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Abstract

Background: Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in
which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle.
However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum
mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological
traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits
when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape
matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs
which must confer high moving capabilities.

Methodology/Principal Findings: We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in
which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In
spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body
sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs
allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground
(i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in
which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted
pendulums (i.e., wandering spiders).

Conclusions/Significance: Several lines of evidence support the hypothesis that spiders have evolved according to the
predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications
since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of
sexual size dimorphism and sociality.
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Introduction

Understanding the relationship between form and function in

organisms may increase our knowledge about natural processes,

especially when it comes to reveal how physical laws apply to the

adaptive design of organisms. The mode of locomotion plays a major

role in the evolution of many morphological traits, since these traits

affect several fitness components through behavioural performance

[1]. In most terrestrial animals, the most common mode of

locomotion is standing on their legs on horizontal surfaces, by

which these animals can walk, trot, run or even jump. To climb on

vertical surfaces or to hang from branches are specialized locomotion

modes which may have evolved as adaptations to a particular habitat

or microhabitat use, and specialized morphological traits are

generally associated with them [2–5].

From a biomechanical standpoint, morphological specialization

for upside-down walking is a fortuitous case for studying basic

walking mechanisms because it enables the decoupling of

morphological components when compared with horizontal

walking. This means that, since normal walking is similar to an

inverted pendulum [6–8], the torques and the energy necessary to

lift the body constrain how thick or long legs can be (Fig. 1), a

situation that does not occur during upside-down walking (thus the

decoupling of morphological components). The basic model of

horizontal motion is an inverted pendulum where leg muscles keep

the pendulum oscillating in the inverted position [6–8]. On the

other hand, upside-down walking can exploit the properties of a

normal pendulum and, in an ideal case, requires little muscle to

move the body center of masses (BCM) steadily forward [9].

Mechanical power of upside-down walking can be, at least

partially, obtained from converting the gravitational potential

energy into kinetic energy for moving forward, as a pendulum does

during oscillation (Fig. 1). Therefore, since body mass does not

constrain as much the evolution of leg traits, selection can act on
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leg traits, such as stride frequency (leg diameter) and stride length

(leg length). Thus, if animals have evolved following the physics of

pendulums, we should see that the body shape of animals that

move mostly standing on their legs (standing animals) and those

that mostly move suspending their bodies (hanging animals) differ

in a manner consistent with pendulum movement and that these

differences explain the moving abilities in each context.

Suspensory locomotion has been studied mostly in primates

[2,4,9,10] and it has been argued that during brachiation, gibbons

and siamang move somehow taking advantage of pendulum

oscillatory mechanics, thus saving a substantial amount of energy

during locomotion [2]. However, it is not clear whether this mode

of locomotion is cheaper than walking and running on the ground,

and also whether body shape in these primates entails an

adaptation conforming to pendulum mechanics [2,4,9,10]. In

particular, following simple pendulum mechanics longer forelimbs

should enhance the maximum speed attainable (Fig. 1), and thus

an important prediction is that if leg length is the target of natural

selection, hanging animals must have evolved disproportionately

longer legs relative to their body size when compared with animals

that walk standing on their legs. Since leg length enhances velocity

via longer stride lengths [11–12], we also expect legs in standing

animals to grow disproportionately longer with body size. In

addition, in standing animals longer legs allow to have the BCM

higher above the ground, which will also provide more inertia to

help the animal move forward [8]. However, due to the constraints

outlined above (Fig. 1) we should expect the net benefit to be

smaller than in hanging animals.

The spiders (Araeneae) are a highly diverse group of terrestrial

predators [13,14] that are exceptional organisms to test evolu-

tionary hypotheses about pendulum mechanics because in this

group living upside-down (i.e., hanging from their webs) or living

standing on their legs (i.e., on top of their webs or wandering

around) has been lost and gained independently a few times during

spider evolution (Fig. S1)[15–24]. Several hanging spiders show a

dispersal mode that has been neglected in the literature, bridging

[25,26], which consists in releasing a silk line downwind, tensing

the silk line when it attaches to the opposite end of the release

point and walking upside down (i.e., hanging from the line) from

one end to the other, thus crossing an actual bridge. During

bridging (and probably while hunting prey on their webs), hanging

spiders move in a way that can be paralleled to brachiating in

primates, with the main difference that during bridging the body

of the spider (and thus the BCM) is always behind the forelegs.

Thus, during bridging most of the mechanical energy for moving

should come from the inertia of the BCM acting as a pendulum

hanging from a string and in a lesser degree, the forelegs literally

pulling the body forward. Thus, we investigate here whether the

shape and the relationship of shape with performance are

consistent with what we would expect from pendulum mechanics.

Indeed, spiders are likely to move according to pendulums because

unlike primates [2,4], spiders do not need strong muscles on the

tips of the limbs to resist their mass pulling their body downwards

at the lowest point of the pendulum oscillation, since to attach to

the silk, spiders use hardened claws that are fused to the

exoskeleton [14].

Results

We found that the shape of spiders matches what we would

expect if pendulum mechanics explains the adaptive evolution of

spider morphology. Indeed, our results suggest that leg length has

been directly favoured by natural selection, since larger spiders

that hang from their webs have disproportionately longer forelegs

relative to smaller spiders; i.e., positive allometry, and this effect is

significantly stronger in these spiders (MAslope = 2.22; 95% CIS:

[1.91–2.62]) than in spiders that stand on their legs for most of

their lifetime (MAslope = 1.28; 95% CIs: [1.09–1.53]; Fig. 2). These

results remained significant even after using a phylogenetically

controlled ANCOVA (‘‘posture mode6body size’’ interaction,

F1,101 = 26.3; P = 0.018). Leg diameter scaled isometrically with

body size in both groups (hanging, MAslope = 1.06; 95% CIs:

[0.89–1.27], standing, MAslope = 1.01; 95% CIs: [0.93–1.11]) and

no significant differences were found between groups (phyloge-

netically controlled ANCOVA: ‘‘posture mode6body size’’

interaction, F1,101 = 0.91; P = 0.608). Thus, consistent with the

Figure 1. How pendulum mechanics drives the evolution of spider legs. Dashed lines depict the trajectories of the Body Center of Masses
(BCM) following the trajectories of pendulums. A) Hanging spiders: normal pendulums. The vertical distance between the highest and the lowest
point of a pendulum (h) determines the amount of potential energy at the highest point which is converted into kinetic energy at the lowest point.
The maximum force, F

I

2 (and maximum speed of the BCM) occurs at the lowest (middle) point of a pendulum stride. Therefore, if spiders move like
pendulums during suspensory locomotion, natural selection should favour longer legs. B) Standing spiders: inverted pendulums. When spiders move
as inverted pendulums, they have to change the direction of the BCM between steps. Here, the maximum force F

I

1 occurs at the end of each step and
this force depends on body mass. Thus, the larger the spider the larger the forces (~TT and ~NN) necessary to change the direction of force F

I

1 to F
I

2 . As a
consequence, as body size increases the maximum attainable leg length is constrained in order to keep ~TT and ~NN sufficiently large to re-direct F

I

1 . In
contrast, in (A), most of the force for the next stride comes from gravity.
doi:10.1371/journal.pone.0001841.g001

Spiders Evolve as Pendulums
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mechanics of pendulum motion, both standing and hanging

spiders have evolved disproportionately longer legs relative to

body size, and hanging spiders have done so in a higher degree, as

predicted by the constraints imposed on standing spiders (Fig. 1b).

We found evidence that longer legs allow spiders to bridge

faster. The hanging spider Anelosimus aulicus showed a strong

positive ontogenetic allometry of leg length with body size

(MAslope = 4.2; 95% CIs: [2.9–7.4]), suggesting that even within

the same species, longer legs can also benefit the larger instars

relative to the small ones. The OLS residuals of tibia length

(controlled for body size) highly (and positively) explained bridging

speed in A. aulicus (R2 = 0.54; P,0.0001; Fig. 3), supporting the

idea that leg length alone allows faster suspensory movement. The

inclusion of carapace width (body size) in a multiple regression

model along with the OLS residuals (which remained highly

significant–b = 1.17; P,0.0001) also significantly and positively

explained bridging speed (b = 1.05; P = 0.005). In addition, we

found evidence that the shape of these spiders is more likely an

adaptation to move upside-down than to move on flat surfaces.

First, the speed at which these spiders run is 1.56 as high when

they bridge as when they run on a flat surface (paired t-test,

t36 = 7.4; P,0.0001; Fig. 3). Second, the OLS residuals of leg

length were more parsimonious predictors of bridging speed

(AIC = 20.8) than of ground-running speed (AIC = 63.0). The

combined positive effect of relative leg length and body size could

suggest that the allometry of leg length with body size was by itself

responsible of the observed pattern. This was confirmed by the use

of allometric residuals (i.e., the difference between the observed leg

length and the predicted leg length from a perfectly isometric

relationship between leg length and carapace width, b = 1), which

showed a better fit with bridging speed (R2 = 0.63; P,0.0001;

AIC = 12.7). Furthermore, their inclusion in a multiple regression

along with carapace width predicting bridging speed resulted in a

non-significant effect of body size (P = 0.411). Thus, both relatively

longer legs (OLS residuals) and disproportionately longer legs

(allometric residuals) favour greater bridging speed.

If spiders that hang their bodies for most of their lifetimes are

relatively large, and thus have proportionally very long legs, they

should be clumsy runners on the ground (i.e., as inverted

pendulums, Fig. 1b). This is because the necessary torques to lift

their bodies require either relatively shorter segments (as in

normally running spiders) or higher power output from leg

muscles. Thus, since leg diameter (and thus muscle power output)

has remained constant relative to body size across all body sizes

(see above), large spiders adapted to hang upside-down must run at

a slower speed than their ground-adapted counterparts. As

expected, larger hanging spiders are not efficient runners as

inverted pendulums. Beyond a threshold body size, hanging

spiders run at a substantially lower speed than spiders of similar

size that normally stand on their legs (Fig. 4).

Discussion

We found that spiders have evolved following the expectations

of pendulum mechanics. First, spiders that move suspending their

bodies have evolved disproportionately longer legs relative to

wandering spiders. Second, in a species of suspensory spiders we

show that longer legs allow faster suspensory movement and that

these spiders are much faster as pendulums than as inverted

pendulums. Third, across spider species, we show that as

suspensory spiders increase in size they become less and less

efficient at running on the ground, a pattern predicted by their

disproportionately longer legs which confer relatively low joint

forces.

We do not claim that bridging provides an energetic advantage

over running on the ground. Bridging can be very costly for

spiders because they have to invest in protein-expensive silk for

building bridges and also preparing the bridge may be time and

energy consuming, since the spider may have to try a few times to

build a silk line until wind speed and turbulence are low enough to

permit successful bridging. In addition, at least in primates, resting

in the inverted position has actually been shown to be more

expensive than resting standing on the four legs [2]. However, the

patterns observed are consistent with pendulums and inverted

pendulums, and therefore in each context, spiders may be

exploiting what it is more energetically efficient according to the

mechanics of pendulums. It remains to be explored in detail how

this mode of suspensory locomotion actually occurs, and how the

Figure 2. Scaling of foreleg tibia length with body size in
spiders. Filled circles and solid line: standing spiders; Open squares
and dashed line: hanging spiders. The dotted line denotes an isometric
relationship (slope = 1). Data points are independent contrasts on the
natural logarithms of the original data. See text for statistical analyses.
doi:10.1371/journal.pone.0001841.g002

Figure 3. Relationship between leg length and running
performance in the hanging spider Anelosimus aulicus. Solid line
and filled circles: bridging underneath a silk line (i.e., pendular motion);
Dashed line and open squares: running on the ground (i.e., inverted
pendular motion). The x-axis represents OLS residuals, which have been
calculated from an OLS regression between the foreleg tibia length and
body size (carapace width). See text for statistical analyses.
doi:10.1371/journal.pone.0001841.g003

Spiders Evolve as Pendulums

PLoS ONE | www.plosone.org 3 March 2008 | Volume 3 | Issue 3 | e1841



eight legs and the BCM combine to take advantage of pendulum

mechanics.

The findings reported here have potentially important ecolog-

ical and evolutionary implications. The following are four

hypotheses based on what we know about spiders and should be

independently tested. First, the fact that performance on the

ground diverges with body size according to living mode can

explain why only the very small Erigoninae (Linyphiidae) show

behavioral plasticity, hanging from their webs when prey are

abundant, or leaving their webs and wander around in search for

prey when food is scarce [27]. Second, our findings could also

partially explain why in the large hanging spider Latrodectus

revivensis the youngest instars freely change web sizes, while the

adult females tend to remain in the same sites until death [28].

This is especially important in desert habitats, were vegetation is

scarce and bridging from one plant to the other may not be

possible. Indeed, females of another species within the same genus

(L. lilianae) have been observed to disperse by walking on the

ground (JML personal observations). During ground dispersal,

these spiders could be sufficiently large to be conspicuous to most

predators while they would be too slow to escape their attacks.

Third, it has been suggested that extreme sexual size dimorphism

(SSD) in spiders has evolved only in species in which females are

large and live in tall places, because smaller males have an

advantage in climbing and reaching females [5,29]. However, in

most, if not all, spider species with extreme SSD, males do not just

climb, but bridge from one plant to another during mate search. If

vegetation is scarce, males will have to also walk to reach females,

and in that context it pays the males to be small (for example to be

less conspicuous to aerial predators), since being too large will

entail no advantage as the relationship between body size and

faster movement on the ground is lost. Lastly, sociality has evolved

a few times independently in spiders [30,31] and in several cases

sociality has evolved in spiders that hang upside-down. Since

sociality in spiders has occurred gradually and the intermediate

stages of social evolution entail an elongation of the period of

communal life of the young stages, we hypothesize that during the

early evolution of sociality, a possible advantage of elongating the

communal period could be that selection on the young instars to

disperse later would come from the survival benefit of faster

bridging (dispersal) mediated by their disproportionately longer

legs. However, we acknowledge that other variables are still at play

and may be actually more relevant that simple faster dispersal

(e.g., food availability and quality). Alternatively, these legs may

allow dispersal to longer distances for a fixed amount of allocated

energy, thus enhancing outbreeding. Longer dispersal distances of

larger siblings have been documented in the subsocial spider

Anelosimus cf. jucundus [32]. Thus, pendulum mechanics could

favour retention in the natal nest for longer periods that could lead

to eventual phylopatry or, on the other hand, dispersal to longer

distances, indirectly influencing the evolution of sociality in spiders

through influencing metapopulation dynamics. We hope that

taking pendulum mechanics into consideration will serve to

expand the breadth of research in this important group of

generalist predators.

Importantly, our findings show that an animal that has to

perform equally well hanging or standing cannot be larger than a

certain threshold body size. These have implications for robotics,

since for a robot shaped like an animal to be able to walk with the

same efficiency both as a pendulum and as an inverted pendulum

it would have to be fairly small. Another solution would be to build

a larger robot with stronger (more powerful) legs. However, the

later design would be more energetically costly and would

therefore allow shorter autonomy to the robot. Alternatively,

adding springs to the legs (analogous to tendons in humans [6,8])

could allow robots to be larger with longer than usual legs and still

move efficiently.

Materials and Methods

Comparative data
Morphological data on adult females of 105 spider species

belonging to 25 spider families were obtained from Roberts’ [15]

plates (Table S1). We measured the following morphological traits:

carapace width (CW), right foreleg tibia length (FTL) and foreleg

tibia diameter (FTD). Forelegs should be the most important for

pulling the body during bridging on a silk thread, and if the

pendulum hypothesis is correct they should be the most modified

according to living posture. We used the length of the tibia as a

measurement of leg length because this is the easiest leg segment to

measure in Roberts’ drawings. Tibia diameters were measured in

the center of the tibias. Spider traits were directly measured to the

nearest 0.1 mm from the drawings in Roberts’ [15] book by using a

caliper. The measurements were re-scaled relative to the average

length of each species following the information in Roberts [16].

Information about living posture (i.e. standing or hanging) were

obtained from different sources. We used the information provided

by Roberts himself [15–16], a field guide [17] and direct field and

laboratory observations (JM, EM and GC personal observations). In

particular, the Dyctinidae were included as hanging spiders because

when they are in a jar in the laboratory they build a web and hang

underneath. When in doubt, we sought for additional information

about the same spider genera in the Neartic fauna [18].

The spider drawings [15] could lack accuracy for a number of

reasons. Thus, in order to validate the Roberts’ data set, data on 16

spider species (belonging to 10 different families–40% of families in

Figure 4. The relationship between running performance on
the ground and body mass across spider taxa. Filled circles and
solid line: standing spiders; Open squares and dashed line: hanging
spiders. Means were obtained across different instars for each spider
group. Errors are s.e.m. The fitted model for standing spiders is:
(log_speed = 1.3+1.6*log_carapace_width, P = 0.025). The fitted model
for hanging spiders is: (log_speed = 1.3+2.1*log_carapace_width–
1.1*log_carapace_width2, both regression coefficients P,0.001). Letters
on top of bars indicate significant differences between groups
according to a Bonferroni-corrected post-hoc Kruskal-Wallis ANOVA
test (P,0.05). The letters in italic denote the spider taxa used: An,
Anelosimus; Dy, Dyctinidae; Gn, Gnaphosidae; Hg, Hogna; Ho, Holocne-
mus; La, Latrodectus; Pa, Pardosa; Ph, Pholcus; Pl, Philodromidae; Sp,
Sparassidae; Spk, Steatoda paykulliana; Str, Steatoda triangulosa (see
Table S2 for further details).
doi:10.1371/journal.pone.0001841.g004
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the Roberts’ data set) were additionally obtained by directly

measuring individuals from the National Museum of Natural

Sciences of Spain (MNCN), all of which were collected either in

Spain or in Germany. Spiders from the MNCN were measured to

the nearest 0.01 mm under a dissection microscope. We found high

repeatability between data sets for all measured traits: CW

(R = 0.95), FTL (R = 0.97), FTD (R = 0.96) and thus considered that

the Roberts’s data set was highly reliable for analysis.

Comparative analyses
Species data points are not directly adequate for comparative

analyses because they are not independent [33,34]. Therefore, we

tested the main predictions using a compiled spider phylogeny and

the method of phylogenetically independent contrasts (ICs) to

account for phylogenetic relationships [33]. To obtain ICs we used

the PDAP computer package [34]. We adopted the family level

areneomorph phylogenetic hypothesis [19] and updated with

recent phylogenies [20–24] as in previous work [5,29] (Fig. S1). In

the absence of an accurate phylogeny, tips and higher nodes in our

phylogenetic tree were included at their taxonomic level; i.e.

politomies, [34]. Branch lengths were assumed to be constant

across the phylogeny. Because the independent variable (i.e. spider

size) was measured with error, we applied Major Axis regression

[35] for estimating the scaling of leg traits with body size. All

variables were log-transformed for analysis. For comparing if the

slopes were significantly different for hanging than for standing

spiders, and thus to test for a significant difference in the evolution

of body shape consistent with pendulum mechanics, we ran a

phylogenetically controlled ANCOVA using PDSIMUL followed

by PDANOVA within the PDAP computer package [34]. This

procedure is necessary to take into account the independent

evolutionary switches from predominantly hanging to predomi-

nantly standing positions and vice versa. In our data set we could

identify five independent switches (Fig. S1).

Velocity trials
All spiders used were collected either around Almerı́a (southeast

Spain) or around Huelva (southwest Spain). All spiders were kept

in jars of variable size according to their own size and all were used

within 48 hours after collection. Trials were run at room

temperature (range 19.7–22.7uC). We recorded the races in a

video-camera (Sony CCD-TRV608) for later calculating speed at

30 frames/s. After trials were finished, individuals were killed by

freezing and preserved in 70% ETOH. Morphological traits were

measured by GC and EM as described above (between-observer

repeatability .0.9 for all traits).
Running on the ground. To study the performance of

spiders on flat surfaces, we induced spiders to run on a race track

(50-cm length, 15-cm width) which had a layer of fine sand as

substrate. We released the spider from the jar and chased it until a

straight running trajectory was recorded. Since the main objective

was to use as much of a wide size range as possible, we used spiders

of variable instars. Since spider mass ranged from 0.65 mg to

1,242 mg the length of the race varied accordingly (i.e., 1.8–

38 cm). A list of the spider taxa used, their living posture and

sample sizes can be found in Table S2.

Bridging trials–Suspensory locomotion. We used 41

juvenile individuals of the hanging web-building spider Anelosimus

aulicus (Theridiidae) of different instars (mass range 0.1–3 mg).

Each spider was tested twice in a randomly assigned order:

running on the ground (as above) and bridging. In order to induce

bridging, we located a blowing fan (Solac Vento mod. 685) 3

meters away from the place where the spider was released, which

produced a low-turbulence air flaw of 0.8 m/s. The spider was

released on top of a 10610-mm wireframe located on a 15-cm

height pedestal. In order to allow the silk to attach downwind, we

aligned a fragment of plant at a distance of 18 cm from the wire.

Most of spiders attached a silk line to the plant within the first

5 minutes. Otherwise (n = 6 instances), the spider was touched

gently with the tip of a pencil, which made the spider hang from a

drag line and triggered the release of a silk line. All variables were

log-transformed for analysis. We estimated the ontogenetic

allometry of leg length with body size as above and we then

calculated OLS residuals of FTL against CW. If longer legs allow

spiders to run faster upside-down, we expected to see a positive

relationship between the FTL residuals and bridging speed and

also that a regression model of FTL residuals predicting bridging

speed would be more parsimonious (i.e., lower Akaike’s

Information Criterion, AIC) than a model predicting running

speed on the ground.

Supporting Information

Figure S1 Simplified phylogenetic relationships of the spiders

used in this study. Others refer to species or clades that are part of

the study but that have not switched living mode. Red, standing

spiders; Blue, hanging spiders. Although not used in this study,

some other spiders have gained back the ability to hang from their

webs, such as the Psechridae within the RTA clade. The

phylogenetic relationships for the entire phylogeny were obtained

from refs. 19–24.

Found at: doi:10.1371/journal.pone.0001841.s001 (0.07 MB TIF)

Table S1 Species used for comparative analyses, along with their

living modes

Found at: doi:10.1371/journal.pone.0001841.s002 (0.24 MB

DOC)

Table S2 Spider taxa, living modes and sample sizes used in the

ground races (Fig. 4).

Found at: doi:10.1371/journal.pone.0001841.s003 (0.07 MB

DOC)
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