase, with animals returning to initial weight values nine weeks post-injection (dotted line). (B) All
animals with acute weight loss (.5%) during the first two weeks post-infection developed brain cysts. (A,B) Saline group, n = 10; No cysts group,
n = 20; Brain cysts group, n = 19. (C) Immunofluorescence and phase contrast images of GFP-expressing cysts in the mouse brain. DNA was artificially
stained in red. (D) Efficiency of chronic infection increased with number of parasites injected (injected animals: 1000 parasites n = 14; 10 000 parasites
n = 13; 100 000 parasites n = 21). (E) Average number of cysts formed in the mouse brain did not depend on the number of parasites injected (1000
parasites n = 1 out of 14; 10 000 parasites n = 5 out of 13; 100 000 parasites n = 17 out of 21).
doi:10.1371/journal.pone.0032489.g001
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Infected animals display differential behavior in exposed
versus non-exposed areas

The longer bouts of movement described above could reflect

periods of uninterrupted movement spanning both the center and

border zones of the open field. We therefore analyzed in more

detail the structure of behavior in the center and border zones.

Mice will normally avoid the more exposed area (center zone) in

favor of the protected one (border zone, close to arena walls,

reviewed in [16,17]). We found that, for all groups, animals spent

more time in the border area, with no significant differences in

center occupancy (Figure 4A, FR(2,46)R = 0.83, ns). Furthermore,

chronically infected animals showed increased locomotion both in

the center (Figure 4B, FwR(2,25.3)R = 6.13, p,0.05) and border

zones (Fig. 4B, FwR(2,25)R = 4.98, p,0.05) of the arena. We then

investigated if the different experimental groups showed distinct

patterns of behavior during the time spent in the different zones of

the open field. In fact, Saline control mice spent less time engaged

in locomotion in the center when compared with the border zone

(Figure 4C, t(9) = 25.40, p,0.05), while no such difference was

found in the No-cysts group. In contrast, cyst-containing animals

Figure 2. Chronically infected mice display alterations in exploratory behavior in the open field. (A) Compared to control animals,
infected mice showed an increase in the total distance travelled in the arena. (B) Animals that contain brain cysts moved at higher speeds in the open
field than controls. (C) The initial acceleration during a movement bout was higher in animals with brain cysts. Centesimal values indicate line slopes
in one second intervals. (D) Infected animals showed no latency to move after being placed in the open field, in contrast to control groups. (E) In
contrast to what was observed in control animals, no habituation to the novel environment was observed in infected animals, as shown by the
absence of the reduction in locomotion over time. (F) The distance covered was more uniform over time in cyst-containing animals, as indicated by
the reduced coefficient of variation when compared to control groups. (A–F) Saline group, n = 10; No cysts group, n = 20; Brain cysts group, n = 19.
doi:10.1371/journal.pone.0032489.g002
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showed a reversal of this preference, spending more time engaged

in locomotion in the center when compared to the border zone

(Figure 4C, t(18) = 4.50, p,0.05).

In agreement with the results above, we found that, in the

center zone, the relative number of non-locomoting periods (i.e.

periods without locomotion or horizontal movement, including

grooming, rearing, freezing, etc) was significantly reduced in

chronically infected animals with brain cysts relative to Saline

animals (Figure 4D, HR(2)R = 11.0, corrected for multiple

comparisons p,0.02, with corresponding increase in the border

area). Also, while there was no difference in the absolute number

of non-locomoting periods between center and border zones in

Saline animals (Figure 4E, t(9) = 21.91, ns, p = 0.09), a clear

reduction in the number of non-locomoting periods in the center

was apparent in both No-cysts and cyst-containing mice

(Figure 4E, No-cysts, t(19) = 24.18; Brain cysts, t(18) = 26.58,

p,0.05). Regarding time spent freezing in each zone (see

Materials and Methods), we verified that cyst-containing mice

and No-cysts animals showed almost no freezing in the center

zone, as opposed to saline controls (Figure 4F, HR(2)R = 11.6,

corrected for multiple comparisons p,0.02). However, when

measuring behavior in the border zone, cyst-containing animals

showed a higher number of rearings against the wall than control

groups (Figure 4G, FR(2,46)R = 31.6, p,0.05).

These results revealed that even though chronically infected

animals showed preference for non-exposed rather than exposed

zones in terms of relative occupancy, they displayed very different

behaviors when in these areas. While in the center area, cyst-

containing mice were mostly locomoting, with very few periods of

freezing or other non-locomoting episodes, possibly reflecting

differences in terms of the ability to assess risk in an exposed area.

Interestingly, many of the same patterns were observed in the No-

cysts group, suggesting that these behaviors are triggered by the

contact with the parasite and not by chronic infection with

formation of brain cysts. However, cyst-containing animals did

perform more rearings against the wall in the border zone than

either of the control groups.

Fear/risk-related responses are abnormal in chronically
Toxoplasma-infected animals

The behavioral alterations reported above in animals with brain

cysts suggested that these animals behaved differently in exposed

versus non-exposed areas when compared to controls. To further

characterize this behavior, we used the elevated plus maze test

which can reliably assess unconditioned fear-related responses in

rodents (reviewed in [18]). This apparatus consisted of four arms

(two open and two closed) arranged in a plus shape and elevated

from the floor. The test relies upon the innate preference for dark,

enclosed spaces and the unconditioned fear of heights/open spaces

exhibited by mice; closed arms constitute safe zones whereas open

arms represent unsafe areas. Consistent with the results obtained

in the open field, animals with brain cysts showed an increase in

the overall distance travelled during the 5 min test (Figure 5A,

F(2,45) = 9.18, p,0.05), when compared to control groups. Further

analysis revealed that this difference in locomotion between groups

emerged primarily because animals with brain cysts displayed

increased locomotion in open arms compared to controls

(Figure 5B, Fw(2,21.8) = 5.08, p,0.05, post hoc tests for cyst-

containing mice versus controls, p,0.05; Video S5 and Video

S6). Moreover, even though no striking differences were detected

in overall speed between groups (Figure 5C, p.0.05), cyst-

containing animals moved faster in the closed arms than in the

open arms (Figure 5D, F(2,45) = 3.56, p,0.05, post hoc tests

p,0.05).

We next investigated the bias for occupancy of closed versus open

arms in the different groups, and observed that the normal bias

towards spending more time in closed arms observed in both

control groups was lost in chronically infected mice (Figure 6A,

F(2,45) = 11.6, p,0.05; post hoc tests between arms in Brain cysts

group, p.0.05). Furthermore, the duration of visits to each arm

was also affected, with control animals showing longer visits to

closed rather than open arms (Figure 6B, Saline t(9) = 2.62; No-

Figure 3. Toxoplasma-infected mice show changes in the
structure of exploratory movement. (A) Movement bouts were
reduced in animals with brain cysts, relative to control groups. (B)
Chronically infected animals moved for longer periods at a time, as
evidenced by the increased bout duration. (C,D) Movement structure
was changed in cyst-containing mice compared with controls, with a
reduction in the number of shorter bouts, and an increase in the
frequency of long and very long bouts. (A–D) Saline group, n = 10; No
cysts group, n = 20; Brain cysts group, n = 19.
doi:10.1371/journal.pone.0032489.g003
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cysts t(19) = 6.47, p,0.05), and animals with cysts performing

visits of similar duration to both closed and open arms

[t(18) = 1.26, ns, p = 0.22]. We also scored the number of visits

to the very end of the open arms (a behavior that could be

regarded as highly fearful or risky) and observed that chronically

infected animals performed more of these visits when compared

Figure 4. Different behavioral alterations in exposed versus non-exposed areas of the open field. (A) Infected animals did not show an
altered preference for center area occupancy. (B) Animals with brain cysts displayed increased locomotion in both zones of the arena when compared
with control groups. (C) In contrast to Saline animals, cyst-containing mice engaged in locomotion preferentially in the center zone. (D,E) Chronically
infected animals showed a smaller number and percentage of non-locomoting periods in the center zone (F) Infected animals displayed a reduction
in percent time freezing exclusively in the center zone. (G) The number of rearings against the arena walls was higher in animals with brain cysts than
in control groups. (A–G) Saline group, n = 10; No cysts group, n = 20; Brain cysts group, n = 19.
doi:10.1371/journal.pone.0032489.g004

Toxoplasma Modifies Host Behavior
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with the infection control group (Figure 6C, H(2) = 11.3, corrected

for multiple comparisons p,0.02). Taken together, these results

indicate that chronic Toxoplasma infection has profound effects on

risky behavior/unconditioned fear responses. Animals with brain

cysts covered longer distances in the exposed arms and performed

shorter and faster visits to closed arms. Furthermore, these animals

showed a loss of bias towards the occupation of the safer space

(moving faster in the closed arms) and an increase in the number

of visits to the more exposed region of the open arms, which is

consistent with risky behavior.

Interestingly, mere exposure to the parasite, without chronic

infection and development of brain cysts, also had effects on

animal behavior. We detected a bias towards entering the safe

areas in the No-cysts group: these animals displayed an increase in

the percentage of closed versus open arm entries (50% being the

chance probability value), and this increase was correlated with the

number of parasites injected (Figure 6D, R2 = 0.89, F(1) = 17.8,

p = 0.05).

Behavioral alterations cluster into different categories
In order to identify the specific contributions of the different

variables measured above to the observed behavior in all

experimental groups, we performed principal component analysis

(PCA) on the scores of each animal in each of the behavioral

measures. This analysis resulted in the extraction of five factors

which classified and described the observed behavioral modifica-

tions and accounted for 85% of the total variance. Factor loadings

obtained after Varimax rotation (see Materials and Methods) are

shown in Table 1. Factor 1 explained 23% of the variance and the

significant variables that were positively loaded in this factor

constituted common components of mouse behavior in both the

open field and the elevated plus maze. Given that these variables

represent different aspects of horizontal movement, this factor

likely reflects general locomotion. Factor 2 accounted for 18% of

the variance. The variables that were positively loaded in this

factor corresponded to behaviors in the center zone of the open

field whereas the negative loadings corresponded to general

locomotion variables, suggesting that this factor accounted for

behavior in the exposed zone of the open field test (center). Factor

3 explained 17% of the variance and was positively loaded by

variables that described behaviors in the non-exposed zone

(border) of the open field. Factor 4 accounted for 14% of the

variance and variables related to characteristics/structure of

general locomotion and vertical movement in the open field

loaded positively on this factor, whereas variables that described

the absence of horizontal movement loaded negatively. This

Figure 5. Altered behavior in the elevated plus maze in mice with chronic Toxoplasma infection. (A) Infected animals exhibited an
increase in the distance travelled in the apparatus relative to controls. (B) Cyst-containing animals covered longer distances than control groups in
the open arms. (C) Overall average speed remained unaffected across all experimental groups. (D) In contrast to control groups, infected animals
displayed higher speed in closed arms than in open arms. (A–D) Saline group, n = 10; No cysts group, n = 20; Brain cysts group, n = 19.
doi:10.1371/journal.pone.0032489.g005
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indicated that this factor may reflect the structure of exploratory

behavior. Finally, factor 5 accounted for 13% of the variance. This

factor was positively loaded mostly by variables that described

features measured in the elevated plus maze test, and more

specifically in the open arms. Therefore, we interpreted this factor

as representing changes in risk/unconditioned fear behavior.

Next, we analyzed how each animal in the different exper-

imental groups scored for the individual five factors that were

extracted (Figure 7). This analysis demonstrated that the first

component (F1), likely reflecting general locomotion, was fairly

similar between the different experimental groups (H(2) = 0.67, ns,

p = 0.71). However, cyst-containing mice did exhibit a marked

distinction in the structure of their behavior (F4, H(2) = 6.74,

corrected for multiple comparisons p,0.02). Interestingly, animals

with brain cysts also showed significantly different loadings for

behavior in the exposed zone compared with saline animals (F2,

H(2) = 7.45, corrected for multiple comparisons p,0.02); however

this factor did not discriminate between animals with brain cysts

and No-cysts control group (p.0.05). This result further

demonstrated that exposure to parasites without the accumulation

of cysts in the brain was sufficient to modify behavioral responses

in the center area. Behavior in the border zone of the open field

was similar between groups (F3, H(2) = 1.21, ns, p = 0.54). Finally,

the behavior component related to risk/unconditioned fear also

discriminated cyst-containing animals from control groups (F5,

H(2) = 7.09, corrected for multiple comparisons p,0.02). These

results suggest that the alterations in behavior observed in animals

with brain cysts mostly reflect changes in the structure of

exploratory behavior and risk/unconditioned fear.

Toxoplasma cysts show non-random distribution in
mouse brains

Given these effects of chronic Toxoplasma infection in uncondi-

tioned mouse behavior, we performed a detailed analysis of the

distribution of cysts across the whole brain of infected animals.

Analysis of cyst frequency and brain areas in which they occurred

demonstrated that cysts were distributed across several regions

(Figure 8A), which have been described to control different

functions such as sensory processing, movement, spatial memory,

learning, anxiety and defensive behavior. Interestingly, we

observed no increased cyst accumulation in amygdalar structures

[8], classically associated with the modulation of innate fear,

relative to other structures (no overall difference between areas,

H(21) = 26.5, ns, p = 0.19).

To determine whether the presence of cysts in specific regions

was uniform, i.e. related to the relative volume of each region in

Figure 6. Alterations in fear/risk related behaviors in the elevated plus maze in mice with brain cysts. (A) Chronically infected mice did
not show the bias for closed arm versus open arm occupancy displayed by control groups. Occupancy of the center of the maze was the same across
groups and is not represented. (B) The longer visits to closed arms observed in control groups were not detected in animals with brain cysts (ln s –
natural logarithm transformation of visit duration in seconds). (C) In contrast with controls, infected animals showed a higher number of visits to the
distal-most point of the open arms. (A–C) Saline group, n = 10; No cysts group, n = 20; Brain cysts group, n = 19. (D) The control group for parasite
injection (n = 20) displayed a bias for closed arm entry, which increased with injected parasite load. Individual animals are represented as closed
circles (black) whereas open circles (red) indicate the average values of closed arm entries (above chance) for each parasite load.
doi:10.1371/journal.pone.0032489.g006
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the brain, we used a Lorenz curve (Figure 8B). The diagonal

represented perfect equality in cyst distribution and deviations

from this perfect line correspond to a selective distribution favoring

some regions. The greater the deviation from this perfect line, the

bigger the inequality of distribution. This analysis showed that

there was substantial deviation in the distribution of cysts, and

therefore cyst distribution was not random. Next, we performed

PCA to determine which cyst-containing areas clustered together.

Three factors were extracted for the localization of cysts in the

brain, which accounted for 51% of the total variance. Factor

loadings obtained with variable principal normalization are shown

in Table 2. Factor 1 explained 25% of the variance and the higher

factor loadings in this component corresponded to several brain

areas involved in sensory processing, motor control, decision-

making, spatial navigation, defensive behaviors, homeostasis, and

fear/emotion. Factor 2 accounted for 14% of the variance and

area variables related to sensorimotor integration and alertness,

olfaction and value processing were loaded positively, while areas

related to spatial navigation and movement were loaded

negatively. Factor 3 explained 12% of the variance and clustered

variables involved in movement, motor control, homeostasis,

reward, and olfaction. Overall, this analysis showed that even

though brain areas were clustered into distinct categories, these

were not easily grouped by a common function or spatial

localization within the brain (for example, cortical versus subcor-

tical areas).

Behavioral modifications correlate with particular
combinations of cyst distribution

The fact that cyst distribution was not random suggested that

the behavioral modifications detected in chronically infected mice

resulted from cyst presence in specific brain areas. To address this

question, we performed a Pearson correlation analysis between

individual behavior and cyst localization components. No

significant correlations were detected between any behavioral

component and cyst localization component (data not shown).

Since no correlation between behavior and cyst localization

components was observed using pair-wise comparisons, we

investigated whether particular combinations of cyst localization

components could account for specific behavioral changes. This

was equivalent to determining whether animals which co-clustered

in intersections of the different quadrants of the cyst-localization

PCA-space showed different behavior from animals that did not

co-cluster in that quadrant (Figure 8C–F). We discovered that

animals that co-clustered in a particular area of the cyst-containing

space [(C1(2) C3(2)] had higher loadings for behavioral

component F5 (Figure 8E,F, t(17) = 2.30, p,0.05) than animals

that did not co-cluster in this quadrant. These analyses suggested

that there was a particular combination of cyst localizations in the

brain that biased mice towards increased risk behavior (described

by component F5). Although a similar tendency was uncovered for

the structure of exploratory behavior described by factor F4

(Figure 8C,D), this bias was not significant (t(17) = 1.46, ns,

p = 0.16).

Taken together, these results showed that the changes in the

structure of exploratory behavior and risk/unconditioned fear

observed in chronically infected animals depended on cyst

Table 1. Factors obtained from principal component analysis
of behavioral variables measured in the open field (OF) and
elevated plus maze (EPM).

Factor

1 2 3 4 5

OF - Overall Speed 0.807 0.402

EPM - Overall speed 0.661 0.454

OF - Speed versus time (1st sec) 0.849

OF - Speed border zone 0.829 0.415

OF - Speed center zone 0.779 20.466

EPM - Overall distance travelled 0.682 0.525

OF - Overall distance travelled 0.752 0.449

OF - Dist. travelled border zone 0.769 20.418

OF - Dist. travelled center zone 0.501 20.465 0.599

OF - Bout duration 0.507 0.650

OF - Nr entries center zone 0.600 20.556 0.408

EPM - Open arm end visit 0.588 0.741

OF - Freezing epis. center zone 0.909

OF - Freezing time center zone 0.831

OF - Time immobile center zone 0.792 20.460

OF - Non-loc periods center zone 0.756 20.447

OF - Visit duration center zone 0.844

OF - Occupancy center zone 0.805 20.452

OF - Overall time freezing 0.949

OF - Freezing epis. border zone 0.943

OF - Freezing episodes border 0.917

OF - Time immobile border zone 0.778 20.419

OF - Visit duration border zone 0.619

OF - Non-loc periods border 20.791

OF - Bout nr 20.771

OF – Rearings 0.411 0.450

EPM - Distance travelled open arms 0.782

EPM - Visit duration open arms 0.859

EPM – Occupancy open arms 0.904

Variance explained (%) 23.000 18.000 17.000 14.000 13.000

Variance explained (Cumulative %) 85.000

doi:10.1371/journal.pone.0032489.t001

Figure 7. Factorial scores derived from principal component
analysis of open field and elevated plus maze variables. Factor
scores were calculated for individual animals in the different
experimental groups using loadings derived from PCA. Animals with
brain cysts showed different loadings from control groups for Factors 4
(F4) and 5 (F5). Factor 2 (F2) loadings were different in cyst-containing
mice compared with saline injected animals, but similar to infection
control mice with no cysts.
doi:10.1371/journal.pone.0032489.g007
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presence, but were only partially related to the spatial distribution

of cysts in the brain.

Discussion

We investigated the behavioral changes in Toxoplasma-infected

mice that developed brain cysts in two environments with exposed

versus non-exposed areas and observed that chronic infection

modifies a series of specific aspects of unconditioned behaviors. In

infected animals, exploratory locomotion was more common,

faster and had higher initial acceleration. Strikingly, this

locomotion was also organized differently relative to control

groups: infected animals exhibited fewer and longer segments of

ambulatory movement. Additionally, these animals did not display

normal cautious behaviors when placed in a novel environment,

and they also showed differential responses to unsafe areas with

reduced unconditioned fear and more risky behaviors.

When we reduced the dimensionality of 37 behavioral features

to 5 different factors using principal component analysis, we were

able to cluster the behavioral differences between animals with

brain cysts and the different control groups into two main factors.

These factors mostly represented features related to the micro-

structure of exploratory behavior (F4) and risk/unconditioned fear

(F5). Surprisingly, no significant differences were observed

between experimental groups for the factor representing features

of general locomotion (F1). This result indicates that the

behavioral modifications in exploratory locomotion observed in

mice with brain cysts likely reflected the altered structure of

exploratory behavior, rather than representing hyperactivity.

The data presented here suggest that chronically infected

animals show differential responses to exposed areas, away from

normal defensive behavior, and are consistent with previous

studies in infected rats [6]. However, our data do not allow us to

discriminate whether these behavioral alterations are caused by

changes in the way environmental risk is evaluated, and/or by

changes in producing/organizing the appropriate behavioral

responses.

We observed that although cysts in chronically infected animals

were not randomly distributed across different brain areas, there

was no special frequency of cyst accumulation in specific brain

regions (e.g. in the amygdala as has been reported in previous

studies [8]). However, we found evidence that particular

combinations of cyst distribution in the brain biased the animals

for specific behavioral phenotypes (changes in risk/unconditioned

fear, described by F5). These results suggest that cyst accumulation

in different areas of a particular circuit may lead to similar

behavioral alterations and thus that the parasite may have

experienced selective pressure to manipulate functional neuronal

circuits rather than a specific area.

Another possibility is that the parasite would change the

secretion or function of general neuromodulators. For example,

altered concentrations of catecholamines and indolamines have

been observed in whole brain extracts of Toxoplasma-infected mice.

In particular, dopamine levels have been reported to be higher in

Toxoplasma-infected mouse brains [19], and a recent study showed

that brain cysts were able to produce tyrosine hydroxylase, an

enzyme involved in dopamine biosynthesis, and also that

Toxoplasma-infected dopaminergic neurons showed an increase in

dopamine synthesis and release [20]. These observations suggest

that dopamine could be involved in some of the behavioral

modifications described here, namely in movement structure (F4),

since these seem to be less dependent on cyst localization.

An interesting, and to our knowledge, previously unreported

phenotype was observed in the infection control group. In this

group, systemic parasitic contact did not result in clinical

Figure 8. Non-random distribution of Toxoplasma cysts in mouse brains. (A) Cyst frequency and distribution in different mouse brain areas
(n = 23). (B) Lorenz curve of cumulative cyst presence in relation to relative brain volume of specific areas. Cyst distribution deviated from perfect
equality and was therefore not random. (C) Representation of the quadrant intersection [C1(+) C2(+)] of the cyst localization PCA space (shaded area).
Animals with loadings in this quadrant (red dots) were not different from the rest of the animals with brain cysts, for behavioral component F4. (D)
Infected animals which co-clustered in the [C1(+) C2(+)] quadrant of the cyst localization PCA space (n = 3) did not show significantly higher factor
loadings for behavioral component 4 (F4) than animals that did not cluster in this quadrant (n = 16). (E) Representation of the quadrant intersection
[C1(2) C3(2)] of the cyst localization PCA space (shaded area). Animals with high loading values for behavioral component F5 cluster in this quadrant
(red dots). (F) Infected animals which co-clustered in the C1(2) C3(2) quadrant of the cyst localization PCA space (n = 7) showed significantly higher
factor loadings for behavioral component 5 (F5) than animals that did not cluster in this quadrant (n = 12). Hippoc, hippocampus; Amyg, amygdala;
Motor cx, motor cortex; Cpu, caudate putamen; Acc Ncl, accumbens nucleus; VTA, ventral tegmental area; Pirif cx, piriform cortex; Olfac tract,
olfactory tract; Somats cx, somatosensory cortex; Aud cx, auditory cortex; Vis cx, visual cortex; Orbital cx, orbital cortex; Thalam, thalamus; Lat sep
nucl, lateral septal nucleus; Agrn insl cx, agranular insular cortex; Retrospl dysg cx, retrosplenial dysgranular cortex; Prelimb cx, prelimbic cortex;
Periaqued gray, periaqueductal gray; Cg cx, cingulate cortex; Hypothal, hypothalamus; Assoc cx, association cortex.
doi:10.1371/journal.pone.0032489.g008

Table 2. Factors obtained from principal component analysis
of cyst distribution across brain areas.

Factor

1 2 3

Insular cortex 0.487 0.470

Somatosensory cortex 0.785

Hypothalamus 0.578 0.493

Hippocampus 0.440 20.523

Caudate putamen 0.513 20.548

Orbital cortex 0.558 0.535

Motor cortex 0.784

Association cortex 0.628

Cingulate cortex 0.611

Amygdala 0.533

Lateral septal nucleus 0.626

Claustrum 0.500 20.675

Reticular nuclei 0.441 0.654

Thalamic nucleus 0.451

Accumbens nucleus 0.500 0.561

Prelimbic cortex 20.473 0.465

Tenia tecta 0.634

Olfactory tract 0.475

Cerebellum 20.481

VTA 20.585

Variance explained (%) 25.000 14.000 12.000

Variance explained (cumulative %) 51.000

doi:10.1371/journal.pone.0032489.t002
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symptoms of infection (as indicated by lack of antibodies against

Toxoplasma, weight loss and brain cysts). The absence of detectable

circulating antibodies against this parasite is intriguing. One

possibility would be that the concentration of antibodies is below

the detection levels of the method used and, alternatively, that

mice in this experimental group used cell-mediated immune

response mechanisms. In fact, cell-mediated immune reactions

(involving CD4+ and CD8+ T cells and macrophages) are believed

to be involved in the defense against intracellular parasites

(reviewed in [21]). Furthermore, there are cell-autonomous

defense mechanisms implicated in resistance to Toxoplasma

infection, involving IFN-inducible immunity-related GTPases,

which drive targeted destruction of parasite-containing vacuoles

(reviewed in [22]). Despite the absence of infection symptoms and

brain cysts in this experimental group, contact with the parasite

was sufficient to alter behavioral responses to exposed areas. This

is consistent with previous studies showing that asymptomatic

Campylobacter jejuni-infected animals display an increase in closed

arm entries in the elevated plus maze [23]. Subsequent studies

have demonstrated that peripheral infection, even in the absence

of a measurable immune response, can activate viscerosensory

pathways that interface with defensive brain networks [24]. This

suggests that in our infection control animals, information about

transient Toxoplasma infection could have been relayed to visceral

sensory structures in the brain therefore leading to the observed

behavioral changes. It is also of interest that the behavioral

changes observed in this experimental group are generally

opposite to those observed in animals with brain cysts. This

further suggests that the behavioral alterations in the different

groups arise by different mechanisms. In the ‘‘Brain cysts’’ group

the behavioral modifications observed are related to cyst presence

in the brain (and specific cyst localizations in the case of F5),

whereas in the ‘‘No-cysts’’ group alterations may result from a

systemic effect that produces changes in the brain.

The behavioral differences described here for infected animals

are not easily explained by general debilitation due to Toxoplasma

infection, because animals with brain cysts show increased

performance in some behavioral variables and decreased perfor-

mance in others. Rather, these results suggest that chronically

infected mice interact with their environment differently than non-

infected animals. This change results in maladaptive behaviors,

such as longer bouts of locomotion in exposed areas, or increased

exploration of unsafe zones. These behaviors would render

infected animals more vulnerable to predation or environmental

risks, the latter resulting in enhanced capture probability. This is

unlikely to be a general effect of parasite-altered behavior.

Parasite-driven behavior modifications do not necessarily lead to

increases in trappability or general predation, since other studies

have shown that parasites can manipulate intermediate host

behavior to actually decrease general predation (reviewed in [25]).

One interesting hypothesis is that in addition to the selective

pressure to increase the vulnerability of infected rodents to felid

hosts (where sexual and asexual reproduction occur), there may

have been selective pressures to increase transmission to host

predators in general (including intermediate hosts, where asexual

reproduction occurs). Several studies have suggested a number of

mechanisms through which Toxoplasma could increase the

likelihood of predation by the definitive host (reviewed in [26]).

The behavioral modifications described here could serve to

increase the overall capture probability observed in Toxoplasma-

infected rodents [11], and thus be of evolutionary importance for

parasite transmission between a variety of different hosts. Even

though there is no consensus over the actual contribution of

asexual reproduction to Toxoplasma population structure (reviewed

in [27]), some studies suggest that Toxoplasma has been expanding

largely clonally (asexually) for the past 10 000 years, with the

interesting implication that expansion of intermediate host range

could be one of the driving forces behind the success of this

parasite [28,29,30,31]. Some studies even argue that there is no

reason why Toxoplasma could not skip the definitive host altogether,

using carnivorism and scavenging behaviors to move within the

food chain [28]. This would imply that the parasite would also be

under selective pressure to manipulate behavior in intermediate

hosts other than the rodent, including those that would not be

normally predated by felids. In this respect, it is interesting to note

that a series of studies have shown that chronic toxoplasmosis in

humans can result in behavioral modifications, like increased

activity, decreased reaction times and altered personality profiles

[32,33,34,35,36].

The increase in host range and success of clonal expansion of

Toxoplasma populations could result from the acquisition of the

ability to directly infect successive intermediate hosts after cyst

ingestion [31]. This bypass of sexual reproduction is absent from a

parasite closely related phylogenetically to Toxoplasma, Hammondia

hammondi [31,37]. This cyst-forming parasite has a limited host

range, with cats as definitive hosts and rodents as unique

intermediate hosts. Interestingly, H. hammondi cysts are rarely

found in the brain [37], even though this parasite needs to reach

the definitive host to complete its life cycle. Therefore, brain cyst

formation during Toxoplasma infection may not be the result of

selective pressures to increase parasite transmission to the

definitive host. Instead, it is interesting to postulate that the

appearance of brain cysts is related to the increase in clonal

expansion and intermediate host range observed in Toxoplasma, by

the modification of the structure and the risk of intermediate host

behavior. However, given the controversy that exists regarding the

relative roles of sexual and asexual reproduction for Toxoplasma

evolution, it is also possible that the impact of the behavioral

alterations observed here is mainly to increase transmission to the

definitive host. Further studies are needed to investigate these

postulates.

Materials and Methods

Ethics statement
All procedures were reviewed and performed in accordance

with the Instituto Gulbenkian de Ciência Ethics Committee

guidelines, and approved by the Portuguese Veterinary General

Board (Direcção Geral de Veterinária, approval ID 018831).

Parasite and mouse strains
Female C57BL/6J (7-week old; housed four per cage; The

Jackson Laboratory, Maine, USA) were used.

The Toxoplasma gondii strain used (ME49) was obtained from Dr.

Andrea Crisanti (Department of Experimental Medicine and

Biochemical Sciences, University of Perugia, Italy). This parasite

strain (type II) was genetically modified to express green

fluorescent protein (GFP) under the control of the cyst-stage

specific BAG1 promoter, with infection dynamics similar to the

parental strain [12].

Host cells and parasite culture
Vero cells (green monkey kidney cells, CCL-81TM, ATCC) were

grown in Dulbecco’s Modified Eagle Medium (DMEM, Gibco),

supplemented with 10% newborn calf serum (FBS, Sigma), 50

000 U penicillin (Gibco), 50 mg streptomycin (Gibco) and 2 mM

L-Glutamine (Sigma). Parasites were maintained as tachyzoites
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and propagated in vitro by serial passage on monolayers of Vero

cells.

Mouse infection and experimental groups
Mice were weighed and inoculated intraperitoneally with

tachyzoites, using 1 ml syringes (29 G, 0.33 mm612.7 mm).

Three different parasite loads were used: 1000, 10 000 and 100

000 tachyzoites, in a final volume of 200 ul PBS (per injection),

resulting in a mouse mortality rate of 14.3% and 19.2% for the 10

000 and 100 000 parasite loads, respectively. The different parasite

loads resulted in similar numbers of brain cysts as shown in

Figure 1E, so for most analyses all animals were combined in a

single treatment group (‘‘Brain cysts’’, n = 19). Two experimental

control groups were included. The first consisted of saline injected-

mice (n = 10), thus controlling for injection (‘‘Saline’’ group). The

second was composed of parasite-injected mice (n = 20), which did

not show weight loss, tested negative for antibodies anti-Toxoplasma

(see below), and did not form parasitic cysts in the brain, thus

controlling for the exposure to the parasite (‘‘No-cysts’’ group).

Animals were housed in groups of four and monitored weekly for

general health and weight. Weight variation in Figure 1B was

calculated as the difference in weight between weeks 2 and 0 over

the initial weight. Experimental data corresponds to pooling of

data obtained in two separate experiments (‘‘Saline’’ groups, n1 = 6

and n2 = 4; ‘‘No cysts’’ groups, n1 = 15 and n2 = 5; ‘‘Brain cysts’’

groups, n1 = 3 and n2 = 16). In each experiment, the behavioral

measurements were performed nine weeks post-infection.

Brain harvesting and histology
Nine weeks post-infection, animals were sacrificed after

completion of the behavioral tests. First, animals were anesthetized

with isofluorane, followed by intraperitoneal injection of Keta-

mine/Xylaxine (,5 mg/Kg xylazine; 100 mg/kg ketamine).

Immediately before transcardial perfusion, blood was collected

and serum samples analyzed for the presence of anti-Toxoplasma

antibodies using the latex agglutination assay Toxocell (Biokit).

Animals were then perfused with saline and 4% paraformalde-

hyde, and brains extracted for histological analysis. Brains were

cryoprotected by overnight immersion in saline containing 30%

sucrose (Sigma) and each brain was sectioned coronally (40 mm

slices) using a Leica cryostat CM3050S, set at 225uC. Total cyst

number and localization was assessed for all brain slices.

Immunohistochemistry
To enhance the fluorescence signal present in brain cysts,

histological sections were processed for immunohistochemistry as

follows. After washing with PBS, sections were incubated in 0.1 M

Glycine in PBS, for 10 min at room temperature. The tissue

sections were then permeabilized with 0.5% Triton X-100 in PBS,

for 10 min at room temperature. After a blocking step (incubation

for 30 min, at room temperature with 10% FBS:0.2% Triton X-

100:PBS), sections were incubated, for 1 h at room temperature,

with the antibody against GFP conjugated with the Alexa 488

fluorochrome (1:500, rabbit polyclonal, Molecular Probes).

Sections were then washed and DNA was counterstained with

49,6-diamidino-2-phenylindole (DAPI, Sigma).

After mounting and sealing of sections, these were visualized

using a wide field fluorescence microscope (AxioImager, Zeiss) and

a fluorescence stereoscope (Stereo Lumar, Zeiss). Images were

acquired using Hamamatsu digital cameras (ORCA-ER and

C8484 models).

The efficiency of infection, for each parasite load injected

(Figure 1D), was calculated as the percentage of animals that

contained brain cysts at 9 weeks post-injection. The percentage of

cysts in a given area (Figure 8A) was calculated relative to the total

number of cysts, in each animal.

Behavioral data
Animals were housed under a 12 h light-dark cycle (lights on at

8 a.m.) with food and water available ad libitum. All behavioral tests

took place between 8 a.m. and 1 p.m. To eliminate odor cues, all

testing equipment was thoroughly cleaned between animals with a

10% ethanol solution.

Animals were first tested on the open field, and 24 h later on the

elevated plus maze test.

Open field - Exploratory locomotion was tested in a white floor/

black wall acrylic square arena (39.5639.5617.5 cm). The

apparatus was placed in an enclosed area previously covered in

black cloth to avoid distracting visual cues. Testing was conducted

after cleaning the arena with 10% ethanol solution. Each animal

was placed in the center of the arena and allowed to freely explore

for a period of 10 min. The center zone was defined as 50% of the

available open field area. Movement and spatial distribution of

exploration was video captured (Sony Handycam DCR-SR57E,

25 frames/second).

Elevated plus maze - This apparatus was made of black (walls)

and white (floor) acrylic and consisted of four arms (two open and

two enclosed by 15 cm high walls), 39.5 cm long and 5 cm wide.

Each arm of the maze was attached to a supporting structure and

elevated 40 cm off the floor. Similar levels of illumination were

present in both open and closed arms. The arm surfaces and

closed sides were wiped clean with 10% ethanol and allowed to air

dry. Mice were placed at the junction of the four arms of the maze,

facing an open arm and allowed to explore the maze for 5 min.

Movement was recorded using a video system (Sony Handycam

DCR-SR57E, 25 frames/second).

Behavioral data analysis
Video behavioral data was scored automatically using the

Anymaze software (Stoelting, USA). Graphics were elaborated

using Graphpad Prism (GraphPad Software, Inc., USA). The speed

over time plot in Figure 2C was based on distance travelled per

second, in the first 4 seconds of movement segments ranging 6–15 s.

The initial acceleration during the first second of a movement bout

was calculated as the slope of the one second line in Figure 2C. The

latency plot in Figure 2D corresponds to the time elapsed until

animals initiate locomotion. The coefficient of variation in Figure 2F

was calculated as the standard deviation divided by the average

distance travelled over time for each animal.

Movement bouts in Figure 3A were scored as the number of

horizontal (planar) transitions from immobility to mobility and

back. Bout frequency (Figure 3C,D) was calculated as the

percentage of movement bouts of specific durations (e.g. 0 to

5 s). Center occupancy in the open field test (Figure 4A)

corresponds to the percentage of time spent in the center zone.

Relative non-locomoting periods (Figure 4D) were scored as the

percentage of episodes of no horizontal movement per specific

apparatus area (center, border). In this analysis, immobility

sensitivity was set at 70%, which is the percentage of the animal

that needs to remain in place for 2 s for it to be scored as

immobile/non-locomoting. Freezing was calculated as the per-

centage of time the animal spent freezing (absence of motion apart

for respiratory-related movements) relative to time spent in a

specific area (Figure 4F). Rearings (Figure 4G) were scored as the

number of rearings against the open field walls relative to time

spent in the border zone. Center occupancy in the elevated plus

maze was not represented in Fig. 6A because there were no

significant differences between experimental groups. Arm occu-
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pancy (Figure 6A) was calculated as the percentage of time spent in

each arm type.

Data transformation using natural logarithm operation was

applied to the mean visit duration data (seconds, Figure 6B) to

achieve normality. In Figure 6D, a variable transformation was

performed [log10(x+1) on parasite loads (0, 1000, 10 000 and 100

000 parasites)] to meet the variable linearity condition necessary

for regression analysis.

Statistical analysis
Data are displayed as mean 6 SEM. All statistical analyses were

carried out using SPSS statistics 17 software (IBM, New York). Data

distribution was first tested for normality (using the Kolmogorov-

Smirnov test) and for variance homogeneity (Levene’s test). Data

not violating normality was analyzed using paired t-tests, indepen-

dent samples tests, one-way ANOVA or two-way mixed design

ANOVA, followed by the Bonferroni post hoc test. For data not

conforming to homogeneity of variance, Welch correction was used

for the ANOVA analysis and Games-Howell correction for post hoc

comparisons. Data that did not conform to normality was analyzed

using the Kruskal-Wallis test and Mann-Whitney U-test with

Bonferroni correction. Differences were considered significant at

p,0.05 and were indicated in the figures with an asterisk. In order

to identify any underlying structure and possible interrelations in the

set of variables/behaviors studied, we used multivariate factor

analysis (MFA) to reduce data dimension, while retaining as much

of the original information as possible.

Principal Component Analysis (PCA) with orthogonal (inde-

pendent) rotation (Varimax) was used so that the variance within

each extracted factor was maximized to allow for an easier

interpretation of the factor structure. The appropriateness of this

analysis was assessed by the Kaiser-Meyer-Olkin measure of

sampling adequacy test (KMO) and the Bartlett’s sphericity test.

Inclusion of any given variable required an absence of any

strikingly aberrant values that could affect the robustness of this

analysis. The interpretable factors identified (loadings .0.40 were

considered relevant for a specific factor) represent the primary

parameters or latent variables that are being measured. An

equivalent data matrix was generated as Anderson-Rubin factor

scores. These scores represent each animal classification on the

identified factors with means of zero and standard deviations of

one (z-scores), with individual scores for each identified factor.

Factor analysis of behavioral variables for all experimental groups: MFA with

a Varimax (orthogonal) rotation of 29 out of 37 features from open

field and elevated plus maze behavioral experiments was

performed with data obtained from 48 animals (10 saline, 19

with No-cysts and 19 with cysts). An examination of the KMO

measure of sampling adequacy suggested that the sample was

factorable (KMO = 0.716). Five factors were extracted with Eigen

values higher than 1 accounting for 85% of all variance.

Categorical Principal Components Analysis (CATPCA) was

used for multivariate factor analysis of the data relative to cyst

distribution across the brain. This method was selected given that

data was sparse, which impaired the use of standard statistical

procedures, and was performed using variable principal normal-

ization. As in the previous case, this is a dimensionality reduction

of a set of variables while accounting for as much of the variation

as possible. Scale values are assigned to each category of every

area variable so that these values are optimal relative to the

principal components’ solution. Variables in the analysis were

assigned component scores based on the quantified data. Factor

analysis of brain cyst area variables: CATPCA was performed on 20

out of 80 area variables in 19 animals (only areas containing cysts

in more than 25% of the animals were considered, given that this

type of analysis is more robust when the majority of variables are

not scored as zero). The analysis produced a three-factor solution

accounting for 51% of all variance. Correlation analysis between

behavior and brain cyst area variables: To determine the relationship

between CATPCA extracted factors and the behavior PCA factors

we performed a factor correlation analysis (Pearson coefficients).

To determine whether cyst presence in specific brain regions was

connected to the relative volume occupied by these regions, a

Lorenz curve was calculated. First, the number of cysts detected was

ordered lowest to highest and on the horizontal axis the

corresponding relative volumes of specific brain regions (cumulative

percentage using data described in ref. [38]) was plotted (some areas

were combined for this analysis; for example, cortical areas were

collapsed and collectively designated as neocortex). On the vertical

axis, the cumulative percentage of the number of cysts per region

was represented. The diagonal represents perfect equality in cyst

distribution; for example, the bottom 10% of region volume would

contain 10% of the cysts detected. Deviations from this perfect line

represent a selective distribution favoring some regions. The greater

the deviation from this perfect line, the bigger the inequality of

distribution. The different regions considered are shown in Table 3.

Supporting Information

Video S1 Spontaneous exploratory locomotion of a
saline injected mouse in the open field test. The animal

explores the environment.

(WMV)

Video S2 Spontaneous exploratory locomotion of a cyst-
containing mouse in the open field test. The animal moves

more and faster than saline controls.

(WMV)

Video S3 Saline control: Latency to move after place-
ment in the center of the open field. The animal takes some

time to initiate movement.

(WMV)

Table 3. List of brain areas considered in the Lorenz curve
analysis and respective brain volumes in mice, according to
reference [38].

Average vol (mm3)

Inferior colliculi 5.7

Fimbria 2.6

Internal capsule 2.6

Superior colliculi 8.6

Globus pallidus 3.2

CC/External capsule 14.8

Amygdala 11.6

Olfactory bulb 22.9

Hypothalamus 11.8

Cerebellum 54.2

Hippocampus 25.7

Thalamus 26.8

Caudate putamen 26.6

Neocortex 144.9

Rest of the brain 91

doi:10.1371/journal.pone.0032489.t003
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Video S4 Cyst-containing animal: Latency to move after
placement in the center of the open field. The mouse moves

immediately after being placed in the exposed area.

(WMV)

Video S5 Fear-related responses in a saline injected
animal in the elevated plus maze test. The animal displays a

very cautious approach to the open arms and does not spend a lot

of time exploring these exposed areas.

(WMV)

Video S6 Fear-related responses in a cyst-containing
animal in the elevated plus maze test. The mouse explores

the exposed areas/open arms abundantly.

(WMV)
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