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Abstract

Most human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By
deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human
genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided
strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results
suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene
expression program in human cells.

Citation: Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in
Diverse Cell Types. PLoS ONE 7(2): e30733. doi:10.1371/journal.pone.0030733

Editor: Thomas Preiss, The John Curtin School of Medical Research, Australia

Received November 7, 2011; Accepted December 28, 2011; Published February 1, 2012

Copyright: � 2012 Salzman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by the Canary Foundation, Howard Hughes Medical Institute. CG’s salary was paid by the Debra and Andrew Rachleff Endowed
Fellowship. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: PB is currently a member of the Board of Directors of PLoS. This does not alter the authors’ adherence to all the PLoS ONE policies on
sharing data and materials.

* E-mail: pbrown@stanford.edu

. These authors contributed equally to this work.

Introduction

Deep sequencing of RNA from biological samples, ‘‘RNA-Seq’’,

is a powerful tool for discovering and cataloguing novel alterations

in the expression, sequence, and structure of transcriptomes. In the

present study, we used RNA-Seq in a deliberate search for

transcripts that could not be accounted for by conventional

splicing of primary transcripts from an unrearranged human

genome. Although our initial goal was to discover cancer-specific

chromosomal rearrangements by identifying the resulting fused or

rearranged transcripts, we also investigated the possibility that the

exon order specified by the genome sequence might be rearranged

during RNA processing. We were surprised to find numerous

examples of transcripts in which the exon order was a circular

permutation of the order encoded in the genome. We hypothe-

sized that these anomalous transcripts might the result of

intramolecular but non-canonical splicing events that joined a

splice donor to an upstream (i.e. toward the 59 end of the

transcript) splice acceptor to produce a circular RNA molecule.

Indeed, for many genes, in both cancer and normal human cells,

we found RNAs with circularly permuted exon orders at levels

comparable to those of the canonical, linear mRNA.

The first observation suggesting that eukaryotic RNAs can exist

in circular form was made more than 30 years ago by electron

microscopy [1]. 10 years later, human cytoplasmic RNA was

reported to contain very low levels of transcripts of the DCC gene

with exons spliced in non-canonical order (i.e. shuffled relative to

the reference genome). These scrambled transcripts were estimat-

ed to comprise less than one one-thousandth of DCC transcripts,

and the phenomenon was dubbed exon-scrambling [2]. Since that

time, a handful of expressed mammalian genes have been shown

to express circular RNA isoforms at low levels [3,4]. Such

examples include very low levels of human RNA transcripts with

scrambled exons observed in several human genes, including MLL

and ETS-1 [13,14].

The best-characterized circular transcripts are in rodents. The

mouse SRY gene, the sex-determining gene in males, consists of a

single exon. During development, the RNA exists as a linear

transcript that is translated into protein. In the adult testes, the

RNA exists primarily as a circular product that is predominantly

localized to the cytoplasm and is apparently not translated [5,6].

Studies have demonstrated that inverted repeats in the genomic

sequence flanking the SRY exon direct transcript circularization

[5,7,8]. The sodium transporter NCX1 and the rat cytochrome

P450 2C24 gene are two other well-studied examples of mouse

transcripts with circular isoforms that are expressed at relatively

low levels [9–11]. The circular isoform of the NCX1 gene is

thought to encode a protein, although this possibility has not been

conclusively demonstrated. Examples of exon scrambling have

also been found in Drosophila [12].

All examples of circular transcripts reported to date in humans

have been found to be expressed at low levels compared to the

dominant canonical linear isoform, requiring sensitive nested PCR

experiments for detection; these examples were discovered

inadvertently or in an effort to characterize the structure of

oncogenes. Circular RNAs have also been reported to be rare

isoforms of the human Cytochrome P-450 2C18, and dystrophin

transcripts [11,15]. Most recently, a circular isoform of the non-

coding RNA ANRIL was found to be expressed at very low levels;

its expression was correlated with INK4/ARF expression, and
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with risk for developing atherosclerosis [16]. This finding suggests

that circular RNAs may have both biochemical and phenotypic

consequences. Because of their apparent rarity, however, circular

RNAs are generally viewed as minor RNA structural variants,

perhaps attributable to transcriptional noise [17].

Two studies have suggested that scrambled exons may occur in

more than a handful of transcripts. Roughly 150 sequences

representing exon scrambling were found in EST databases; in

each case, the authors argued that these sequences were unlikely to

derive from circular RNA molecules, but rather represented bona

fide examples of exon scrambling within a linear transcript

[18,19]. The lack of direct experimental evidence makes

interpretation of these studies difficult: EST database studies are

fraught with confounding of RT-PCR artifacts and selection bias.

If template switching occurs during reverse transcription, given a

typical human exon length of 150 (the average of the lower 90th

quantile), 1 out of 22500 template switches would be at exon-exon

boundaries, and hundreds could be expected to be detected in an

EST database. Indeed, it has been recently suggested that

apparent examples of exon scrambling in human EST databases

are primarily explained as RT artifacts. More recently, a single-

read RNA-Seq study of poly-adenylated human RNA from a wide

variety of human tissues identified 176 genes with 205 scrambled

isoforms, achieving a 64% validation rate with RT-PCR, and

showing that many such transcripts had high expression levels

compared to the canonical transcripts [20]. These authors

postulated that the RNA molecules containing scrambled exons

were linear and poly-adenylated.

Results

Hundreds of Putative Intragenic Rearrangements in
Pediatric Acute Lymphoblastic Leukemia

We recently reported evidence suggesting that local structural

rearrangements in the human genome may be under-recognized

genetic lesions contributing to the progression of human cancers

[21]. To test this hypothesis, we explored whether intragenic

rearrangements were prevalent in childhood cases of Acute

Lymphoblastic Leukemia (ALL) by performing RNA-Seq on

ribosomal RNA-depleted total RNA from the diagnostic bone

marrow of 5 children between the ages of 2 and 6 with

hyperdiploid B-precursor ALL. We searched for transcripts with

scrambled exon order (i.e. where exon X is upstream of exon Y,

but X$Y) that might represent intragenic rearrangements by

comparing paired-end RNA-seq data with a database of human

transcriptome sequences (UCSC knowngene hg19). Reads that

could not be aligned to the UCSC knowngene transcriptome were

subsequently aligned to a custom database of exon-exon junctions

comprising all possible pairs of exons annotated in hg19 RefSeq. A

paired-end read is considered ‘junctional’ if read 1 aligns to the

gene and read 2 aligns to an exon-exon junction with more than

10 mismatch-free bases flanking each side of the junction. The

essential features of this analysis are described in the methods

section and have been described in greater detail previously [21].

This analysis identified hundreds of genes with evidence of exon

scrambling: in all, more than 1232 such genes had more than one

junctional read. In addition, more than 700 isoforms with

scrambled exons were estimated to comprise more than 10% of

all transcript isoforms for a comparable number of genes. Genes

with evidence of scrambling were shown to be statistically shared

between the three leukocyte populations. A complete list of

scrambled isoforms is provided in Table S1. The most abundant

transcripts with scrambled exons were ESYT2, FBXW4, CAM-

SAP1, KIAA0368, CLNS1A, FAM120A, MAP3K1, ZKSCAN1,

MANBA, ZBTB46, NUP54, RARS, and MGA. Each was

confirmed by RT-PCR.

Exon Scrambling in Normal Human Tissues
Two models for the origin of the scrambled exons are

diagrammed in Figure 1. We began with the hypothesis that

scrambled exons would generally be a sign of local genomic

rearrangements in cancer. To our surprise, all examples of exon

scrambling that we PCR-verified in leukemia samples were also

detectable in HeLa cells and normal primary human cells,

including peripheral blood collected from the same ALL patients

in remission and H9 ES Cells. These results strongly suggested that

the vast majority of scrambled exons detected in tumor samples

were consequences of splicing processes active in both normal and

malignant human cell types.

We therefore analyzed RNA from 3 leukocyte cell types: naı̈ve B

cells (CD19+), hematopoietic stem cells (CD34+) and neutrophils

from the same individual, for the presence of scrambled exons, by

paired-end sequencing (80 bp per end) of ribosomal RNA-

depleted (Ribo-zero) total RNA. We obtained roughly 8, 19, and

5 million reads aligning to the UCSC knowngene transcriptome

(mapped as single reads) from CD19+, CD34+, and neutrophils,

respectively. We found sequence evidence for scrambled exons

comprising at least 10% of transcripts from each of more than 800

genes in CD19+ cells, CD34+ cells, and neutrophils, respectively.

Genes with evidence of scrambling in one leukocyte cell type were

significantly more likely also to have transcripts with scrambled

exons in one or more of the other cell types we analyzed.

We also analyzed publicly available paired-end data from poly-

A selected HeLa and H9 Human embryonic stem cells [22] using

the same pipeline described above. In total, we identified 2748

transcript isoforms with scrambled exons; some of these isoforms

were rare compared to their canonical linear counterparts, but for

a large number of genes, circular isoforms comprised a substantial

fraction of all transcripts (see Table S2 for a complete list of

scrambled exons detected).

The scrambled exon junctions in transcripts of C1orf58,

CCDC126, FKBP8, PCMTD1, SMARCA5, and SETD2 pre-

dicted by the primary sequence data, were all directly confirmed

by RT-PCR from normal leukocyte RNA, followed by Sanger

sequencing. Eleven additional instances of exon scrambling in

eight distinct genes in ALL or HeLa were also confirmed by RT-

PCR and Sanger Sequencing (see Table S3).

Scrambled Isoforms of Many Transcripts Are Expressed at
Levels Comparable to the Canonical Linear Isoforms

We estimated the abundance of scrambled isoforms relative to

their canonical linear counterparts by two genome-wide statistical

methods. For the first estimate, we counted paired-end reads in

which one read mapped to a scrambled junction (a junction

between exon-X and exon-Y where X$Y), and the other read also

mapped in an orientation and position consistent with the

hypothetical scrambled transcript. This number was then

compared to the total number of paired-end reads consistent with

the splice junctions between exon X and exon Y in the canonical

order predicted by the reference genome sequence. The relative

abundance of scrambled transcript isoforms as a fraction of all

transcripts for a given gene is depicted for three normal leukocyte

cell types in Figure 2. Note that assuming sequencing reads are

sampled uniformly across each transcript, this method underesti-

mates the total fraction of transcripts containing exons in

scrambled order, as scrambled transcripts are also expected to

yield read pairs corresponding to the canonical linear orientation.

High Expression of Circular RNA in Human Cells
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By this first method (method 1), we identified 229, 207, and 122

scrambled transcripts, representing 481 distinct genes, that were

expressed at levels comparable to the canonical linear isoforms in

human CD19+ leukocytes, CD34+ leukocytes and neutrophils,

respectively. By the same method, we estimated that 513, 275, and

320 scrambled transcripts, representing 880 distinct genes, were at

least 10% of the abundance of the canonical isoform, in CD19+
cells, CD34+ cells and neutrophils, respectively. The differences

among these cell types in the apparent relative abundance of the

scrambled isoform were consistent with sampling variation due to

differential expression of the corresponding gene among these cell

types (see Text S1).

Our direct observations of scrambled isoforms indicate that they

comprise at least 10% of all transcripts for roughly 1–2% of genes

detectably expressed in the CD19+ cells, CD34+ cells and

neutrophils. Ignoring relative expression level of the scrambled

isoform, we identified a scrambled isoform in roughly 10% of all

detectably expressed transcripts. This is likely to be an underes-

timate of the prevalence of scrambled isoforms, as the pathogno-

monic junctional reads from inabundantly expressed genes were

unlikely to be detected with this sequencing depth - more than half

of the distinct transcript isoforms detected in these samples were

sequenced at an average depth of one or less (Figure S1).

The most abundant transcripts with scrambled exon order in

the CD19+, CD34+, neutrophils samples, respectively, corre-

sponded to KIAA0182 (encoding a putative subunit of the

BRAF-HDAC complex), MAN1A2 (encoding an alpha-manno-

sidase), and CCDC126 (encoding a coiled-coiled containing

protein of unknown function). Exon-scrambled isoforms ac-

counted for more than half of all transcripts from each of these

genes, as estimated by method 1 above. We also detected low

levels of scrambled isoforms of noncoding RNAs (see NR

identifiers in Tables S1, S2).

In addition, we used a second statistical method that did

not rely on exon annotation to detect and quantitate transcripts

with scrambled exons. For each 200 bp window tiling the

length of each gene, we compared the number of paired-end

reads in two categories; category 1, where side 1 mapped to a

fixed window and side 2 mapped in a relative orientation to

side 1 inconsistent with the genomic exon order; and category

2, paired-end reads where side 1 mapped to a window with a

relative orientation to side 2 consistent with the genomic order.

This procedure allowed us to identify candidate exon-scrambled

transcripts without relying on a database of hypothetical

scrambled exon junction. Table S4 presents these results for

the leukemia data. We tested one gene, FBXW7, a well-known

tumor suppressor with strong evidence of exon scrambling

determined by this approach, which did not have evidence

of scrambling from a custom exon-exon junction database.

Using outward primers in the second coding exon of the RefSeq

Figure 1. Models to explain exon scrambling. The canonical linear reference transcript is depicted with exons as colored boxes with four exons
1, 2, 3, and 4. Two simple models of RNA structure that could explain scrambled transcripts are depicted at left and right. At left, model 1 depicts how
a scrambled exon 3-exon 2 junction could arise from a tandem duplication of exons 3 and 2, positioning the first copy of exon 3 upstream of exon 2.
At the RNA level, this event could arise from post-transcriptional exon rearrangement, or a genomic duplication of exons 2 and 3. Under the model of
tandem duplication, when one side of a paired-end read maps to the junction between exon 3 and 2, the other may map to any of exons 1, 2, 3 or 4
with probabilities determined by the library’s insert length distribution and the exon lengths. Our data supports paired-end mapping between a
junction and exons 2 or 3, but not exons 1 and 4. We note that in principle, the scrambled exon 3 - exon 2 junction could arise from other splicing
events and does not necessarily entail tandem duplication. At right, model 2 depicts how a scrambled exon 3 - exon 2 junction could arise from
splicing of exons 2 and 3 into a circular RNA molecule, again positioning exon 3 upstream of exon 2. In this model, when one side of a paired-end
read maps to the junction between exon 3 and 2, the other will map to exon 2 or exon 3.
doi:10.1371/journal.pone.0030733.g001

High Expression of Circular RNA in Human Cells
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annotation, we detected scrambling between the second

annotated exon in the RefSeq database for FBXW7 and

an alternative 59 UTR exon present only in the UCSC

known-gene annotation. We verified the scrambled exon-exon

junction by Sanger Sequencing of the product amplified from

HeLa cDNA (see Table S3); it was also detected in ALL and H9

samples.

Statistical Tests Predict that Most Scrambled Exons Are
Due to Circular Transcripts

We considered two models to explain the observed transcripts

with scrambled exon order (Figure 1): 1. A tandem duplication of

one or more contiguous exons in canonical order (the tandem

duplication hypothesis), due either to a genomic rearrangement

resulting in an intragenic duplication, or trans-splicing; 2. A

circular RNA formed by splicing a splice donor from a

downstream exon to a splice acceptor from an upstream exon

(the circular RNA hypothesis). The two models predict signifi-

cantly different distributions of paired-end sequences when the size

of the hypothetical circular form is comparable to the insert length

in the library we used for sequencing (roughly 300–500 bp with

tails extending roughly 100 bp).

In cases where the size of the hypothetical circular isoform was

comparable that of the inserts in our library, we used a statistical

approach to evaluate the evidence that observed scrambled exons

originated in a circular RNA. To illustrate this method, a

junctional read supporting the presence of exon 3 upstream of

exon 2 could be explained by a 2-exon circle composed of exons 2

and 3, or a tandem duplication of exons 2 and 3. Only in the latter

case would we expect to observe paired reads comprising the non-

canonical 2–3 junction paired with a sequence from exon 1 or

exon 4.

Reads supporting the tandem duplication hypothesis provide

direct evidence that only a very small fraction of transcripts with

scrambled exons are consistent with a linear RNA structure: in

our sequence data from human leukocytes we found evidence of a

linear RNA with scrambled exons for only 23 genes, fewer than

2% of all transcripts with evidence of scrambled exons (see Table

S6). The genes for which we found such direct evidence of linear

transcripts with scrambled exons were not, on average, more

highly expressed than genes with evidence of circular RNAs,

suggesting that inadequate sampling depth does not account for

their relative rarity. When for a given gene we could find no

paired-end sequence evidence for a tandem duplication– the vast

majority of cases– we used statistical inference to assess the

strength of this evidence against a tandem duplication by

leveraging the insert length distribution and the size of the

inferred circular RNA. A genome-wide assessment of this

evidence in the leukocyte data provides compelling evidence

against tandem duplications in the vast majority of transcripts (see

Table S5).

About 32% of the scrambled exon junctions we observed were

consistent with a hypothetical circular RNA larger than the insert

lengths that were well-sampled in our library; in such cases, the

statistical approach described above could not be used to infer the

probable structure of these isoforms. However, as detailed below,

biochemical analysis of nine isoforms with scrambled exons,

including cases in which the inferred size of the hypothetical

circular RNA would be greater than the insert length distribution,

provided strong evidence that most scrambled exons represent

circular RNA molecules.

RNA Isoforms with Scrambled Exons Are Circular
We used susceptibility to RNaseR as a biochemical assay for the

topology of the RNA molecules containing scrambled exons.

RNaseR is a 39 to 59 exoribonuclease that degrades essentially all

linear RNA molecules, regardless of structure, provided the RNA

contains a 7 bp 39 overhang [23]. To optimize the efficiency of

RNaseR digestion, HeLa RNA was first depleted of ribosomal

RNA and then subjected to RNaseR digestion. We tested a panel

of 6 genes, including 9 isoforms with scrambled exons for

sensitivity to RNaseR. The inferred size of the hypothetical

circular RNAs that could account for the exon scrambles we

sampled spanned a wide range, including sizes larger than the

maximum insert lengths of our libraries. As predicted from the

circular RNA model, each of these transcripts was resistant to

RNaseR degradation, suggesting that most scrambled transcripts

are circular RNAs (examples shown in Figure 3). In addition, we

performed a Northern blot to probe for the 5–2 exon scramble in

MAN1A, and determined that the probe specific to the 5–2

junction hybridized to a band matching the size of the predicted

RNA circle containing exons 2, 3, 4 and 5 of MAN1A2 (see

Figure 3). Control PCR assays omitting either template or RT

yielded no product (see Figure S2).

Figure 2. Expression levels of scrambled exons. Analysis of
paired-end RNA-Seq data from random primed libraries reveals
evidence that scrambled exons are present at high stoichiometries
compared to the canonical linear transcript transcribed from a large
number of human genes. This phenomenon persists across cell types
and is illustrated by the expression patterns of 3 leukocyte cell types:
CD19 (B cells), CD34 (stem cells) and neutrophils. The fraction of each
scrambled transcript as a fraction of total gene expression is computed.
The bar plot depicts the number of circular isoforms with estimated
abundance relative to all transcripts of the gene in the following ranges:
between 0–25%, 25–50%, 50–75% and 75+%. Hundreds of isoforms in
each cell type are estimated to represent more than half of all
transcripts from each gene.
doi:10.1371/journal.pone.0030733.g002

High Expression of Circular RNA in Human Cells
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Evidence that Most Scrambled Exons Are Not
Poly-adenylated

Using a publicly available dataset of short sequence reads from

matched poly-A selected and poly-A depleted RNA fractions, we

further tested the hypotheses that a) a subset of the scrambled

exons we identified are contained in linear, poly-adenylated RNA

molecules and b) a second subset of the scrambled exons we

identified are contained in non-poly-adenylated, presumably

circular, molecules. More specifically, the RNA samples from

which these sequences derived were obtained by a double poly-A

selection; the selected molecules were prepared for sequencing; the

flow-through fraction from the second poly-A selection was

depleted of ribosomal RNA and also sequenced [22]. In each of

the 4 data sets: both poly-A enriched and depleted from both

HeLa and H9 ES cell lysates, we counted the number of reads

mapping uniquely to any of the scrambled exon-exon junctions

that we had previously identified as putative circular RNAs in our

own sequencing experiments on leukocytes.

Overall, the scrambled exon junctions from suspected circular

RNAs were observed at tenfold higher frequency in the poly-A

depleted fraction in both HeLa and H9 cells than in the poly-A

selected fractions (see Figure 4). This result further suggests that

Figure 3. RNaseR assay confirms scrambled exons arise from circular RNA. Panel A: Total RNA from HeLa cells was digested with RNaseR at
varying enzyme concentrations (0, 3, 10, and 100 units) after the RNA was depleted of ribosomal RNA. Primers capable of amplifying the canonical
linear transcript and the predicted circular transcript (by outward facing primers within a single exon predicted in the scramble) were used in a RT-
PCR experiment for each of the digestion conditions. Canonical transcripts were consistently degraded by RNaseR, only detectable by PCR at 0 units
of RNaseR, whereas predicted circular transcripts consistently resisted the RNaseR challenge, providing strong evidence of circularity. FBXW4 and
MAN1A2 respectively show 2 and 4 circular isoforms, both of which were predicted by the sequencing data. The predicted lengths of circular
isoforms are respectively a 3-2 junction of CAMSAP1 (predicted to produce a 435 bp circle), a 4-2 and 5-2 junction of FBXW4 (predicted to produce
415 and 510 bp circles), a 4-2, 5-2 and 6-2 junction of MAN1A2 (predicted to produce 471, 553, and 648 bp circles), a 3-3 junction in REXO4 (predicted
to produce a 338 bp circle), a 2-2 junction of RNF220 (predicted to produce a 742 bp circle) and a 3-2 junction of ZKSCAN1 (predicted to produce a
667 bp circle). Panel B: A northern blot on total and cytoplasmic lysate from HeLa cells shows hybridization of a 481 bp probe complementary to the
MAN1A2 5-2 exon scramble. 3.7 and 6.2 ug of total and cytoplasmic RNA were loaded onto a 1% agarose gel and 10 pM of probe was hybridized for
24–48 hours. Detection was performed using the BrightStar BioDetect Kit (Ambion, Austin, TX). The specific band at 553 bp corresponds to the
predicted size of a circular RNA containing exons 2,3,4 and 5 of MAN1A2.
doi:10.1371/journal.pone.0030733.g003
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the majority of high confidence scrambled exon junctions lack poly-A

tails, as expected for circularly spliced RNAs. Strikingly, the opposite

bias in enrichment was observed for scrambled exon junctions that

we had inferred from RNA-Seq evidence to be contained in linear

RNA molecules: reads representing transcripts that we predicted to

be linear molecules with tandemly duplicated exons were roughly 3-

fold more prevalent in the poly-A selected libraries than in the poly-A

depleted libraries from both HeLa and H9 cells (see Figure 4).

Some Scrambled-Exon Transcripts May Provide Evidence
for Intragenic Duplications in the Human Genome

For a small fraction of the scrambled exon junctions we found

compelling RNA-Seq evidence that they derived from linear

RNAs. In one case, the apparently ‘‘scrambled exons’’ are

explained by a known exon duplication in the human genome

(IFI16) which served as a convenient positive control; in another

case (STAU2), the exons affected by the apparent tandem

duplication correspond to a known human structural variant (see

Table S6 for a complete list derived from poly-A selected RNA

from HeLa, H9 cells and leukocytes). While we have not

exhaustively tested all scrambled transcripts that are predicted to

be linear by RNA-Seq analysis, we believe they will likely provide

a source for discovery of structural variants in the human genome

that have so far eluded detection by next generation sequencing.

No Evidence for a Relationship Between Scrambled
Exons and Complementary Alternatively Spliced
Transcripts

Previous reports have proposed that the lariat structure

containing exons excluded by alternative splicing could undergo

Figure 4. Scrambled exons are enriched in poly-A depleted samples. Single-end 76-bp RNA-Seq was performed on matched experiments on
HeLa, and H9 Human embryonic stem cell lysates were polyA selected and polyA depleted (data from Yang et al [22]). The numbers of scrambled
exons detected in each sample which appeared in our curated database of scrambled junctions from the leukocyte data are depicted as colored bars.
Roughly equal numbers of sequencing reads were available from each of 4 samples. Left panels of bar plot: both H9 and HeLa cells show markedly
more exon scrambles in polyA depleted fractions compared to polyA enriched fractions, consistent with scrambles arising from circular transcripts
which lack polyA tails. Right panels of bar plot: conversely, in the much smaller subset of scrambled exon pairs where we have evidence of internal
tandem duplication (i.e. evidence against circularity), we find the opposite enrichment: more exon scrambles in polyA enriched fractions compared to
polyA depleted fractions, consistent with this small subset of scrambles arising from linear, polyA transcripts.
doi:10.1371/journal.pone.0030733.g004

High Expression of Circular RNA in Human Cells

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30733



subsequent splicing to yield circularly spliced isoforms [10,19]. We

therefore searched for evidence of alternatively spliced transcripts

that would be predicted to yield an in-frame linear transcript (i.e.

one not subject to nonsense-mediated decay) and a lariat

containing the exons we found joined in circular RNAs.

Alternatively spliced complements to only 13 of 576 distinct

scrambled isoforms were supported by more than 1 sequencing

read (2.2%). The failure to detect essentially any evidence for the

predicted complementary linear transcripts is circumstantial

evidence that most circular transcripts are unlikely to be incidental

byproducts of alternative splicing.

In addition to testing for the co-occurrence of complementary

alternatively spliced transcripts and circular RNA, we evaluated

the organization of genes from which circular transcripts were

transcribed. This analysis revealed a statistical enrichment of exon

2 (p value %1024) as the acceptor exon in circular RNA, and a

statistically significant enrichment in median intron length among

genes with circular isoforms, particularly in the intron upstream of

acceptor exons and to a lesser extent in the intron downstream of

donor exons (see Text S1 and Figure S3).

Many Circular Transcripts are Cytoplasmic
To begin investigating cellular localization of circular tran-

scripts, we studied the localization of an isoform of MAN1A2, a

ubiquitous and highly expressed circular transcript, and a handful

of other isoforms with scrambled exons that we confirmed were

circular. HeLa whole cells lysates were fractioned into nuclear and

cytoplasmic fractions. The nuclear-localized noncoding RNA,

XIST, served as a control for fractionation: as expected, it was

enriched in the nuclear fraction and depleted in the cytoplasmic

fraction. The total, cytoplasmic, and nuclear RNA were run on a

denaturing gel to evaluate the ribosomal RNA components. As

expected, the nuclear fraction had diminished 28S and 18S rRNA

bands, and ribosomal RNA precursor bands were present in the

nuclear, but not the cytoplasmic fraction (see Figure 5 and Figure

S4). For each isoform, including XIST, we compared Ct values

calculated from qPCR on cDNA from the cytoplasmic fraction to

the Ct value from qPCR on cDNA from the nuclear fraction.

Technical and biological replicates confirmed that most circular

isoforms were, surprisingly, more enriched in the cytoplasmic

fraction than were the canonical linear isoforms (see Figure 5).

Sequencing of Ribosomal RNA-Depleted RNA from
Mouse Brain Reveals Hundreds of Scrambled Exon Pairs

We hypothesized that circular RNA isoforms were not uniquely

prevalent in human cells, but a common feature of the gene

expression program in animals and perhaps more broadly. We

analyzed publicly available paired-end RNA-Seq data from

ribosomal RNA-depleted total RNA, consisting of 51-bp paired-

end reads (id SRR029642 in the short read archive). We analyzed

these data using the same pipeline we had applied to the leukocyte

data (using the mm9 RefSeq and UCSC annotations (downloaded

9/2011) as the reference). We found more than one thousand

mouse genes with evidence of exon scrambling (see Table S8).

Discussion

For more than 30 years, sporadic reports have described the

presence of circular mRNA transcripts in mammals. Many of

these circular RNAs were discovered serendipitously, and were

Figure 5. qPCR shows scrambled exons are enriched in the cytoplasm. HeLa whole cells lysates were fractioned into cytoplasmic and
nuclear. The nuclear localized noncoding RNA XIST served as a control for fractionation:, and as expected, was enriched in the nuclear fraction. In
addition, precursor ribosomal RNA bands were present in the nucleus but not the cytoplasm (see Figure S4). Using probes specific to each canonical
and circular isoform (corresponding to those examples depicted in Figure 3), we compared Ct values calculated from qPCR on cDNA from the
cytoplasmic fraction to the Ct value from qPCR on cDNA from the nuclear fraction. Bar heights show this average Ct value difference across 2
biological replicates. Error bars represent 2.5 standard deviations computed from biological variation of the qPCR assay. These results show that most
circular isoforms are more enriched in the cytoplasm compared to the canonical linear isoforms.
doi:10.1371/journal.pone.0030733.g005
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largely disregarded as nonspecific byproducts when they were

found to be expressed at low levels. In contrast to this prevailing

view on the abundance of circular RNA isoforms, we found strong

evidence that circular isoforms of hundreds of human transcripts,

with out of order splice junctions precisely at normal exon

boundaries, were present at levels comparable to their canonical

linear counterparts. While the canonical linear transcripts were

sensitive to RNaseR treatment in all tested cases, transcripts with

scrambled exons were generally resistant to RNaseR treatment, as

expected for circular RNAs, but not for RNAs with scrambled

exons generated by template switching or other artifacts of reverse

transcription from a canonical linear RNA. In an analysis of

publicly available RNA-Seq data from HeLa and H9 human

embryonic stem cells, we found that RNAs with scrambled exons

were enriched in non-poly-adenylated fractions. Taken together,

these findings provide strong evidence that most scrambled exon

sequences we detected in human RNA were derived from circular

molecules.

While we have found that hundreds of human genes express

circular RNA isoforms, the limitations of our experimental design

may actually have led us to underestimate the prevalence of

circular RNA isoforms. First, the size selection step during

sequencing library preparation would miss small circular RNAs,

or highly structured circular RNAs with fragmentation kinetics

incompatible with our size selection. It is also possible that our size

selection procedure would enrich for circular RNAs in the selected

size range that failed to be fragmented. Second, although our

sequencing depth was adequate to detect diagnostic junctional

reads for many circular RNAs, it may not have been adequate to

accurately identify and quantify rare circular isoforms, and our

search for exon-exon junctions was restricted to exons annotated

in RefSeq, which we know to be an incomplete catalogue of exon

boundaries. Thus, we may still be underestimating the number or

prevalence of circular RNAs in human cells.

The previously unappreciated abundance and diversity of

circular RNAs in human cells raises important questions: What

is the molecular mechanism of circular splicing? Recent evidence

suggests that canonical pre-mRNA splicing does not necessarily

proceed in sequential order from the 59 to 39 end of the RNA [24].

In this case, an orphan 39 splice site upstream of the acceptor exon

could serve as the acceptor site for a downstream 59 splice site that

is not paired with its canonical splicing acceptor, producing a

circular transcript. Such a model is depicted in Figure 6. A

particular example of this model, wherein an alternative promoter

causes transcription initiation within the first intron, creates an

orphan 39 splice site that is later used by a downstream 59 splice

site could result in a circular RNA with exon 2 as the acceptor.

This model would be consistent with our finding of enrichment of

exon 2 as the acceptor exon and was suggested in [25].

How widespread and evolutionarily conserved is circular

splicing? Our preliminary analysis of ribosomal-RNA depleted

RNA from the mouse brain suggests there are hundreds of genes

Figure 6. Models for generation of circular RNA. At left: a schematic diagram of the canonical splicing process splicing out the first intron of the
a pre-mRNA of a 4 exon gene, and subsequent removal of introns 2 and 3. Canonical splicing of exon 1 to exon 2 occurs when the splicing machinery
catalyzes the formation of the intron lariat and the attack of the free 39 OH of exon 1 on the 39 splice site upstream of exon 2. This produces a lariat
containing intron 1 and a pre-mRNA with exons 1 and 2 spliced together. At right: a model for the production of circular transcripts. If there is a
canonical transcriptional start, and if intron excision does not proceed sequentially in time from the 59 to 39 direction of the pre-mRNA, non-canonical
pairing of 39 and 59 splice sites could be generated. Since the sequences of each 59 splice site of the pre-mRNA contain the same splicing signals, it is
possible that the 39 splice site upstream of exon 2 is paired with the 59 splice site downstream of exon 3 and splicing proceeds as if this 59 splice site
were paired with the 39 splice site upstream of exon 4. In this case, exon 3 would be spliced upstream of exon 2, creating a pre-mRNA intermediate
comprised of these two exons and intron 2. Canonical splicing would be predicted to excise this intron, leaving a circular RNA composed of exons 2
and 3. Non-canonical transcription start, as suggested in [25], could produce an orphan 39 splice site corresponding to the first transcribed exon. This
splice site could be paired with a downstream 59 splice site, generating a circular RNA. In both models, the excised intron would be linear and
branched, and expected to be quickly degraded.
doi:10.1371/journal.pone.0030733.g006
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with scrambled isoforms in that organ; we would not be surprised

to find that this phenomena is pervasive across the animal

kingdom and perhaps more broadly. In addition, while we have

not found evidence of differential circular isoform expression

between tissues, this area should be further explored.

What functions do circular RNAs serve and what roles might

they play in normal human biology or disease? The vast majority

of circular RNA molecules we detected were transcribed from a

gene that is also known to encode a conventional linear mRNA. In

vitro studies have shown that circular RNAs can be translated,

raising the possibility that some circular RNAs might encode

proteins with functions distinct from those of their canonical

counterparts [26]. A non-coding regulatory role is another distinct

possibility.

Our data suggest there are at least a handful of known

noncoding RNAs with circular isoforms. A circular isoform of the

noncoding RNA ANRIL has been reported to correlate with

INK4/ARF expression, as well as atherosclerosis risk, suggesting

the possibility that circular RNAs might have some role in human

disease. An antisense transcript of the CDR1 gene, relatively

abundantly expressed in mouse brain, was recently shown to be

circular, and to positively regulate the corresponding sense

transcript [27]. A role in regulating the pool of RNA binding

proteins or small RNAs capable of interacting with the

conventional linear RNA counterpart is another possibility [28].

We cannot yet rule out the possibility that they are incidental to

regulated splicing of a conventional linear RNA and perhaps

accumulate due to their relative resistance to degradation.

However, the high abundance of many circular RNA isoforms

relative to their linear counterparts and lack of evidence for the

predicted alternatively spliced linear RNA co-product suggest that

circular RNA isoforms are not simply accidental byproducts of

splicing. Further investigations of origins and activities of circular

isoforms of mRNAs are likely to lead us in surprising directions.

Methods

Specimen Collection
Samples were collected following procedures approved by the

IRB at Stanford University.

RNA extraction from tissues
5 hyperdiploid acute lymphoblastic leukemia diagnostic bone

marrow samples were obtained on a protocol approved by the

Stanford Institutional Review Board. The cells were counted and

frozen using Ficoll-Paque Plus (Amersham Biosciences, Piscat-

away, NJ) at a concentration of 0.5–10 million cells/ml. Peripheral

blood was also obtained from the same patients after they were

confirmed to be in remission based on the inability to detect

minimal residual disease after induction therapy. The buffy coat

was isolated by pipetting after centrifugation. CD19+, CD34+,

and neutrophils that were isolated from the bone marrow of a

single individual were purchased from All Cells Inc (Emeryville,

CA). Total RNA was isolated from all samples using Trizol (Life

Technologies, Carlsbad, CA) followed by RNEasy column

(Qiagen, Valencia, CA) according to the manufacturer’s instruc-

tions.

RNA-Seq Library preparation
A modified protocol from our previous work was used to

produce the sequencing libraries [21]. First, 2 or 5 ug of total

RNA was depleted of ribosomal RNA using the ribo-zero kit

(Epicentre, Madison, WI) from the normal hematopoietic and

leukemia samples, respectively. RNA was then fragmented to

about 350 bp using alkaline hydrolysis followed by first and second

strand cDNA generation as previously outlined. cDNA was size-

selected for a range between 300–500 bp before adaptor ligation

to minimize the production of in vitro chimeric transcripts. A

second size selection was then performed for 350–600 bp to select

against chimeric inserts and remove unligated adapters. Libraries

were PCR amplified for 15 or 20 cycles for the leukemia and

normal hematopoietic samples, respectively. Concentrations were

measured using the High Sensitivity DNA Kit for the Bioanalyzer

(Agilent, Santa Clara, CA), and samples were then diluted to

10 pM. Clusters were generated using the Paired-End Cluster

Generation Kit v2 with the cBot according to manufacturers

instructions (Illumina, San Diego, CA). The samples were then

sequenced on the Illumina Genome Analyzer II using kit v5. All

samples were run as a single lane on a 80 bp paired-end run.

Leukemia samples were sequenced together, while the remission

blood and normal bone marrow subpopulations were a separate

run. Sequencing data are deposited in GEO with series number

GSE33772.

Computational discovery of exon scrambling from
RNA-Seq data

All mapping was performed using Bowtie version 0.12.1.

Paired-end RNA-Seq data was mapped to the reference

transcriptome (UCSC knowngene annotation) allowing up to

three mismatches and any number of alignments. Reads uniquely

aligning to the RefSeq annotation database were considered to

represent gene expression. Reads failing the alignment to the

UCSC knowngene annotation were mapped to a custom database

of all intragenic exon-exon junctions in expressed genes with exons

determined by the RefSeq database. Paired-end reads where read

1 mapped to an exon-exon junction inconsistent with the reference

transcript and read 2 mapped to the same transcript, and were

considered as supportive of an exon scramble. The total number of

distinct paired offsets and mismatch profiles were summed, and

the rate of reads supporting scrambled exons was computed per

nucleotide (denoted j) and used as an estimate of the relative

abundance of each scrambled isoform. Per-nucleotide gene

expression (e) was estimated as the number of single reads

mapping to a gene divided by gene length. The quantitative

estimates of the relative expression of a scrambled transcript

compared to the canonical linear isoform quoted in this paper was

made using the ratio of j/e.

In a separate analysis, we employed paired-end mapping ratios

to further quantify the relative abundance of scrambled isoforms to

canonical linear isoforms. Each gene was tiled by dividing it into

even length bins of 200 base pairs. For each pair of bins, the

number of reads aligning to bin A in the+orientation and bin B in

the - orientation was computed. To detect scrambled and

canonical linear transcripts, bin A could be up or downstream of

bin B. Conditional on reads aligning to bin A, the relative ratios of

reads aligning to each bin B were computed. This procedure is

further detailed in Text S1.

In addition to the data we generated, the following public data

was downloaded from the SRA and analyzed: paired-end data from

H9 cells (SRR065491, SRR065495, SRR065504, SRR065521,

SRR066678, SRR066679) and HeLa (SRR065529) and single end

data from [22] as described in the text.

RT-PCR validation
Total RNA reaction was reverse transcribed using the

SuperScript III First-Strand Synthesis System (Life Technologies,

Carlsbad, CA) with random hexamers according to the manufac-

turer’s instructions. 20 ng of cDNA was then used for each PCR
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validation using Platinum Blue PCR Supermix (Life Technologies,

Carlsbad, CA). PCRs were run for 35 cycles under standard

conditions with 30 second 55 degree extension.

Statistical methods for computing the probability of
observing evidence of a linear transcript under the
tandem duplication hypothesis

The following procedure was used to calculate the per gene

probabilities for observing evidence of a linear transcript among

genes with evidence of scrambled exons.

1) Compute the empirical length distribution of all sequenced

fragments by aligning reads to the RefSeq annotation.

2) Compute quantiles from 0–100 of empirical insert length

distribution, and call this distribution F.

3) For each gene g with an exon X to exon Y (X$Y) junction,

compute inferred circle length, sum of length of exons

between Y and X on a per gene basis (call this length L).

4) For each read 1 crossing the exon X- exon Y junction,

approximate the probability that, if the scramble were

contained in a linear transcript, read 2 would align to

sequence upstream of exon y or downstream of exon X by 1-

F(L). This is an approximation because the exact alignment

offset of the junction (which can vary between 0 and 60) will

influence this probability. Call this probability p. In most

cases, this approximation will not be biased towards

increasing or decreasing the calculated probability p. For

n junctional sequences observed for a given gene, the

probability of seeing 0 reads aligning to sequences outside of

the exon X to exon Y interval is p0(g) = (F(L) )n.

Using the probabilities p0(g) over all genes, we computed the

number of total genes expected to have observed reads supporting

linearity under the hypothesis that scrambled exons are contained

in linear, rather than circular, transcripts by computing the

number of genes with p0(g) in the qth quantile and multiplying this

by the average p0(g) value. The result establishes an under-

representation of reads supporting the hypothesis that scrambled

exons are contained in transcripts with exons upstream of exon y

or downstream of exon X.

RNaseR assay
HeLa total RNA was isolated with TRIZOL, followed by rRNA

depletion using RiboMinus (Life Technologies). Samples were

then treated with DNase I (Fermentas, Glen Burnie, MD) for

15 min at 37uC, then diluted 16-fold into RNase R buffer

containing 0, 3,10, or 100 units of RNase R (Epicentre) per mg of

RNA. We have observed some batch to batch variation in the

results of our RNase R assays and suspect that some batches of

RNase R may have contaminating endoribonuclease activity: we

include this as a note of caution. Reactions were purified with

RNA Clean & Concentrator-5 columns (Zymo Research, Irvine,

CA). Reaction product corresponding to 5 mg of input total RNA

was reverse-transcribed in a 20 ml Superscript III reaction with

random hexamers (Life Technologies). cDNA reaction (1/100th of

PCR volume) was used as template in a 35-cycle PCR with

Phusion polymerase (New England Biolabs, Ipswich, MA), each

cycle being: 94uC 50; 68uC 150; 72uC 29.

qRT-PCR on Cytoplasmic and Nuclear Fractionation
Total, nuclear, and cytoplasmic RNA were isolated using the

PARIS Kit (Ambion, Austin, TX) according to the manufacturer’s

instructions. Primer and probe pairs for each qPCR reaction were

designed using the RealTime PCR Assay Design Tool (Integrated

DNA Technologies, San Jose, CA), see Table S7 for primer and

probe pairs.

50 ng of cDNA was added to Taqman Gene Expression Master

Mix (Applied Biosystems, Carlsbad, CA) along with primer and

probe at final concentrations of 0.5 and 0.25 mM, respectively.

Assays were run for 40 cycles using standard conditions on the

7900HT Fast Real-Time PCR System (Applied Biosystems,

Carlsbad, CA). Ct values were generated using SDS software.

Relative expression levels of linear and circular isoforms were

computed as differences in Ct values, and standard errors were

taken over biological replicates.

Northern Blot
Probe was generated from PCR product of MAN1A2 circular

RNA. A band that had previously been confirmed to correspond

to the 5-2 junction by Sanger sequencing was isolated using the

QUIAquick Gel Extraction Kit (Qiagen, Valencia, CA). The

probe was then biotinylated using the Brightstar Psoralen-Biotin

Kit (Ambion, Austin, Tx). Total and cytoplasmic RNA were

isolated from HeLa using PARIS Kit (Ambion, Austin, TX).

Labeled marker, 3.7 and 6.2 ug of total and ctyotplasmic RNA

were run on a 1% agarose gel, transferred, and hybridized

according to NorthernMax Kit protocol (Ambion, Austin, TX).

10 pM of probe was hybridized for 24–48 hours. Detection was

performed using the BrightStar BioDetect Kit (Ambion, Austin,

TX).

MAN1A2 Probe (481 bp)

CTATTCCCAACCTTGTAGGAATACGTGGTGGAGAC-

CCAGAAGATAATGACATAAGAGAGAAAAGGGAAAAAA-

TTAAAGAGATGATGAAACATGCTTGGGATAACTATAG-

GACATATGGGTGGGGACATAATGAACTCAGACCTAT-

TGCAAGGAAAGGACACTCCCCTAACATATTTGGAAG-

TTCACAAATGGGTGCTACCATAGTAGATGCTTTGGA-

TACCCTTTATATCATGGGACTTCATGATGAATTCCTA-

GATGGGCAAAGATGGATTGAAGACAACCTTGATTTC-

AGTGTGAATTCAGAGGTGTCTGTGTTTGAAGTCAAC-

ATTCGATTTATTGGAGGCCTACTTGCAGCATATTAC-

CTATCAGGAGAGGAGGGAAGAGGAAGAACGTCTGAGA-

AATAAAATTCGAGCTGATCATGAGAAGGCCTTGGAAG-

AAGCAAAAGAAAAATTAAGAAAGTCAAGAGAGGAAAT-

TCGAGCAG.

Supporting Information

Figure S1 Number of Genes with Circular Isoforms by
Total Gene Expression and Detection Probability. Total

gene expression was computed for each of the three cell types

(CD19, CD34 and neutrophils), and genes were ranked in

expression according to sequencing reads per length. Expressed

genes were categorized into 100 even quantiles by cell type. The

number of genes with sequencing evidence of exon scrambling

was computed for all genes in each quantile (each quantile

contains the same number of genes) and are depicted as colored

histograms. The median number of reads per length (gene

expression) for each expression quantile determines the proba-

bility of detecting a scrambled transcript if it were expressed at

the same rate as the median expression quantile. This detection

probability is shown by a thin black line. If the probability of

having scrambled exons did not vary by expression quantile (the

uniform hypothesis), this probability would be proportional to the

number of genes with scrambled transcripts. For all samples, the

very highest expression quantile shows relative depletion in exon

scrambling events compared to its expectation and compared to
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the number detected in the previous quantile under the uniform

hypothesis.

(EPS)

Figure S2 No-Template and No-RT Controls Do Not
Produce PCR Products. DNase-treated total RNA or cDNA

from HeLa underwent 35 cycles of PCR amplification using primers

specific for each of the noted scrambled transcripts. Each of the

reactions with cDNA template produced expected products (C),

while those without template (A) or with RNA that had not

undergone reverse transcription (B) did not produce PCR products.

(EPS)

Figure S3 Enrichment in Intron Length in Genes with
Circular Isoforms. We investigated whether genes with exon

scrambles have typical intron lengths compared to the genome-

wide distribution. At left: to test the association of intron length

with scrambling events, we computed the median length of intron

4 (or, more generally, intron x) among scrambled isoforms where

the donor exon was exon 3 (or, more generally, exon y), and found

the relative quantile of this length in the length distribution of

intron 4 in all human genes. We performed this analysis for all

intron and exon pairs x and y where x,y#9. At right: the analysis

was repeated by stratifying scrambled junctions by acceptor exons.

Several features of genes containing scrambled isoforms emerge

from this analysis. First, the length of each intron of such genes are

enriched compared to the whole-genome median, regardless of

which donor or acceptor exon is involved in the scramble. This

implies that genes with scrambled isoforms are longer than the

typical gene. Secondly, there is an enrichment in the length of the

intron immediately upstream of the acceptor exon (and to a lesser

extent, in all upstream exons), and a relative depletion in the

length of the intron immediately downstream of the acceptor exon

(and to a lesser extent, in all downstream exons). A less striking

enrichment in intron length is seen downstream of the donor exon.

(EPS)

Figure S4 Denaturing RNA Gel Serves as Second
Control for Cytoplasmic and Nuclear Fractionation.
2 mg of total RNA from total lysate(T), as well as cytoplasmic

(C) and nuclear (N) fractions were separated on 1% aagarose gel.

As expected, the cytoplasmic fraction has higher concentrations of

28 s and 18 s ribosomal RNA bands. In addition, the nuclear

fraction shows precursor ribosomal RNA bands that are absent in

the cytoplasmic fraction.

( )

Table S1 List of scrambled isoforms detected in the
leukemia data with RefSeq exon enumeration beginning
at exon 0.
(TAB)

Table S2 List of scrambled isoforms detected in the
leukocyte data with RefSeq exon enumeration beginning
at exon 0.

(TAB)

Table S3 Sanger sequences and primers for RT-PCR
validation (see Text S1 for more details).

(DOC)

Table S4 List of genes with reads in order inconsistent
with the reference detected with RefSeq exon enumer-
ation beginning at exon 0. Table description and statistical

methods for generating the table can be found in the Text S1.

(CSV)

Table S5 Genome-wide assessment of evidence for
scrambled isoforms being circular with RefSeq exon
enumeration beginning at exon 0. Table description and

statistical methods for generating the table can be found in the

Text S1.

(TAB)

Table S6 Scrambled isoforms with evidence of being
contained in linear RNA compiled from paired-end
HeLa (poly-A selected), H9 (poly-A selected) and Leu-
koctye data with RefSeq exon enumeration beginning at
exon 0 (see Text S1 for more details).

(XLS)

Table S7 qPCR primer and probe pairs.

(DOC)

Table S8 Table of scrambled exon-exon junctions
detected from the public RNA-Seq dataset of ribosomal
depleted mouse brain (see Text S1 for more details).

(CSV)

Text S1 Supplementary Methods.

(DOC)
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