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Abstract

Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation
concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled
a database of communication towers in the continental United States and Canada and estimated avian mortality by tower
with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which
mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate.
Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at
towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting
estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling
indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models
showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total
avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication
towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of
mortality, develop subsequent per-species mortality estimates, and motivate policy action.
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Introduction

On the morning of September 11, 1948, ‘‘a good number of

dead, dying, and exhausted birds’’ were found at the base of the

WBAL radio tower in Baltimore, Maryland [1]. Reports of such

avian mortality at communication towers in North America became

common in the 1950s [2–7]. These observations were consistent

with the long documented mortality of birds at lights, including

lighthouses [8], light towers [9], buildings [1,10], and ceilometers

[1,11]. Although initially dismissed as being of minor consequence

[12], the ongoing and chronic mortality of nocturnally migrating

birds at lighted structures has become a recognized conservation

issue [7,13–15]. Bats are also killed in collisions with tall towers in

unknown numbers [16–18]. An estimate of the total number of

birds killed at communication towers in the United States and

Canada is particularly relevant because the current transition from

analog to exclusively digital broadcasting in the United States is

expected to lead to the construction of more tall towers and a similar

trend will likely follow in Canada.

In 1979, Banks [13] developed a widely circulated estimate of

avian mortality at television towers, which revised upward a

previous estimate by Mayfield [12]. In Banks’s assessment of

various sources of human-caused avian mortality, he extrapolated

the results of three studies at tall towers – two in Florida [19,20]

and one in North Dakota (for which he did not provide a citation

but which was almost certainly [21]) – to all television towers. He

calculated the average mortality at these three sites to be roughly

2,500 birds per year, and multiplied it by the number of television

towers (1,010 in 1979). He then assumed that half of all television

towers would cause a hazard to migrating birds. The resulting

estimate of annual mortality was 1,250,000 [13]. Also in 1979,

Avery [22] applied bird mortality results from seven towers that

had been monitored for at least 10 years and derived an overall

mortality estimate of 940,000/year for the United States. More

recent estimates of total avian mortality at towers in the United

States by the U.S. Fish and Wildlife Service (USFWS) in 2001

[14,23] adjusted the Banks estimate by accounting for the

increased number of towers since 1979. Application of Banks’s
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method today results in an estimate of 4–5 million birds killed

annually by tall towers, with Manville [15,24] indicating a

possibility of mortality an order of magnitude higher.

No estimate of avian mortality at communication towers has

been made for the United States and Canada as a whole, and the

only estimate for Canada was presented in a preliminary

unpublished report preceding this paper. The bulk of species

killed at towers in the United States and Canada are Neotropical

migrants, i.e., birds that breed in Canada and the United States

and spend the non-breeding period south of the U.S. border

[13,25]. Because the ranges of these species extend into Canada,

mortality in both the United States and Canada contribute to their

population dynamics.

In this paper we develop a new estimate of avian mortality at

communication towers in the United States and Canada. This

estimate derives from a review and re-analysis of tower mortality

studies (following [26]). We improve on Longcore et al. [26] by

adjusting mortality records at towers for sampling effort, search

efficiency, and scavenging, and by incorporating additional

studies. We produced a regression for avian mortality by tower

height and then applied this regression to a geographic database of

communication towers for the United States and Canada. This

approach recognizes that taller towers kill more birds on average

than do shorter towers [26–28], but also incorporates mortality

estimates for lighted towers that are less than 600 ft (,180 m)

above ground level (AGL), which have previously been left out of

estimates of total avian mortality. These ‘‘shorter’’ (60–180 m)

lighted towers, which constitute .95% of lighted towers, do

regularly kill birds [28–30] and their sheer number argues against

ignoring them. We do not, however, estimate mortality from

collisions with other lighted structures. Attraction to light at night

leads to avian mortality at buildings, monuments, cooling towers,

bridges, offshore platforms, ships, lighthouses, and wind turbines

[24,31,32], and the same group of species (Neotropical migrants)

are especially susceptible.

Our goal is to improve upon past estimates, which relied on a

very limited set of data and did not reflect current understanding

of the tower height–mortality relationship. Because of the nature

of the existing data on avian mortality at towers and the lack of a

systematic continent-wide survey effort, additional field studies will

be required to refine further our approach. Our results do,

however, increase both the transparency and accuracy associated

with the estimate of this source of avian mortality.

Methods

We assigned average mortality values to tower height classes

(every 30 m) using a regression of tower height by annual mortality

(following [26]). Longcore et al. [26] identified reports of birds

killed at 26 communication towers over at least two migratory

Table 1. Average search and scavenging rates taken from pesticide impact studies [42].

Habitat Body size Search rate (# study plots) Percentage lost to scavenging
Detection rates (studies combining
search and scavenging rates)

Shrub/wood edge Small-medium 41.0% (301) 20.9% 22.8% (94)

Shrub/wood edge Large 67.6% (29) - -

Bare/open Small-medium 64.6% (359) 28.4% 18.6% (56)

Bare/open Large 88.1% (17) - -

Search and detection rates are based on daily averages weighted by the number of study plots. Search rates represent the proportion of carcasses found over the total
number still present at the time of search. Scavenging rates represent daily measurements averaged over all plots without regard for the number of placed carcasses.
Search rates are undoubtedly at the high end of that which is possible because the search procedures were optimized, always including trained lines of searchers
spaced optimally for the habitat as well as the use of search dogs in some studies.
doi:10.1371/journal.pone.0034025.t001

Table 2. Assumed rates for search efficiency and scavenger removal by tower height and habitat type when not provided by
investigator.

Tower type and mortality
profile Habitat

Assumed proportion of
small birds located by
searcher

Assumed proportion of
small birds remaining
after scavenging Combined rate of detection

Height class 1 (0–200 m), sporadic
mortality, more localized

Open habitat 75% 80% 60%

Brush and other visual
obstructions

50% 85% 42%

Height class 2 (201–400 m), regular
mortality, more dispersed

Open habitat 65% 55% 36%

Brush and other visual
obstructions

40% 70% 28%

Height class 3 ($401 m),
dependable mortality, carcasses
widely dispersed

Open habitat 55% 30% 16%

Brush and other visual
obstructions

30% 55% 16%

doi:10.1371/journal.pone.0034025.t002
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seasons (e.g., spring and fall, two falls), consisting of a minimum of

10 total carcass-searching visits per site. We added figures from

additional studies [33,34], tested the sensitivity of the regression to

inclusion of studies, and developed adjustments for sampling effort,

search efficiency, and scavenging to produce estimates of

mortality.

Sensitivity of Tower Height–mortality Regression
We collected as many studies of bird mortality at communica-

tion towers as possible from the literature and, when necessary,

obtained raw data from study authors. Some studies had to be

dropped from our analysis (e.g., [28]) because we were unable to

obtain data from study authors and published reports did not allow

us to assign mortality to specific towers. Because the number of

tower studies available to us was finite, and because the choice of

studies may have influenced our results, we tested the extent to

which the regression was robust to sampling variation among the

towers available for analysis. We used a randomization and

resampling procedure to select random subsets of the 38 towers

included in the analysis. To explore a range of plausible tower

subsets that could produce a regression, we resampled subsets that

included just under half of the available towers (18) up to those

with one fewer than the complete dataset (37 towers) and re-

iterated the sampling procedure 5,000 times. We used the natural

logarithm of both the dependent and independent variables to

normalize their distributions.

Adjustment for Scavenging and Search Efficiency
Loss of birds to scavengers and failure to detect all dead birds

(search efficiency) are sources of error and variation in tower

studies. Some authors have opted to apply searching and

scavenging factors to final kill estimates (e.g., [28,35]). Recognizing

that search efficiency and scavenging losses are likely tower-

specific, we opted to correct the number of kills at each tower

before regressing these estimated losses against tower height.

We assumed that scavenging would be lower at a small tower

that sporadically generates only a few mortalities compared with a

well-established tall tower that kills birds reliably and therefore

maintains scavenger interest [36–39]. This assumption is support-

ed by high scavenging rates documented at tall towers such as

WCTV in Florida [20,36,38] and rapid increases in scavenging

when researchers provide carcasses [33]. Even with extensive

scavenger control efforts, Stoddard estimated that he was losing at

least 10% of bird carcasses to scavengers daily [40]. Therefore, we

adjusted our scavenging rate by tower height.

We assumed that it is easier to find carcasses under a short

tower because carcasses are likely to be less dispersed under

shorter guy wires or in the absence of guy wires. Whether the area

around the tower is bare or heavily vegetated will affect both

scavenging and search rates [41]. Open habitats with little

concealing vegetation are, predictably, more conducive to efficient

searching for carcasses [41]. Scavengers detecting prey by sight

can find the carcasses more easily as well. Notwithstanding the use

of smell by some carnivores to find prey, dense cover makes it

more difficult in general for both scavengers and searchers to find

carcasses [42]. Support for our assumptions about the effect of

cover on these rates is found in research on avian mortality caused

by pesticides, power lines, and wind turbines [41–45]. We avoided

attempts to calculate probability of detection by searchers that

involved the ‘‘life expectancy’’ of carcasses because these methods

are biased [46]. If a carcass was not found on the first search day,

the probability that it will be found on subsequent days is

considerably less than the average search rate would suggest.

Therefore, for the purpose of this analysis, the likelihood that a
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carcass was found more than one day after it was generated is

considered negligible. Removal of dead birds by scavengers at sites

with regular mortality also follows an exponential decay model

such that the probability of small dead birds remaining to be found

falls quickly following the mortality event [45,47].

We divided towers into height classes to which we could assign

differential search and scavenging rates. Based on breaks in the raw

tower mortality data, we chose to divide the towers into three height

classes: 0–200 m, 201–400 m, and $401 m. To assign search and

scavenging rates we relied on our published summaries of available

rates from a range of carcass searching contexts (Table 1) [41,42],

other existing studies and reviews [37,43,44,46,48], and values

reported at the towers in our dataset where these rates were

measured [28,33,34,49]. Taking into account patterns from these

data, we used tower height as well as any information about cover as

a way to assign search and scavenging corrections by height and

cover class to the towers for which these rates had not been measured

and reported by the authors (Table 2). All search and scavenging

rates, both measured and assigned, are reported in Table 3.

We investigated the sensitivity of our final results to these

assumptions about search efficiency and scavenging by recalcu-

lating our total mortality estimates while assigning the average

search efficiency and scavenging rates reported from those studies

that did estimate these rates. This approach tested the alternative

assumption that studies from all towers where search efficiency or

scavenging were not measured had the same search efficiency,

scavenging rate, or both, as did studies at the towers where they

were measured, regardless of the physical conditions at the tower

or the height of the tower.

Adjustment for Sampling Effort and Design
Studies included in the tower height–mortality regression varied

in sampling design and duration. Following Longcore et al. [26],

we required a minimum of 10 searches for a study to be included.

Authors of most of the studies used in the regression assumed that

most birds would be found by sampling during peak migration, on

bad weather days preceding or following the passing of a cold front

(e.g., J. Herron, pers. comm.), or both (Table 4). The logic behind

this approach is that many high avian mortality days are

correlated with these factors [31]. Nevertheless, ‘‘trickle kills’’ on

fair weather days even outside the typical migration period can

contribute substantially to overall mortality [40]. Substantial

mortality during clear and calm weather during the migration

season has also been documented [30,50] (Figure 1). For these

reasons we used raw data from two studies that carried out daily

carcass searches – WCTV Florida tower data from 1956–1967

initiated by Herbert L. Stoddard and Tall Timbers Research

Station [40] and North Dakota ‘‘Omega’’ tower [21,51,52] – as a

baseline to develop estimates of the effectiveness of the various

sampling designs for the 38 tower studies included in our dataset.

The Florida estimates were averaged over the 10 years of sampling

during which height of tower and predator control were the same;

the North Dakota estimates are for two years of sampling. When

the estimate was (partially) based on sampling outside the

migratory period (as defined), we used the Florida dataset, which

had continuous, year-round sampling. We did not, however,

correct upward all kill estimates to account for the trickle of kills

recorded in the non-migratory seasons. We believe, therefore, that

our estimates are conservative. To control for differences between

spring and fall migration we developed estimates for both spring

and fall separately.

To adjust for the kills between sampling days during the

migratory seasons we resampled (with replacement) daily mortality

data from the Florida and North Dakota datasets within each of
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the spring and fall migration periods by randomly selecting a

subset of days and summing avian mortality for the selected days.

We calculated average bird mortality for 5,000 iterations and then

used the ratio of the average bird mortality from the 5,000

iterations to the total number of birds killed during either spring or

fall migration or outside of the migration period to adjust mortality

estimates for studies without daily sampling. We averaged

estimates between the Florida and North Dakota datasets. This

adjustment was applied to studies where researchers sampled on

bad weather days (see below) and to those with weekly sampling

outside the migration period.

For studies that did not provide complete details on their

sampling design, we made simplifying assumptions (see below). If

more than one sampling strategy was used, we developed estimates

for each and used the sum as our overall estimate. For example,

sampling may have been done weekly (regular sampling) outside of

the migration period and also on ‘‘bad weather days’’ during the

migration period.

We defined the spring and fall migration periods as a 60-day

window before and after the migration peak for both spring and

fall for each dataset, recognizing that for some recent studies (e.g.,

[28]) monitoring only occurred during the three-week peak of

migration. We determined the peak for the Florida and North

Dakota datasets by plotting the number of birds killed (from the

raw data) against Julian date for all years of data combined and

using negative exponential smoothing.

Some investigators reported the total number of days sampled

during one or both migration periods and sometimes outside the

migration periods. When the sampling interval (e.g., weekly) was

identified in the study design, we constrained the resampling

procedure to randomly select a day within that sampling interval.

If no sampling interval was defined, selection was random.

Some investigators sampled on so-called ‘‘bad weather days’’ or

following bad weather nights, i.e., overcast, often associated with

advancing cold fronts and potentially including precipitation.

Usually no other information was provided to define bad weather

or the number of days when bad weather occurred. High bird

mortality at communication towers is correlated with bad weather

days [40,50,53]. This is shown by plotting ln(n+1)-transformed

daily mortality data from the Florida tower dataset for the 1956–

1967 fall migrations against the mean free airspace (distance

between the top of the tower and the bottom of the cloud cover).

Days where maximum free airspace was recorded were excluded

from analysis because measurements did not vary for total ceiling

greater than 610 m (2,000 ft). Mortality for days with mean ceiling

at the maximum was 4.0–8.0 birds per day (95% C.I., n = 871),

while mortality for all days with less than the maximum ceiling was

16.0–33.5 birds per day (95% C.I., n = 569). Considering these

remaining points, a linear regression reveals a highly significant

effect of mean free airspace, but also low explanatory power

(Figure 1). Based on these data, we used days with mean free

airspace equal to or below 335 m (1,100 ft) as an index of bad

weather days because mortality was significantly lower on days

with airspace greater than 335 m (10.3–17.8 birds per day, 95%

C.I., n = 387) compared with days with airspace below this

threshold (21.5–73.3 birds per day, 95% C.I., n = 182).

Figure 1. Relationship of bird fatalities to free airspace at WCTV Tower, 1956–1967. Raw data from Crawford and Engstrom (2001) were
used to plot daily bird fatalities against the mean free airspace between the top of the tower and the cloud ceiling each day. Days with maximum
ceiling were excluded. Daily avian mortality increases significantly as free airspace decreases (Ln(Bird Fatalities +1) = 1.443928 – 0.0016667 ? Mean
Free Airspace (m), R2 = 0.17, p,0.001).
doi:10.1371/journal.pone.0034025.g001
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For some studies, the only information provided was the

number of days sampled and the timing of sampling (during

migration or all year). For these studies we assumed that

researchers sampled on bad weather days during migration when

large bird kills at communication towers were expected, given that

this was the response obtained when we were able to contact

researchers to ask about papers where this detail was not provided

(e.g., J. Herron, pers. comm.).

Several researchers sampled only on days when so called ‘‘big

kills’’ were reported. The definitions of ‘‘big kill’’ were not

included. The typical daily trickle of dead birds for the Florida

dataset over the 1956–1967 period was five. We therefore defined

big kills as six or more birds located after any given night.

We investigated the sensitivity of our results to our assumptions

about sampling effort by varying these assumptions for the 13

studies in our dataset that either did not indicate the number of

days sampled or did not provide a definition of sampling design,

or did neither. Some researchers had indicated that they had

sampled on overcast or bad weather days or following bad

weather days. For all of these studies and for those that did not

mention anything specific, we made the conservative assumption

that towers were sampled on bad weather days. We then

recalculated the sampling adjustment and total mortality using

three different scenarios: 1) researchers sampled on bad weather

days and weekly during migration (e.g., [49]); 2) researchers

sampled on bad weather days and weekly all year (e.g., [33];

Table 5. Regression results for mean annual fatalities by tower height, when unadjusted, corrected for sampling only, corrected
for search efficiency and scavenging only, and corrected for both sampling and search efficiency/scavenging, with estimated
annual fatalities after back transformation, adjustment for bias, and application to all towers in the United States and Canada.

Slope Intercept R2
adj RMSE F P

Estimated annual
fatalities (million)

No corrections 2.8257 –10.8626 0.78 1.110 133.5046 ,0.0001 1.38

Sampling correction 3.0962 –11.9490 0.80 1.151 148.8302 ,0.0001 2.06

Searcher/scavenging correction 3.2024 –11.8012 0.82 1.110 171.2329 ,0.0001 4.31

Both corrections 3.4684 –12.8600 0.84 1.137 191.6163 ,0.0001 6.80

doi:10.1371/journal.pone.0034025.t005

Figure 2. Bird Conservation Regions and locations of towers used for tower height–mortality regression.
doi:10.1371/journal.pone.0034025.g002
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excludes 5 of the 13 studies that clearly indicated they only

sampled during migration); and 3) researchers sampled only

following big kill days, about which they were notified by

personnel at the tower (e.g., [5]).

Evaluation of Model Correction Factors
We plotted either raw carcass counts or mortality estimates

corrected for either sampling effort or search efficiency and

scavenging, or both, against tower height and looked for

improvements in the regression coefficient as an indication that

the corrections improved the model.

Description of Communication Towers and their
Characteristics

We used a Geographic Information System (GIS) to extract the

locations and characteristics of towers in the Antenna Structure

Registration (ASR) database maintained by the U.S. Federal

Communications Commission (FCC) and the NAV CANADA

obstruction database. The FCC data are freely available and we

purchased a license for the Canadian obstruction data for the

limited purpose of this study. We compared and crosschecked

these with the FCC’s microwave tower database and the

commercial TowerMaps database (also purchased, see http://

www.towermaps.com/), which provides locations of cellular

towers to potential lessees and incorporates both data for shorter

towers and information that was not included in the FCC

databases. We did considerable quality control on the tower data,

confirming from independent sources that all towers greater than

300 m existed. This was necessary because the data were prone to

multiple types of errors; for example, the FCC database included a

record claiming to be located in the ‘‘Land of Oz’’ in Kansas,

associated with geographic coordinates in Minnesota. Full details

of the quality assurance are available from the authors.

The NAV CANADA database did not contain comprehensive

information about either the presence of guy wires or the presence

and type of lighting. We therefore relied on data from the FCC

and TowerMaps datasets and assumed that lighting and guy wire

use was similar in both countries for towers of the same height

class, an assumption supported by the similarity in marking and

lighting standards between the two countries. The U.S. Federal

Aviation Administration requirements are found in the advisory

circular AC 70/7460-1K. Those of Canada are found in Standard

621 of the Canadian Aviation Regulations.

Calculation of Annual Mortality
Avian mortality was estimated with the antilogarithm of the

regression of the log transformed variables, which was adjusted for

transformation bias using the smearing estimator after testing to

confirm homoscedasticity of variance in the regression [54,55].

Most recorded tower kill events take place at guyed towers, and

steady-burning lights increase the probability of large tower kills

[26,28]. We assumed that unguyed towers caused 85% less

mortality than guyed towers (midpoint of 69–100% estimate in

[56]) and that towers without steady-burning lights caused 60%

less mortality than towers with such lights (midpoint of 50–71%

estimate in [28]). Following Longcore et al. [26], all estimates were

calculated assuming that when both seasons were not measured,

75% of annual mortality occurred during the fall and 25% during

the spring [40].

We overlaid locations of towers within each Bird Conservation

Region (BCR) in the study area and calculated the number of

towers in each 30 m height class for all towers $60 m. Bird

Conservation Regions are divisions defined by habitat and

topography that have been delineated for the purpose of bird

conservation by the North American Bird Conservation Initiative

and are endorsed by a range of bird conservation organizations

and government agencies. BCRs are based on the North

American ecoregions developed to promote international conser-

vation efforts [57]. For each height class within each BCR we

calculated the average number of birds killed per year, using the

tower height–mortality regression adjusted for sampling effort,

search efficiency, and scavenging as described above. For purposes

of calculating total mortality we included all towers in the

continental portions of the United States and Canada. Although

most literature on tower mortality in North America describes

studies from east of the Rocky Mountains, we included the West as

well for purposes of estimating total mortality, a decision

supported by records of tower mortality in Colorado [33], New

Mexico [58], and Alaska [59], in addition to documented kills at

lighthouses in California and British Columbia [60,61]. We did

not attempt to assign differential mortality for so-called flyways

because radar studies and other observations strongly support the

existence of ‘‘broad front’’ migration [62,63]. To investigate this

assumption, we plotted the residuals of the tower height–mortality

regression by their geographic coordinates and calculated Moran’s

I as a measure of spatial autocorrelation. We acknowledge that

local habitat factors may influence mortality at particular towers,

but because only 18.4% of towers were originally selected for

monitoring on the basis of knowledge of prior mortality (see

below), it is unlikely that these variations would result in a

systematic bias in the resulting mortality estimates.

To illustrate the contribution of each part of our adjustment to

the final estimate of mortality, we calculated the extrapolated

mortality estimates for the unadjusted mortality data, with the

sampling correction only, with the search efficiency and scav-

enging corrections only, and corrected for all factors.

Figure 3. Regression and 95% confidence intervals of annual
avian fatalities by tower height. Annual avian fatalities were
adjusted for sampling effort, search efficiency, and scavenging and
regressed by log-transformed tower height (Ln(Mean Annual Fatalities
+1) = 3.4684 ? Ln(Tower Height) – 12.86, R2 = 0.84, p,0.0001).
doi:10.1371/journal.pone.0034025.g003
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We do not report estimates of bird mortality at short (,60 m)

towers in this paper because they contribute negligibly to overall

annual bird mortality and are not usually illuminated unless

located near an airport. We note, however, that single-night

mortality events with several hundred identified dead birds at unlit

,60 m towers have been reported, often related to lighting at

adjacent infrastructure [30], which is consistent with reports from

turbines and towers monitored at industrial wind facilities [64].

Our analysis therefore applies to towers $60 m.

Results

Tower Height–mortality Regression
Towers used in the height–mortality regression were located

throughout the eastern United States (Figure 2). We were able to

confirm from original sources and personal communications that

68.4% of the towers were chosen for study with no prior

knowledge of avian mortality; status is unknown for 13.2% of

towers; and only 18.4% of towers were chosen with any knowledge

of prior avian mortality. Log-transformed annual avian mortality,

when adjusted for sampling effort, search efficiency, and

scavenging, was significantly explained by log-transformed tower

height in a linear regression (R2 = 0.84, F1,36 = 191.62, p,0.0001)

(Table 5; Figure 3).

Tower Height–mortality Regression Sensitivity to Study
Inclusion

The median R2 values of the resampled distributions are similar

to those obtained from using all of the available studies (Figure 4,

Table 6) and are not sensitive to the addition or elimination of a

few or a set of studies. The results of the resampling procedure for

subsets of 18 studies (a little under half of the studies) and for 37

studies (1 fewer than the total) show the range of influence that

study inclusion could have on the regression line (Table 6).

Evaluation of Model Adjustment Factors
Models using either sampling correction alone or the combina-

tion of sampling correction with the combined search efficiency

and scavenging correction were found to be superior to the model

using tower height alone at explaining annual kills (R2 = 0.84 vs.

R2 = 0.79; Table 5). Correcting for search efficiency and

scavenging losses appeared to provide the best improvement to

the overall model (Table 5).

Figure 4. Influence of study choice on tower height–mortality regression. Distribution of counts for R2 (adjusted), standard error, and
coefficient for 5,000 iterations (subset = 18 studies, left; subset = 37 studies, right) for a linear regression between the natural logarithms of tower
height (m) and mean annual fatalities.
doi:10.1371/journal.pone.0034025.g004
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Tower Characteristics
Our database of $60 m towers included 70,414 towers in the

continental United States and Canada after all quality assurance

and quality control was done (Figure 5). Most towers in the United

States dataset (31,486; 50.3%) were freestanding with steady-

burning lights at night, while the fewest towers (4,898; 7.8%) were

guyed with strobe lights at night. Some towers had strobe lights

during the day but red flashing and red solid lights at night so these

were included as having solid lights.

Total Mortality and Estimates by Bird Conservation
Region

Combination of the tower height–mortality regression with

estimates of reduced mortality at towers without guy wires or

steady-burning lights produced a matrix of mortality by height

class and tower characteristics. These estimates, already adjusted

for sampling effort, search efficiency, and scavenging, ranged from

zero for short unguyed towers to over 20,000 birds per year for the

tallest guyed towers with steady-burning lights.

The back-transformed tower height–mortality regression, ad-

justed for bias (smearing estimator) and applied to towers in the

continental United States and Canada, produced an annual

mortality estimate of 6.8 million birds per year (Table 5).

Extrapolation from the unadjusted data yielded an estimate of

1.4 million birds per year, meaning that our cumulative

assumption is that searchers find only around 20% of the birds

that are killed, because of search efficiency, scavenging, and

incomplete sampling (Table 5).

These results are sensitive to the assumptions that were made

about these factors. As an illustration, we calculated total mortality

while assuming a constant search efficiency equal to the average of

the measured search efficiency from those towers where this was

measured (36.4%), which resulted in a total mortality estimate of

9.4 million birds per year. Applying the average scavenging rate

(15.8%) to all towers resulted in a mortality estimate of 4.7 million

birds per year. Using both averages (for scavenging and search

efficiency) yielded an estimate of 6.4 million birds per year. For the

sampling effort adjustments, recalculated mortality estimates for

the three scenarios applied to studies with unknown sampling

schemes were: 5.4 million birds per year for sampling only on big

kill days, 5.7 million birds per year for sampling on bad weather

days and weekly year round, and 6.2 million birds per year for

sampling on bad weather days and weekly during migration only.

Finally, if we recalculate mortality after omitting all towers selected

with prior knowledge of any mortality on site (18.4% of our sample

of towers), the estimate of total mortality declines to 5.5 million

birds per year.

Over two-thirds of the estimated mortality is attributed to

towers $300 m, of which only 1,040 were found in our database

(1.6% of towers $60 m; Table 7). Fully 71% of mortality is

attributed to the tallest 1.9% of towers. Shorter towers (60–150 m)

Figure 5. Map of communication towers in the United States and Canada by height class. Data acquired from Federal Communications
Commission, Towermaps.com, and NAV CANADA.
doi:10.1371/journal.pone.0034025.g005

Table 6. Confidence intervals and median values for model
parameters using randomized subsets of 18 or 37 studies
(5,000 iterations).

Subset Parameter 5% 95% Median

18 studies R2 0.765 0.906 0.847

slope 3.087 4.061 3.474

intercept –16.205 –10.775 –12.882

standard error 0.919 1.331 1.345

37 studies R2 0.828 0.853 0.841

slope 3.414 3.591 3.465

intercept –13.556 –12.556 –12.845

standard error 1.093 1.153 1.146

doi:10.1371/journal.pone.0034025.t006

Avian Mortality at Communication Towers

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e34025



contribute approximately 17% of all mortality because of their

sheer numbers (Table 7).

Our estimates of mortality vary by region, influenced both by

the size of the region and the number and height distribution of

towers (Figure 6; Table 8). The number of towers in each BCR

does not directly correlate with estimated annual mortality because

of differing numbers and heights of towers. As a result, Peninsular

Florida is associated with more mortality than all of Canada; even

though fewer towers are reported in Peninsular Florida, they are

on average much taller. The concentration of migrants resulting

from Florida’s geographic position would increase mortality even

more, but this factor is not considered in our method because

mortality rates for any given tower height are assumed to be

constant across the continent. The Southeastern Coastal Plain

BCR accounts for greater mortality than other BCRs, followed by

Eastern Tallgrass Prairie, Oaks and Prairies, and Piedmont

(Table 8). Canadian mortality accounts for only a fraction of the

total (approximately 3.2%), because Canada has far fewer, and

generally shorter, towers.

Table 7. Number of communication towers $60 m by type and associated avian mortality estimates for Canada and the
continental United States.

Country
Height class
(m)

Guyed towers
with steady-
burning lights

Guyed towers
with strobe
lights

Unguyed towers
with steady-
burning lights

Unguyed
towers with
strobe lights

Annual
fatalities

Percent of
fatalities

United States 60–90 5,901 863 17,693 2,575 115,524 1.76%

90–120 10,023 1,696 10,004 1,683 531,411 8.07%

120–150 2,938 505 2,922 488 377,542 5.74%

150–180 1,992 311 661 101 468,600 7.12%

180–210 343 46 107 12 142,679 2.17%

210–240 174 54 51 11 126,507 1.92%

240–270 109 57 29 16 131,379 2.00%

270–300 76 61 18 14 146,530 2.23%

300–330 271 128 0 0 642,858 9.77%

330–360 115 28 0 0 345,255 5.25%

360–390 78 22 0 0 317,130 4.82%

390–420 47 16 0 0 254,809 3.87%

420–450 35 10 0 0 238,450 3.62%

450–480 66 23 0 0 579,458 8.80%

480–510 25 10 0 0 277,580 4.22%

510–540 24 8 0 0 319,300 4.85%

540–570 8 9 0 0 165,120 2.51%

570–600 18 15 0 0 410,068 6.23%

600–630 38 27 0 0 991,745 15.07%

Subtotal 22,282 3,888 31,486 4,898 6,581,945 100.00%

Canada1 60–90 627 323 1,880 968 13,980 6.34%

90–120 1,295 284 1,295 284 69,981 31.72%

120–150 251 55 251 55 32,797 14.86%

150–180 92 23 31 8 22,363 10.14%

180–210 44 11 15 4 19,085 8.65%

210–240 19 5 6 2 13,757 6.24%

240–270 6 2 2 1 6,640 3.01%

270–300 3 1 1 0 4,884 2.21%

300–330 9 4 0 0 21,267 9.64%

330–360 3 1 0 0 8,973 4.07%

360–390 1 0 0 0 2,996 1.36%

390–420 1 0 0 0 3,912 1.77%

Subtotal 2,349 709 3,480 1,321 220,650 100.00%

Total 24,631 4,597 34,966 6,219 6,802,595

1Tower attributes (guy wires, lighting type) for Canada are extrapolated from proportions in the United States because these attributes are not found in the NAV
CANADA database.
doi:10.1371/journal.pone.0034025.t007
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Although we extended mortality estimates to all towers in

Canada and the continental United States, few studies are

available from the West (Figure 2). This may be a function of a

higher number of nocturnal migrants in the East, different patterns

of migration, different weather patterns, or it may simply reflect

the fewer and shorter towers in the West as a whole. We

investigated the effect of location on annual mortality by regressing

the residuals of our height regression against longitude and also by

testing the residuals for spatial autocorrelation. The resulting plot

showed slightly higher mortality in the East, but the relationship

was not significant and was largely driven by a single data point in

Colorado. Residuals were not spatially autocorrelated using

inverse Euclidean distance weighting (Figure 7; Moran’s I = 0.09,

z = 0.23, p = 0.816). More comprehensive surveys of towers in the

West are needed to see if the lower mortality at the site in

Colorado represents an anomaly or a different pattern of mortality

in the West. Pending such further analysis, extrapolation of

mortality at towers in the western portions of the United States

and Canada should be regarded as provisional.

Discussion

Our total mortality estimate of 6.8 million birds per year is

,50% greater than the current USFWS estimate of 4–5 million

birds per year [14,15,23,24]. Our results do not support the

suggestion that mortality might be an order of magnitude higher

[14,15], which had been made before this type of synthetic analysis

had been attempted. Our approach to estimating total avian

mortality at towers uses far more data than previous efforts. For

example, Banks’s [13] estimate was based on mortality rates from

only three tower studies and assumed that all towers caused the

same rate of mortality, regardless of tower height. Our method

incorporates evidence from 38 towers to establish the relationship

between tower height and avian mortality. We accounted for the

height distribution and physical characteristics of ,84,000 towers

across the United States and Canada (including towers ,60 m,

which we mapped but did not include in our mortality estimates).

Notwithstanding the sources of uncertainty in our estimate, the

method improves previous efforts, is transparent, and can be

revised in conjunction with additional field studies.

Although mortality at some towers has apparently declined over

time [31], the influence of any such trend (if a true decline in

mortality and not the result of increased scavenging) is offset by the

large portion (.50%) of towers in the regression having survey end

dates after 1990. If only these studies ending after 1990 are used in

the regression, the total mortality estimate decreases to 4.8 million

birds per year. The residuals of the tower height–mortality

regression, however, are not significantly explained by the ending

year of the survey (results not shown) so we did not exclude the

older studies from our final regression. Even if the decline in

number of birds killed at towers is a real phenomenon, the effect of

these kills on sensitive species could still be substantial if

populations have declined by a greater proportion.

Estimated tower mortality increases exponentially with tower

height [26], which makes our results sensitive to the use of the

height classes. For example, if we used the top of each height class

rather than the middle to calculate total mortality, the estimate

would increase by 25%. The use of the height classifications was

necessary for ease of calculation and because attributes of the

Canadian towers that were not known had to be assigned

probabilistically. We used log transformations of both variables to

normalize the distributions and because the total volume of

airspace occupied by guy wires increases far more rapidly than

does height. The increasing length of guy wires provides a

mechanistic explanation for the exponentially increasing proba-

bility of avian collisions as tower height increases. Extremely tall

towers also extend into the ‘‘normal’’ flight altitudes of many

migrants so that mortality events can occur under clear skies and

favorable migration conditions; this provides another plausible

mechanism for the exponential increase in mortality rates

observed by height. We also considered using separate regressions

for towers less than and greater than 200 m, given the break in the

data, but found that doing so had little effect on the overall

Figure 6. Estimated annual avian mortality from communication towers by Bird Conservation Region. High mortality estimates in
Peninsular Florida and Southeastern Coastal Plain reflect the more numerous and taller communication towers in these regions.
doi:10.1371/journal.pone.0034025.g006
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estimate and we could not formulate a functional explanation why

the tower height–mortality relationship should change in this

manner.

Further research is needed on the mortality rates at the tallest

towers (i.e., .500 m). These data are needed to confirm that the

tower height–mortality relationship is exponential [26]. The

nature of this relationship is important because it leads directly

to a policy recommendation of focusing on the tallest towers first

for mitigation. If more extensive tower datasets show a different

relationship (e.g., logistic) then mitigation actions would be much

different, requiring treatment of many more towers to address the

same proportion of mortality.

Producing this estimate of avian mortality at towers required

many assumptions, the implications of which we have explored to

the degree possible with the data available. By undertaking this

exercise, we have reaffirmed what elements should be included in

tower studies going forward – explicit measurement of search

efficiency, scavenging rates, and the effect of sampling schemes for

any study, as well as investigation of geographic variation in

mortality and inclusion of towers representative of the extremes of

Table 8. Total estimated annual avian mortality at towers $60 m in the United States and Canada by Bird Conservation Region
(BCR).

BCR USA (lower 48 states) Canada Alaska Total

1–Aleutian Bering Sea 0 0

2–Western Alaska 155 155

3–Arctic Plains and Mountains 542 83 625

4–Northwestern Interior Forest 288 2,228 2,516

5–Northern Pacific Rainforest 21,170 2,411 333 23,914

6–Boreal Taiga Plains 24,591 24,591

7–Taiga Shield and Hudson Plains 2,754 2,754

8–Boreal Softwood Shield 20,650 20,650

9–Great Basin 20,744 339 21,083

10–Northern Rockies 8,653 1,925 10,578

11–Prairie Potholes 265,244 63,032 328,276

12–Boreal Hardwood Transition 139,535 34,564 174,099

13–Lower Great Lakes/St. Lawrence Plain 83,185 51,175 134,360

14–Atlantic Northern Forest 36,469 18,378 54,847

15–Sierra Nevada 343 343

16–Southern Rockies/Colorado Plateau 29,175 29,175

17–Badlands and Prairies 54,040 54,040

18–Shortgrass Prairie 243,791 243,791

19–Central Mixed-Grass Prairie 333,211 333,211

20–Edwards Plateau 81,827 81,827

21–Oaks and Prairies 469,889 469,889

22–Eastern Tallgrass Prairie 754,928 754,928

23–Prairie Hardwood Transition 278,788 278,788

24–Central Hardwoods 346,796 346,796

25–West Gulf Coastal Plain/Ouachitas 321,983 321,983

26–Mississippi Alluvial Valley 185,746 185,746

27–Southeastern Coastal Plain 1,107,118 1,107,118

28–Appalachian Mountains 263,368 263,368

29–Piedmont 448,533 448,533

30–New England/Mid-Atlantic Coast 96,197 96,197

31–Peninsular Florida 341,774 341,774

32–Coastal California 99,873 99,873

33–Sonoran and Mojave Deserts 50,179 50,179

34–Sierra Madre Occidental 875 875

35–Chihuahuan Desert 16,559 16,559

36–Tamaulipan Brushlands 105,545 105,545

37–Gulf Coastal Prairie 373,609 373,609

Total 6,579,147 220,649 2,799 6,802,595

doi:10.1371/journal.pone.0034025.t008
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the height distribution. Such research will help refine our

regionalized mortality estimates.

In 1989, the Exxon Valdez oil spill killed approximately

250,000 birds in what has become the benchmark for a major

environmental disaster [65]. Our estimates show that communi-

cation towers are responsible for bird deaths equivalent to more

than 27 Exxon Valdez disasters each year. Our estimate of the

number of birds killed annually by communication towers is 2–4

times greater than the estimate for annual fatalities from lead

poisoning before lead shot was phased out for hunting waterfowl

[66]. Previous efforts (e.g., [25]) and our compiled database

illustrate that most of the birds killed at communication towers are

Neotropical migrants, which have suffered population declines and

many of which are formally recognized as ‘‘Birds of Conservation

Concern’’ [67,68]. Data on per species mortality would provide

even more clarity about the biological significance of avian

mortality at communication towers. In a companion manuscript,

we estimate species-specific losses based on total losses estimated

here and species-specific casualty reports for Bird Conservation

Regions following methods we developed previously [35]. But

even without such estimates, the aggregate mortality numbers

developed here should lead policymakers to pursue mitigation

measures to reduce this source of chronic mortality.

Mitigation of avian mortality at communication towers could

most practicably be achieved by implementing several measures:

1) concomitant with permission from aviation authorities, remove

steady-burning red lights from towers, leaving only flashing (not

slow pulsing) red, red strobe, or white strobe lights [24,26,28,31];

2) avoid floodlights and other light sources at the bases of towers,

especially those left on all night [64]; 3) avoid guy wires where

practicable [26,28]; 4) minimize the number of new towers by

encouraging collocation of equipment owned by competing

companies; and 5) limit height of new towers when possible.

Concentrating on removing steady-burning lights from the

roughly 4,500 towers $150 m tall in the United States and

Canada with such lights should be a top priority because,

according to our model, it would reduce overall mortality by

approximately 45% through remedial action at only 6% of lighted

towers.
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