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Abstract

Highly selective, cell-permeable and fast-acting inhibitors of individual kinases are sought-after as tools for studying the
cellular function of kinases in real time. A combination of small molecule synthesis and protein mutagenesis, identified a
highly potent inhibitor (1-Isopropyl-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine) of a rationally engineered Hog1
serine/threonine kinase (Hog1T100G). This inhibitor has been successfully used to study various aspects of Hog1 signaling,
including a transient cell cycle arrest and gene expression changes mediated by Hog1 in response to stress. This study also
underscores that the general applicability of this approach depends, in part, on the selectivity of the designed the inhibitor
with respect to activity versus the engineered and wild type kinases. To explore this specificity in detail, we used a validated
chemogenetic assay to assess the effect of this inhibitor on all gene products in yeast in parallel. The results from this screen
emphasize the need for caution and for case-by-case assessment when using the Analog-Sensitive Kinase Allele technology
to assess the physiological roles of kinases.

Citation: Klein M, Morillas M, Vendrell A, Brive L, Gebbia M, et al. (2011) Design, Synthesis and Characterization of a Highly Effective Inhibitor for Analog-Sensitive
(as) Kinases. PLoS ONE 6(6): e20789. doi:10.1371/journal.pone.0020789

Editor: Matthew Bogyo, Stanford University, United States of America

Received April 13, 2011; Accepted May 9, 2011; Published June 17, 2011

Copyright: � 2011 Klein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financed by the European Commission (QUASI, contract LSHG-CT2003-503230 and CellComput, contract 043310). CN is supported by a
grant from the Canadian Institutes for Health Research (#84305) and from the Canadian Cancer Society (grant # 020380) to GG. FP’s laboratory is also supported
by the FP7 UNICELLSYS grant (#201142) and the Fundación Marcelino Botı́n (FMB). FP is the recipient of an ICREA Acadèmia (Generalitat de Catalunya). The
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Introduction

Protein kinases have a crucial role in most, if not all, signaling

pathways and regulate diverse cellular functions, such as cell-cycle

progression, apoptosis, metabolism, differentiation, cell morphol-

ogy and migration, and secretion of cellular proteins [1]. Our

present understanding of the majority of cellular signal transduc-

tion takes the form of wiring diagrams in which many of the

component parts have been identified, and to some extent the

relative position of the components in a given pathway, but

beyond this static snapshot view, little is known about the details of

their dynamic operation. A critical piece of this puzzle is an

understanding of how external and internal inputs are sensed in a

time-dependent manner to effect a given signaling output. Highly

selective, cell-permeable and fast-acting inhibitors of individual

kinases would allow for the systematic investigation of the in vivo

cellular function of a kinase in real time. Protein kinases share

common sequences and structural homology in their ATP-binding

site. The fact that many kinases share a highly conserved catalytic

domain complicate the search for ATP competitive kinase

inhibitors with sufficient specificity [2]. However, this conserved

domain can be leveraged to deliver high selectivity by orthogonal

targeting [3]. This approach involves modifying a kinase inhibitor

to disrupt its binding affinity for its native target and subsequent

mutation of a protein to allow it to recognize the orthogonal

inhibitor. Shokat and colleagues have extensively used this

‘‘analog-sensitive’’ approach to study a range of protein kinases

[4]. Recently, this chemical genetic approach has been used to

identify four novel physiological substrates of Hog1 kinase [5], to

show that the catalytic activity of Hog1 prevents cross talk between

the high-osmolarity glycerol (HOG) pathway and both the

pheromone response and invasive growth pathways [6], as well

as to define the signaling properties underlying the HOG pathway

[7]. We wanted to explore orthogonal targeting in order to

develop selective and fast acting kinase inhibitors that would allow

us to study the dynamic behavior of kinases in the HOG pathway.

Herein we report the design, synthesis and evaluation of an

orthogonal inhibitor that is able to inhibit as kinases efficiently and

can be used to study signal transduction events that occur within

minutes, e.g. gene expression and cell cycle studies.

The HOG pathway of the yeast Saccharomyces cerevisiae is a

MAPK signaling pathway and is the functional homolog of the

stress activated MAPK JNK and MAPK p38 pathways of

mammals [8]. Because there is a high degree of conservation of

these cascades, the yeast HOG pathway is a good model to study

osmotic adaptation processes. The HOG pathway consists of two

upstream osmosensing branches, the Sln1 and Sho1 branches, and

a downstream MAP kinase cascade including the Ssk2/22, Ste11

MAP3K, the Pbs2 MAPKK and Hog1 MAPK [9]. Activation of

the Hog1 MAPK elicits an extensive program required for cell
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adaptation which includes profound changes in gene expression.

Specifically, Hog1 regulates gene expression by activation of

specific transcription factors but also through chromatin binding,

Hog1 recruits chromatin modifying/remodeling activities to stress-

responsive genes altering their expression [8,10]. In addition,

environmental stressors (e.g. changes in osmolarity) critically affect

progression through the cell cycle [9,11,12].

To develop an analog-sensitive inhibitor of an engineered Hog1

kinase, we selected the pyrazolopyrimidines as they represent an

excellent scaffold for targeting the protein kinase family due to

their structural similarity to the adenine moiety of ATP,

furthermore, the scaffold has been shown to have activity against

multiple kinase subfamilies. For example, different chemical

substitutions around this scaffold result in increased selectivity in

the inhibition of KDR [13], Src [14], and EGF [15] kinase

families. Furthermore, this scaffold has previously been used to

make orthogonal inhibitors [16]. We present here the design and

synthesis of a novel orthogonal inhibitor based on the pyrazolo-

pyrimidine that effectively inhibits a Hog1as kinase, and is able to

dissect the transient cell cycle arrest and regulation of gene

expression mediated by Hog1 in response to stress.

Results and Discussion

Because of its central role in cellular homeostasis and the

implication of human homologs in diverse disease states, we

selected Hog1 as the target of our mutant kinase-inhibitor pair

design. Sequence alignment analyses identified the conserved

T100 as a gatekeeper residue in Hog1 [5,6]. Visual inspection of

the binding pocket of an initial homology model of Hog1, using

the structure of human p38 in the absence of a ligand (pdb code

1p38) for a template, indicated that a narrow path leads to a

buried cavity within the ATP binding domain (Figure 1).

The cavity size and shape is comparable to that of a phenyl

group, and mutation of T100 for a glycine would widen the pocket

further (Figure 1). We therefore sought a compound that was

based on the pyrazolopyrimidine structure, having a phenyl ring

attached to it via a spacer of the appropriate length. Candidate

compounds were manually docked into the binding site and the

geometries were optimized in torsion space using an all-atom

representation of both ligand and receptor, keeping the receptor

fixed. 1-NM-PP1, a commercially available ATP competitive as-

inhibitor was compatible with our model, but did not fit as well as

other compounds into the ATP binding site of Hog1as. The

resulting model complex that best matched our specifications

included a two-carbon, triple-bonded linker (compounds with the

general structure 6, Figure 1). The triple bound would place the

benzene ring in such orientation that it fills up the lipophilic pocket

that becomes accessible upon mutation. At the same time, the

heterocyclic moiety can make similar interactions with the hinge

area as would ATP. In the wild-type kinase the non-mutated

gatekeeper residue should block access to the lipophilic pocket

(indicated in red).

Previous published synthetic approaches for making 1,3-

disubstituted pyrazolopyrimidines involves at least five sequential

reaction steps, but more importantly, the R1 substituent is

introduced in the first step [17,18]. Therefore, the generation of

analogues with varying C3 substituents is inefficient. We devised a

convergent route for making 1,3-disubstituted pyrazolopyrimi-

dines. This route involves the synthesis of a common intermediate,

4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidine (3) that allows rap-

id derivatization of the heterocyclic core scaffold in two steps

(Figure 2).

The common intermediate, 4-amino-pyrazolopyrimidine (2),

was synthesized from (1) by a 4-step synthesis, on a multigram

scale in 64% overall yield without the use of any chromatography.

The corresponding 4-amino-3-iodopyrazolopyrimidine (3) was

synthesized using N-iodosuccinimide (Figure 2) [19].

Starting from compound 3, a two-step derivatization process

was developed. Initially, we found that alkylation of the N1 with 2-

Figure 1. Inhibitor docked to Hog1. Compound 6a docked to the
homology models of wild-type (red mesh) and T100G mutant (ball-and-
stick and yellow surface) Hog1, shown as cross sections from two
angles, rotated 90 degrees around the horizontal axis. Compound 6a
was designed to occupy the region available only for the T100G mutant
(red mesh near phenyl ring) for specificity.
doi:10.1371/journal.pone.0020789.g001

Figure 2. Synthesis of 1,3-disubstituted pyrazolopyrimidines.
doi:10.1371/journal.pone.0020789.g002
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propanol using Mitsunobu conditions preceded only in moderate

yield (58%). Treatment of 3 with 1.1 equiv of 2-chloropropan and

1.2 equiv of NaH in DMF for 3 h at 100uC gave a mixture of the

N1 and N4 alkylated products. However, when the base was

exchanged with K2CO3 and the reaction was carried out with

microwave assisted heating at 200uC for 5 min, high region-

selectivity was achieved and 4a was obtained in nearly

quantitative yield. Using the same reaction conditions in

combination with commercial available 2-(2-Chloroethoxy)tetra-

hydro-2H-pyran or 4-Chloromethyl-2,2-dimethyl-1,3-dioxolane

compounds 4b and 4c were obtained in 70% and 79% yield

respectively.

Compound 4 was then reacted with 4-halogenphenyl boronic

acid (1.3 eq) Pd(PPh3)2Cl2, (3 mol %), 2M aq. K2CO3 (10 eq) in

THF at reflux for 16 h to generate compounds with the general

structure 5 [17] or with 1-ethenyl-4-halobenzene, Pd(PPh3)2Cl2,

(3 mol %), Et3N (2 eq) and CuI (6 mol %) in THF at reflux for

16 h to generate compounds with the general structure 6 [20]. In

all cases the reactions proceeded with high turnover of the starting

material and the target compounds were obtained in high yields

(75–90%). Removal of the acid labile protection groups in 6d and

6e were carried out with 2N HCl in THF, resulting in compound

7a and 7b in 92% and 90% isolated yield respectively.

Using standard methods, we cloned, expressed and purified the

glutathione-S-transferase (GST) fusion proteins of Hog1wt and

Pbs2wt as well as the mutated kinases (Hog1as and Pbs2as). The

analogue sensitive mutant allele of each kinase (as mutant) was

created by the replacement of a conserved bulky residue with a

glycine (T100G) in Hog1 or an alanine (M435A) in the active site

of Pbs2.

Based on the analyses of their in vitro kinase activity, both

Hog1as and Pbs2as were more active when the phosphodonor is

the analogue Phenyl-Ethyl-ATP (PE-ATP) versus ATP, consistent

with previous reports [5]. It is worth noting that, Hog1 expressed

from E. coli was not inhibited by 1-NM-PP1 (9, Figure 3)

[16,21,22,23], while Hog1 produced from yeast was sensitive to

this inhibitor (data not shown). This observation suggests the E.

coli protein is inactive/only partially active and that full function

of Hog1 depends on association with another yeast protein, such

as a chaperone or that the conformation or postranslational

modification of the Hog1 protein in E. coli is different from that

produced in yeast.

We tested the 1,3-disubstituted pyrazolopyrimidines (6a–6c,

5a, 5b), as well as SB203580 (8, a known inhibitor of p38a, p38b
and AKT/PKB. p38 is the mammalian homologue of Hog1) and

1-NM-PP1 (9, Figure 3). Hog1as was totally inhibited in vitro by 8
and 9, and almost totally inhibited (.89%) by 6a–6c, with the two

last (5a and 5b) the least efficient. Pbs2as was inhibited by all the

compounds in vitro, but not as efficient as for Hog1 as. Protein

levels were similar in all assays based on inspection of coomassie

stained gels. As expected (as it is its homologue p38 in mammals),

Hog1wt was inhibited by 8, and poorly (range 8–25%) inhibited

by the rest of compounds except for 5b (94%). Finally, none of the

inhibitors had an effect on Pbs2wt.

The in vitro IC50 values for compounds 9 and 6a that target

Hog1as and Pbs2as were determined (Figure 3F). Compound 9
was 4-times more efficient than 6a when targeting Hog1as, while

6a is less than two times more efficient when 9 when targeting

Pbs2as. Thus, both inhibitors inhibited the kinases in vitro at a

similar range of concentrations.

As the mutated proteins were functional in vitro, yeast strains

expressing the modified kinases were generated. Once we had

checked that hog1as or pbs2as strains were osmoresistant (data not

shown), we followed the transcriptional response to osmostress

Figure 3. In vitro inhibition of Hog1 and Pbs2. In vitro inhibition
of Hog1as (B) and Pbs2as (D) mutant variants by inhibitors, and effect in
the wild type partners (A and C). The inhibitors used [final concentration
5 mM] were 6a–6c, 5a, 5b, as well as SB203580 (8) (a known inhibitor of
p38a, p38b, p38b2 and AKT/PKB) and 1NMPP1 (9), a known inhibitor of
the as kinases. Recombinant, tagged proteins were purified either from
S. cerevisiae (Hog1) or E.coli (Pbs2) and were assayed for the
phosphorylation of Sic1 (substrate of Hog1) or Hog1 (as substrate of
Pbs2). Phosphorylated proteins were resolved by SDS-PAGE and their
phospho-state detected by autoradiography. IC50 values for in vitro
inhibition of Hog1as and Pbs2as mutant variants by 6a and 9 (F).
Recombinant tagged proteins were purified either from S. cerevisiae
(Hog1) or E.coli (Pbs2) and were assayed for phosphorylation of Sic1
(substrate of Hog1) or Hog1 (as substrate of Pbs2). The results are the
means 6 S.D. of at least three independent experiments.
doi:10.1371/journal.pone.0020789.g003
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using the STL1::LacZ reporter (Figure 4). Cells were incubated

with the different inhibitors for 8 hours at a fixed concentration of

5 mM, before an osmotic shock with 0.4 M NaCl. The results

agreed with those observed in the in vitro assay, with the exception

of 8, that was less effective in vivo.

To further characterize 6a we performed a time course at a

concentration of 2 mM (end-point analysis), a concentration that

does not manifest a fitness defect in a HOG1 strain, but is sufficient

to almost totally inhibit Hog1as (Figure 5 and data not shown). At

5 minutes of incubation with 6a the b-galactosidase activity was

inhibit by 86%, with an IC50 of 238 nM (Figure 5A and 5C). This

rapid inhibition of gene expression by 6a suggests that this

compound could be a key, fast-acting tool to study some of the

aspects of the mRNA biogenesis regulated specifically by the Hog1

MAPK as by signaling kinases in general.

To complement the end-point analyses of the inhibitors effect

on transcription we also carried out a time course experiment for

both hog1as and pbs2as (Figure 6). The addition of 6a five minutes

before stress completely blocked the expression of STL1, which in

the absence of the inhibitor, increased up to 30 minutes in

response to osmostress. Similar results were obtained by inhibition

of Hog1as and Pbs2as.

To analyze whether the solubility of the molecule could affect

the inhibition by 6a, we tested two derivatives with one or two

hydroxyl functions (7a and 7b). We reasoned that increased

solubility could result in better uptake and therefore more potent

compounds. On the other hand, too polar compounds could be

less bioactive if they are unable to cross the lipophilic cell

membrane. However, we did not observe either a faster uptake or

a faster inhibition with these two new derivates (Figure 7). Thus,

although in vitro these compounds were able to inhibit Hog1as as

efficiently as 6a (Figure 7A), they did not improve the inhibition of

the MAPK in vivo (Figure 7B).

The Stress-Activated Protein Kinase (SAPK) Hog1 elicits a

program for cell adaptation that includes the control of gene

expression and the modulation of cell-cycle progression. As recent

studies have shown that monitoring SAPKs activity in vivo by

reversable inhibition, we wanted to know if 6a, is a suitable tool to

study the transient cell cycle arrest mediated by Hog1 activation in

response to stress.

Figure 4. Transcription is inhibited by novel ATP analogues in
response to stress. hog1as or pbs2as yeast cells were transformed
with a STL1::LacZ reporter construct. Cells were grown to an OD660 of
0.2, incubated with the inhibitors for 8 hours at a concentration of
5 mM, and b-galactosidase activity was assayed before (2NaCl) or after
(+NaCl) osmotic stress (0.4 M NaCl for 30 min). b-galactosidase activity
is presented in nanomols per minute per milligram. Data represent the
mean of at least three independent experiments.
doi:10.1371/journal.pone.0020789.g004

Figure 5. 6a is efficient shortly after incubation. Time course at
2 mM concentration of (A) 6a in the hog1as strain. hog1as cells
transformed with the STL1::LacZ reporter were incubated with 2 mM of
each inhibitor, subjected to osmotic stress (0.4 M NaCl), and cells were
collected at different times. b-galactosidase activity is presented as fold
induction of control versus NaCl-treated cells. (B) Dose response curve
at 5 minutes of incubation with 6a. hog1as cells were treated with
different concentrations of 6a for 5 minutes, subjected to osmotic
shock and b-galactosidase activity was assayed as described above
activity given in nanomols per minute per milligram). Efficiency of in
vivo inhibition of hog1as and pbs2as strains by 6a (C). hog1as STL1::LacZ
or Pbs2as STL1::LacZ yeast cells were incubated with the inhibitors for
5 minutes, and b-galactosidase activity was assayed before (2NaCl) or
after (+NaCl) osmostress (0.4 M NaCl for 30 min). Data6s.d. from at
least three independent experiments are shown.
doi:10.1371/journal.pone.0020789.g005
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Both high osmolarity and inactivation of Sln1 activity will result

in activation of Hog1. It is known that cells manifest a transient

cell cycle arrest in response to Sln1 inactivation, a phenotype that

can be followed by flow cytometry [12,24]. A temperature

sensitive allele of SLN1, (sln1ts4) arrests at G1 phase following

synchronization at G1/S with mating pheromone and release into

the restrictive temperature (Figure 8, lane A). This arrest can be

circumvented by mutations on the HOG1 gene (in hog1 cells) or if

cells are pre-incubated with 6a for as little as 10 min.

Our results demonstrate that 6a is a powerful tool to study

transient cell cycle arrest or gene expression mediated by Hog1 in

response to stress. In addition, 6a was recently used to demonstrate

that dynamic signaling in the Hog1 pathway relies on high basal

signal transduction [7]. However, the general applicability of this

approach depends, in part, on the selectivity with 6a inhibit the

mutant protein kinases compared with the other wild-type protein

kinases that are expressed endogenously in the same cells [25]. We

therefore examined the specificity of 6a by chemical genetic

profiling of the yeast deletion mutant collection and scored for

mutants with reduced growth in the presence of 500 mM 6a and

without osmotic stress (Figure 9). It should be noted that the

concentration of 6a used in this experiment was 100 times higher

than what was required to get efficient inhibition of Hog1as (5 mM)

in osmotic stressed cells and only off-target effects as well as

secondary effects of these was expected to be identified. This

analysis revealed that 60 strains that showed a significant depletion

from the pool of 1200 essential heterozygotes and 4800 non-

essential homozygous diploids (i.e. with a log2 ratio greater than 1)

when cultured competitively in the presence of 500 mM 6a.

Notably, of the 60 gene deletion strains (see table S1, Supporting

Information), 50 could be classified into five functional groups;

kinases (6), other enzymes 14), cytoskeleton (17), transcription

regulation (10), and cell wall (3), clearly demonstrating that several

off-target effects takes place at this concentration of 6a. A similar

experiment has been reported using compound 9 (500 nM)

targeting cdc28-as, showing excellent selectivity for the targeted

kinase [26]. However, when the inhibitor concentration was

increased to 5 mM several strains came up as sensitive, with several

of these having a catalytic/nucleoside triphosphate binding role.

Our results are consistent with these data. Together, these results

Figure 6. Inhibition over stress time course. hog1as STL1::LacZ (A)
and pbs2as STL1::LacZ (B) cells were incubated with 5 mM of 6a for
5 minutes and then, subjected to osmostress (0.4 M NaCl). Cells were
collected at the indicated times. b-galactosidase activity is given as % of
fold induction of control versus NaCl-treated cells. Data6s.d. from three
independent experiments are shown.
doi:10.1371/journal.pone.0020789.g006

Figure 7. Hydroxylated derivates of 6a. (A) To increase the
solubility of 6a two derivatives 7a and 7b were synthesized. In vitro-
activated Hog1 as was inhibited 7a and 7b. (B) hog1as cells
transformed with the STL1:LacZ reporter were pre-incubated with
2 mM of 7a and 7b for the indicated times. Cells were subjected to
osmotic stress (0.4 M NaCl) for 30 minutes and gene expression
measured as before. b-galactosidase activity is given as fold induction
of control versus NaCl-treated cells (activity given in nanomols per
minute per milligram). Data6SD. from three independent experiments
are shown.
doi:10.1371/journal.pone.0020789.g007
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demonstrate the importance of using the lowest possible dose and

understanding the specific activity of each particular inhibitor.

To summarize, a potent, cell-permeable as-inhibitor of the yeast

Hog1 MAP kinase has been developed and its utility has been

demonstrated by studying various roles of the Hog1 kinase. The

inhibitor can be regarded as a ‘‘sister-compound’’ of the

commercial 1-NM-PP1. The inhibitor will be a very useful tool

to study important model signal pathways in yeast.

Materials and Methods

Synthesis
1H and 13C NMR spectra were obtained from a JEOL JNM-

EX 400 spectrometer. Column chromatography was performed

on wet packed silica (0.040–0.063 mm) using flash chromatogra-

phy. Microwave reactions were performed in a Biotage Initiator

reactor with fixed hold time. Amino-3-iodo-1H-pyrazolo[3,4-

d]pyrimidine was prepared following a literature procedure [19].

1H-pyrazolo[3,4-d]pyrimidin-4-amine (2). A solution of

malononitrile (22.6 g, 0.344 mol), triethyl orthoformate (83 mL,

0.499 mol), and acetic anhydride (77 mL, 0.791 mol) was heated

to 100uC for 5 h. After cooling to rt the solution was concentrated

on the rotary evaporator. The solution was left to crystallize at rt

overnight and the yellow solid was recrystallized from EtOH to

give 36.0 g (98.5%) of 1,1-dicyano-2-ethoxylethene as yellow

crystals. This material (36.0 g, 0.339 mol) was added carefully and

in small portions to cold (0uC) hydrazine hydrate (99.5%, 26 g,

0.807 mol). The solution was heated to reflux for 1 h and then left

to cool at rt whereupon the contents of the flask solidified. Water

(25 mL) was added to the solid material and the mixture was left in

the refrigerator overnight. The mixture was filtered and the solid

was washed with 10 mL of cold water and suction dried for about

5 minutes. The product was dried in a vacuum desiccator over

calcium chloride and was obtained in 75.5% (27.7 g). This

material (27.6 g, 0.255 mol) was added to formamide (42 mL).

The solution was vigorously boiled for 30 minutes (216uC oil

bath). The creamy suspension was left to cool at rt, diluted with

water (70 mL), and filtered. The light tan colored solid was washed

with water, suction dried, and dried in a vacuum desiccator over

calcium chloride to give the target compound in 86% yield (29.6 g)

that gives an overall yield of 64% (calculated over three steps).

NMR was in agreement with published data [27].

General procedure A; alkylation of N-1. Compound 3 (1

eq) and K2CO3 (2 eq) were suspended in 12 ml of dry DMF in a

20 ml microwave vessel. To this mixture, R1-Cl (1.1 eq) was added

and the sealed tube was heated to 200uC for 5 min. (20 s of pre-

stirring and fixed hold time: on). After cooling of the reaction

mixture to room temperature, additional R1-Cl (0.5 eq) was added

and the microwave vessel was heated again to 200uC for 5 min.

After cooling to ambient temperature, the reaction mixture was

diluted with DMF and filtered. The solvent was removed in vacuo

at 80uC and the residue was co-distilled with toluene three times.

The crude product was purified by flash column chromatography

on silica gel.

3-Iodo-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine

(4a). Compound 3 (2.00 g, 7.66 mmol) was converted to the

target compound using general procedure A. The crude product

was purified by flash column chromatography on silica gel

(MeOH:CHCl3 = 1:20) to give 97% (2.25 g) of 4a as fine yellow

needles. 1H NMR (400 MHz, CDCl3) d 1.55 ppm (d, 6H), 5.09

(m, 1H), 6.17 (bs, 2H), 8.32 (s, 1H). 13C NMR (100 MHz, CDCl3)

d 22.27 ppm, 49.89, 85.62, 104.25, 153.17, 155.88, 157.63. Anal.

Calcd for C8H10IN5 (303.00): C, 31.70; H, 3.33; N, 23.11. Found:

C, 31.84; H, 3.40; N, 23.19.

3-Iodo-1-(2-(tetrahydro-2H-pyran-2-yloxy)ethyl)-1H-pyra-

fzolo[3,4-d]pyrimidin-4-amine (4b). Compound 3 (2.00 g,

7.66 mmol) was converted to the target compound using general

procedure A. The crude product was purified by flash column

chromatography on silica gel (MeOH:CHCl3 = 1:20) to give 70%

(2.09 g) of 4b as a yellow powder. 1H NMR (400 MHz, CDCl3) d
1.27–1.64 ppm (m, 6H), 3.30–3.39 (m, 1H), 3.48–3.58 (m, 1H),

3.77–3.86 (m, 1H), 3.99–4.09 (m, 1H), 4.42–4.59 (m, 3H), 8.22 (s,

1H). 13C NMR (100 MHz, CDCl3) d 18.93 ppm, 25.30, 30.21,

47.26, 61.71, 64.85, 86.59, 98.12, 103.77, 154.14, 155.79, 157.89.

Anal. Calcd for C12H16IN5O2 (389.03): C, 37.03; H, 4.14; N,

17.99. Found: C, 37.04; H, 4.15; N, 18.04.

1-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)-3-iodo-1H-py-

razolo[3,4-d]pyrimidin-4-amine (4c). Compound 3 (2.00 g,

Figure 8. 6a is a suitable tool to study the transient cell cycle
arrest mediated by Hog1. The sln1ts4 hog1as or hog1as strains were
synchronized with a-factor for 1 h, incubated with 5 mM of 6a for
10 minutes (B), shifted to 37uC for 10 minutes and then released into
YPD medium at 37uC plus the inhibitor (time 0). Total DNA content was
assessed by flow cytometry and presented as cell counts (y-axis) versus
1C and 2C DNA content (x-axis).
doi:10.1371/journal.pone.0020789.g008
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7.66 mmol) was converted to the target compound using general

procedure A. The crude product was purified by flash column

chromatography on silica gel (MeOH:CHCl3 = 1:20) to give 73%

(2.09 g) of 4c as fine yellow needles. 1H NMR (400 MHz,

CDCl3) d 1.33 ppm (d, 6H), 1.40 (s, 3H), 3.92–3.96 (m, 1H),

4.04–4.08 (m, 1H), 4.56–4.65 (m, 2H), 6.24 (bs, 2H), 8.34 (s, 1H).
13C NMR (100 MHz, CDCl3) d 25.52 ppm, 27.00, 50.12, 67.34,

74.28, 86.91, 104.17, 110.17, 154.59, 156.45, 157.69. Anal.

Calcd for C11H14IN5O2 (375.02): C, 35.22; H, 3.76; N, 18.67.

Found: C, 35.24; H, 3.79; N, 18.65.
General procedure B; Suzuki couplings. Compound 4 (1

eq), Ar-B(OH)2 (1.3 eq) and Pd(PPh3)2Cl2 (3 mol %) were

suspended in DMF (2 ml) and 2 M aq K2CO3 added. The

reaction vial was sealed and heated in a microwave reactor to

140uC for 10 min. After cooling to ambient temperature, the

reaction mixture was diluted with DMF and filtered. The solvent

was removed in vacuo and the residue was co-distilled with toluene

three times. The crude product was purified by flash column

chromatography on silica gel.
3-(4-Chlorophenyl)-1-isopropyl-1H-pyrazolo[3,4-d]pyri-

midin-4-amine (5a). Compound 4a (2.00 g, 6.60 mmol) was

converted to the target compound using general procedure B.

The crude product was purified by flash column chrom-

atography on silica gel (MeOH:CHCl3 = 1:35) to give 70%

(1.33 g) of 5a as fine yellow needles.1H NMR (400 MHz,

CDCl3) d 1.59 ppm (d, 6H), 5.18 (m, 1H,), 6.17 (bs, 2H), 7.48–

7.54 (m, 2H), 7.63–7.68 (m, 2H), 8.35 (s, 1H). 13C NMR

(100 MHz, CDCl3) d 22.19 ppm, 46.16, 98.71, 129.70, 130.03,

135.28, 142.78, 173.77, 155.62, 158.10. Anal. Calcd for

C14H14ClN5 (287.75): C, 58.44; H, 4.90; N, 24.34. Found: C,

58.46; H, 4.91; N, 24.36.
3-(4-Fluorophenyl)-1-isopropyl-1H-pyrazolo[3,4-d]pyri-

midin-4-amine (5b). Compound 4a (2.00 g, 6.60 mmol)

was converted to the target compound using general procedure

A. The crude product was purified by flash column chrom-

atography on silica gel (MeOH:CHCl3 = 1:35) to give 79%

(1.41 g) of 5b as fine yellow needles. 1H NMR (400 MHz,

CDCl3) d 1.58 ppm (d, 6H), 5.16 (m, 1H,), 6.19 (bs, 2H), 7.18–

7.24 (m, 2H), 7.66–7.71 (m, 2H), 8.32 (s, 1H). 13C NMR

(100 MHz, CDCl3) d 22.06 ppm, 48.96, 98.58, 116.42, 129.77,

130.46, 142.89, 153.52, 155.41, 158.16, 163.24. Anal. Calcd

for C14H14FN5 (271.30): C, 61.98; H, 5.20; N, 25.81. Found:

C, 61.99; H, 5.22; N, 25.84.
General procedure C; Sonogashira couplings. Com-

pound 4a (1 eq), Ar-CCH (1.3 eq), Pd(PPh3)2Cl2 (3 mol %)

Et3N (2 eq) and CuI (6 mol %) in THF was refluxed for 16 h.

After cooling to ambient temperature, the reaction mixture was

filtered. The solvent was removed in vacuo and the residue was co-

distilled with toluene three times. The crude product was purified

by flash column chromatography on silica gel.
1-Isopropyl-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyri-

midin-4-amine (6a). Compound 4a (0.20 g, 0.66 mmol)

was converted to the target compound using general procedure

C. The crude product was purified by flash column

chromatography on silica gel (MeOH:CHCl3 = 1:30) to give

81% yield (148 mg) of 6a as fine white powder. 1H NMR

(400 MHz, CDCl3) d 1.55 ppm (d, 6H), 5.09 (m, 1H), 6.17 (bs,

2H), 8.32 (s, 1H). 13C NMR (100 MHz, CDCl3) d 22.27 ppm,

49.89, 85.62, 104.25, 153.17, 155.88, 157.63. Anal. Calcd for

C16H15N5 (277.13): C, 69.29; H, 5.45; N, 25.25. Found: C,

69.35; H, 5.46; N, 25.21.
3-((4-fluorophenyl)ethynyl)-1-isopropyl-1H-pyrazolo[3,4-

d]pyrimidin-4-amine (6b). Compound 4a (0.20 g, 0.66mmol)

was converted to the target compound using general procedure C.

The crude product was purified by flash column chromatography

on silica gel (MeOH:CHCl3 = 1:30) to give 79% yield (154 mg) of

6b as fine white powder. 1H NMR (400 MHz, CDCl3) d 1.58 ppm

(d, 6H), 5.16 (m, 1H), 6.22 (bs, 2H), 7.07–7.11 (m, 2H), 7.56–7.60

(m, 2H), 8.36 (s, 1H). 13C NMR (100 MHz, CDCl3) d 22.20 ppm,

49.67, 80.97, 92.91, 102.07, 116.23, 117.92, 125.92, 134.04,

152.71, 156.37, 158.02, 163.32. Anal. Calcd for C16H14FN5

(295.30): C, 65.07; H, 4.78; N, 23.71. Found: C, 65.10; H, 4.73;

N, 23.77.
3-((4-chlorophenyl)ethynyl)-1-isopropyl-1H-pyrazolo[3,4-

d]pyrimidin-4-amine (6c). Compound 4a (0.20 g, 0.66

mmol) was converted to the target compound using general

procedure C. The crude product was purified by flash column

chromatography on silica gel (MeOH:CHCl3 = 1:30) to give 87%

yield (179 mg) of 6c as a white powder. 1H NMR (400 MHz,

CDCl3) d 1.46 ppm (d, 6H), 5.04 (m, 1H), 7.54 (d, 2H), 7.78 (d,

2H), 8.25 (s, 1H). 13C NMR (100 MHz, CDCl3) d 21.71 ppm,

48.76, 82.22, 91.69, 120.34, 124.77, 128.77, 133.61, 134.11,

152.28, 156.21, 157.71. Anal. Calcd for C16H14ClN5 (311.09): C,

61.64; H, 4.53; N, 22.46. Found: C, 22.46; H, 4.53; N, 22.42.

3-(Phenylethynyl)-1-(2-(tetrahydro-2H-pyran-2-yloxy)ethyl)-

1H-pyrazolo[3,4-d]pyrimidin-4-amine (6d). Compound 4b
(0.20 g, 0.66 mmol) was converted to the target compound using

general procedure C. The crude product was purified by flash

column chromatography on silica gel (MeOH:CHCl3 = 1:30) to give

81% yield (194 mg) of 6d as a slightly yellow powder. 1H NMR

(400 MHz, CDCl3) d 1.38–1.75 ppm (d, 6H), 3.41–3.52 (m, 1H),

3.62–3.70 (m, 1H) 3.91–3.99 (m, 1H), 4.14–4.22 (m, 1H), 4.56–4.71

(m, 3H), 5.93 (bs, 2H), 7.38–7.47 (m, 3H), 7.58–7.63 (m, 2H), 8.40 (s,

1H). 13C NMR (100 MHz, CDCl3) d 19.10 ppm, 25.48, 30.42.

47.47, 61.94, 65.00, 80.93, 94.26, 98.40, 101.85, 121.67, 126, 74,

128.78, 129.64, 131.94, 154.04, 156.60, 158.10. Anal. Calcd for

C20H21N5O2 (363.17): C, 66.10; H, 5.82; N, 19.27. Found: C, 66.12;

H, 5.83; N, 19.30.

1-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-3-(phenylethy-

nyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (6e). Com-

pound 4c (0.20 g, 0.66 mmol) was converted to the target

compound using general procedure C. The crude product was

purified by flash column chromatography on silica gel

(MeOH:CHCl3 = 1:20) to give 83% yield (191 mg) of 6e as a

white powder. 1H NMR (400 MHz, CDCl3) d 1.34 ppm (d,

3H), 1.40 (s, 3H), 3.94–4.00 (m, 1H), 4.06–4.11 (m, 1H) 4.43–

4.52 (m, 1H), 4.58–4.69 (m, 2H), 6.20 (bs, 2H), 7.37–7.46 (m,

3H), 7.57–7.62 (m, 2H), 8.39 (s, 1H). 13C NMR (100 MHz,

CDCl3) d 25.52 ppm, 27.01, 50,09, 67.42, 74.25, 80.80, 94.56,

101.90, 110.18, 121.60, 127.14, 128.85, 129.78, 132.01,

154.12, 156.93, 157.99. Anal. Calcd for C19H19N5O2

(349.15): C, 65.32; H, 5.48; N, 20.04. Found: C, 65.35; H,

5.50; N, 20.09.

General procedure D; deprotection of acid labile

groups. The starting material (1 eq) was dissolved in 9 ml

THF and 6 ml of 2N HCl was added. The mixture was stirred at

Figure 9. Chemical genetic profiling validation. (A) Visualization of genes sensitive to 500 mM 6a. The fold change (log2(6a-treated/untreated))
in microarray signal intensity is plotted on the y-axis for ,6000 genes (arranged alphabetically on the x-axis). (B) A network showing Kegg Pathways
(Blue nodes) and related GO Terms (Red nodes) that are significantly enriched (FDR q-value ,0.15) in the genes that are sensitive to the compound in
the chemogenomic profile. Nodes are connected based on mutual overlap. Node size is proportional to the total number of genes in each set and
edge thickness represents the number of overlapping genes between sets.
doi:10.1371/journal.pone.0020789.g009
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60uC for 2 h. The solvent was evaporated and the residue co-

evaporated with toluene three times. The product was purified by

crystallization from MeOH/Et2O.

2-(4-amino-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimi-

din-1-yl)etanol (7a). Compound 6d (0.15 g, 0.48 mmol) was

converted to the target compound using general procedure C

and was obtained in 92% yield (120 mg) of 7a as a white

powder. 1H NMR (400 MHz, DMSO) d 3.84 ppm (t, 2H), 4.22

(t, 2H), 7.45–7.54 (m, 3H), 7.73–7.79 (m, 2H), 8.49 (s, 1H). 13C

NMR (100 MHz, DMSO) d 50.18 ppm, 59.01, 79.72, 94.50,

99.93, 120.98, 127.37, 128.68, 129.79, 132.06, 150.22, 151.82,

153.51. Anal. Calcd for C15H14ClN5O (315.09): C, 57.05; H,

4.47; N, 22.18. Found: C, 57.10; H, 4.51; N, 22.24.

3-(4-amino-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrim-

idin-1-yl)propane-1,2-diol (7b). Compound 6d (0.15 g,

0.43 mmol) was converted to the target compound using

general procedure C and was obtained in 90% yield (133 mg)

of 7b as a white powder. 1H NMR (400 MHz, DMSO) d 3.37–

3.50 ppm (m, 2H), 3.96–4.05 (m, 1H), 4.32–4.43 (m, 2H), 7.45–

7.54 (m, 3H), 7.74–7.80 (m, 2H), 8.39 (s, 1H). 13C NMR

(100 MHz, DMSO) d 51.17 ppm, 63.61, 69.95, 79.57, 94.67,

99.82, 120.94, 127.55, 128.67, 129.82, 132.09, 149.35, 151.66,

152.99. Anal. Calcd for C16H16ClN5O2 (345.10): C, 55.58; H,

4.66; N, 20.25. Found: C, 55.65; H, 4.70; N, 20.28.

Biology
Yeast strains and plasmids. Strains used: W303 (MATa

ade2-1 ura3-1 leu2-3,112 trp1-1 his3-11 can1-100 GAL SUC2) and its

derivatives, W303 hog1-as strain (MATa ade2-1 ura3-1 leu2-3,112

trp1-1 his3-11 can1-100 GAL SUC2 hog1-as) and W303 pbs2-as strain

(MATa ade2-1 ura3-1 leu2-3,112 trp1-1 his3-11 can1-100 GAL SUC2

pbs2::URA pbs2-as:TRP). The pRS426TEG1 (pTEF1-GST, URA3+,

2 mm) vector was a gift from M. Takekawa. The pRS426TEG1-

hog1as was created by cloning the hog1 mutant ORF plus 500 bp

upstream and downstream, into pRS426TEG1 empty plasmid. To

build the as mutant the hog1 orf was mutated by PCR in the amino

acid 100 (T-ACG-RG-GGG- ). The pRS304-Pbs2as vector was

created by cloning the pbs2 mutant ORF plus 500 bp upstream

and downstream, into pRS304 empty plasmid. To build the as

mutant the pbs2 orf was mutated by PCR in the amino acid 435

(M-ATG-RA-GCG-). ssk2DN, pbs2EE, HOG1, PBS2, pbs2-as and

SIC1 ORFs were cloned into pGEX-4T1 (Pharmacia) to obtain

GST fusion proteins. The STL1::LacZ reporter construct PEN05

was generated by cloning the STL1 promoter (base pairs 2824 to

+4) by PCR into YIp358R (CEN URA3).

Expression and purification of epitope-tagged pro-

teins. GST fusion proteins were expressed in E.coli DH5a, and

purified using glutathione-Sepharose beads (Pharmacia) in buffer B as

described [28]. The beads were washed extensively with buffer B and

finally proteins were eluted with kinase buffer plus glutathione

(50 mM Tris-HCl pH 8.0, 2 mM DTT, 10 mM glutathione). GST-

Hog1as was expressed in S. cerevisiae and purified using glutathione-

Sepharose beads (Pharmacia) in buffer B, as described above.

In vitro phosphorylation experiments. One microgram of

recombinant GST-Hog1 or GST-Pbs2 was activated by

phosphorylation using 0.5 mg of either GST-Pbs2EE or GST-

Ssk2DN in the presence of kinase buffer and ATP as described [28].

After 20 min at 30uC, substrate was added (GST-Sic1 for Hog1 or

GST-Hog1 for Pbs2) to the previous mixture together with [c-32P]-

ATP (for wt kinases) or [c-32P]-phenethyl-ATP (for as kinases)

(5 mCi). The mixture was then incubated for 10 min at 30uC, and

the reactions were terminated by the addition of 56 SDS loading

buffer. Labeled proteins were resolved by SDS-PAGE and detected

by autoradiography. Inhibitors were added to the first mixture at

the indicated concentration. The assessment of the IC50 was

performed by the quantification of phosphorylated substrates (Sic1

or Hog1) by using Quantity One software (BioRad).

b-galactosidase assays. Exponentially growing cells

(OD660 = 0.8) were incubated with the specified inhibitor

previous to be subjected to osmotic stress (0.4 M NaCl for

30 min). Cells were permeabilized by ethanol-toluene treatment,

and b-galactosidase was measured as described [29]. Results are

presented as mean values obtained from two independent

transformants measured at least in triplicate.

Cytometry analyses. For flow cytometry analyses, cells were

fixed in ethanol, treated with RNAse A, stained with propidium

iodide and analysed in a FACScan flow cytometer (Becton

Dickinson) in the FL3 channel. A total of 10000 cells were

analysed for each time point.

Chemical Genetic Profiling. Yeast profiling was performed

exactly as described by Ericson et al [30]. Gene set enrichment was

carried out on the non-essential yeast genes in the chemogenomic

profile using GSEA [31] and the results were visualized as a

network using the enrichment map plugin [32] for cytoscape [33].

Modeling
MolIDE/ICM modeling. The initial model of Hog1 was

created using the standard procedure built into the program ICM,

based on the structure of human p38 (pdb code 1p38) [34]. The

model was refined by regularization, which imposes ideal

geometry onto the model, followed by geometry optimization by

Monte Carlo simulated annealing in torsion space. (ICM manual,

Molsoft, CA) Ligands were manually docked into the site and

geometry optimized by minimization and Monte Carlo

conformation sampling. In the early phase of optimization,

ligand atoms were tethered to their original positions using

harmonic potentials that were gradually decreased in strength.

Eight additional wild-type and mutant Hog1 models were

created based on four structure templates (pdb codes 1cm8, 1m7q,

1p38 and 3erk) to provide a better understanding of the

orthogonal ligands’ affinities. Template selection was carried out

using the MolIDE program [35], which is an interface to programs

that performs psi-blast searches against the nr database and stores

the generated alignment profiles, searches the pdb sequences using

the profiles, constructs a backbone model for aligned residues,

adds and geometry optimizes side-chains and builds loops.

Pairwise sequence alignments were manually edited before model

building.

Kinase models built by MolIDE were regularized by ICM

before docking and quality assessment. The local quality of protein

models was checked using ICM’s calcEnergyStrain, which

identifies bad regions by reporting the relative energy of each

residue.

Docking of a small library of the designed and known kinase

inhibitors was performed using the standard protocol in ICM (data

not shown), and the representative mutant and wild-type Hog1

models were manually chosen based on the accuracy of ligand

docking poses.

Supporting Information

Table S1 Gene deletion strains significantly sensitive to
500 uM 6a.
(PDF)
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