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Abstract

B lymphocyte-induced maturation protein 1 (Blimp1) is a master regulator of B cell differentiation, and controls migration of
primordial germ cells. Recently we observed aberrant Blimp1 expression in breast cancer cells resulting from an NF-kB RelB
to Ras signaling pathway. In order to address the question of whether the unexpected expression of Blimp1 is seen in other
epithelial-derived tumors, we selected lung cancers as they are frequently driven by Ras signaling. Blimp1 was detected in
all five lung cancer cell lines examined and shown to promote lung cancer cell migration and invasion. Interrogation of
microarray datasets demonstrated elevated BLIMP1 RNA expression in lung adenocarcinoma, pancreatic ductal carcinomas,
head and neck tumors as well as in glioblastomas. Involvement of Ras and its downstream kinase c-Raf was confirmed using
mutant and siRNA strategies. We next addressed the issue of mechanism of Blimp1 activation in lung cancer. Using
knockdown and ectopic expression, the role of the Activator Protein (AP)-1 family of transcription factors was demonstrated.
Further, chromatin immunoprecipitation assays confirmed binding to identified AP-1 elements in the BLIMP1 promoter of
ectopically expressed c-Jun and of endogenous AP-1 subunits following serum stimulation. The propeptide domain of lysyl
oxidase (LOX-PP) was identified as a tumor suppressor, with ability to reduce Ras signaling in lung cancer cells. LOX-PP
reduced expression of Blimp1 by binding to c-Raf and inhibiting activation of AP-1, thereby attenuating the migratory
phenotype of lung cancer cells. Thus, Blimp1 is a mediator of Ras/Raf/AP-1 signaling that promotes cell migration, and is
repressed by LOX-PP in lung cancer.
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Introduction

B lymphocyte-induced maturation protein 1 (Blimp1) or

Positive-Regulatory Domain I Binding Factor 1 (PRDI-BF1) is a

zinc finger protein encoded by the PRDI-BF1 and RIZ domain 1

(PRDM1) or BLIMP1 gene [1,2], which was initially isolated as a

transcriptional repressor of the IFNb promoter [3]. Several

mechanisms of Blimp1-mediated repression of gene transcription

have been elucidated: recruitment of histone methyltransferases

(HMTs) [4], histone deacetylases (HDACs) [5] or corepressors [2]

or by competition with transcriptional activators [6]. Blimp1 was

identified as a master regulator of B cell terminal differentiation

[7], which promotes differentiation of B lymphocytes to plasma

cells [8]. Several factors have been implicated in the activation of

transcription of the Blimp1 gene during the differentiation of B

cells, including NF-kB, AP-1, IRF4, STAT3 and STAT5,

although, their precise mechanisms of action are not fully

understood [9]. Blimp1 was subsequently shown to regulate T

cell proliferation and homeostasis [10]. During development,

Blimp1 controls primordial germ cell (PGC) specification and

migration as Blimp1-deficient mouse embryos generate PGC-like

cells which fail to show characteristic PGC migration [11,12].

Somewhat unexpectedly, Blimp1 was detected in non-hematopoi-

etic cancer cells. Our laboratory observed Blimp1 expression in

breast cancer cells, and showed it repressed transcription of the

ESR1 gene encoding estrogen receptor alpha (ERa), thereby

promoting a more migratory phenotype [13]. Transcriptional

induction of Bcl-2 levels by the NF-kB RelB subunit recruited Ras

to the mitochondria [14]. The resultant Ras signaling led to an

aberrant induction of Blimp1 in the breast cancer cells [13]. The

exact transcription factor(s) downstream of Ras that mediated the

activation of Blimp1 in these cancer cells remained to be

identified. However, the involvement of Ras signaling in Blimp1

activation leads us to hypothesize that expression of Blimp1 may

be more widespread in cancer than previously realized. Colorectal

tumor cells were also found to express Blimp1, which repressed the

TP53 gene and thus maintained cell growth [15].

Lung cancer is the leading cause of cancer-related death in

Western countries. Approximately two-thirds of patients are

diagnosed at an advanced stage, and of the remaining patients

who undergo surgery, 30–50% develop recurrence with metastatic

disease [16,17]. The RAS oncogene is mutated in up to ,30% of
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lung cancers, with the majority of mutations found in the KRAS

gene [16,17]. Oncogenic K-Ras predisposes transgenic mice to

lung tumorigenesis [18]. Ras signals via multiple pathways,

including mitogen activated protein kinase (MAPK). As nuclear

acceptors for MAPK signaling cascades, the activator protein (AP)-

1 family of transcription factors has been implicated in the highly

migratory phenotype of lung cancer cells [19,20,21].

The lysyl oxidase (LOX) gene was isolated as the ras recision gene (rrg)

due to its ability to revert Ras-mediated transformation of NIH

3T3 fibroblasts [22]. Our group showed ectopic Pro-LOX

expression reduced extracellular signal-regulated kinase (ERK)

and phosphatidylinositol 3-kinase (PI3K)/Akt signaling and

activation of NF-kB in Ras-transformed NIH 3T3 cells [23]. Loss

of LOX gene expression was seen in many cancerous tissues and

derived cell lines including those from lung [24,25,26], colon [27],

prostate [28], gastric [29] and head and neck squamous cancers

[30]. Ectopic LOX gene expression reduced colony formation of

cultured gastric cancer cells and tumor formation in a xenograft

model [29]. Lysyl oxidase is synthesized and secreted as a pro-

enzyme (Pro-LOX), and processed to a functional enzyme (LOX)

and amino terminal propeptide (LOX-PP) [31]. The rrg activity of

Pro-LOX was unexpectedly mapped to the LOX-PP domain, as

judged by inhibition of the transformed phenotype of NIH 3T3-

Ras cells [32]. Subsequently, LOX-PP was shown to reduce the

migratory phenotype of mouse breast cancer cells driven by Her-

2/Neu, which signals via Ras and their ability to form tumors in a

nude mouse xenograft model [33,34]. In H1299 lung cancer cells,

which contain a mutant NRAS gene, LOX-PP reduced the

activation of ERK and Akt, and ability for anchorage-independent

growth and invasive colony formation in Matrigel [25]. LOX-PP

also attenuated fibronectin-mediated activation of focal adhesion

kinase in breast cancer cells [34,35], and fibroblast growth factor

(FGF)-2-induced proliferation of prostate cancer cells [36]. Here

we asked whether Blimp1 is expressed in lung cancer cells given

the important role of Ras signaling in these cancer cells. Blimp1

was detected in all lung cancer lines examined and promoted their

migration and invasion. Furthermore, BLIMP1 RNA was detected

in other primary tumors driven by Ras signaling. In lung cancer

cells, Blimp 1 expression was induced by a Ras/c-Raf/AP-1

pathway, which could be inhibited by LOX-PP via interaction

with c-Raf. Thus, these studies identify Blimp1 as a critical

mediator of lung cancer cell migratory phenotype by the

transforming Ras/c-Raf/AP-1 cascade.

Materials and Methods

Cells and culture conditions
The non-small cell lung cancer (NSCLC) A549 and H1299 cell

lines were kindly provided by Zhi-Xiong Jim Xiao (Boston

University School of Medicine, Boston MA). The Calu-1, H23 and

H441 cell lines were generously provided by Hasmeena Kathuria

and Maria Ramirez (Boston University School of Medicine).

A549, Calu-1, H23 and H441 cells express mutant K-Ras [37,38]

and H1299 express mutant N-Ras [39]. Bosc23 cells were

obtained from the American Type Culture Collection (ATCC).

All cell lines were maintained in Dulbecco’s Minimal Essential

Medium except H441 which was maintained in RPMI-1640. The

culture media were supplemented with 10% fetal bovine serum

(FBS), as recommended by the ATCC. H1299 clones expressing

mouse LOX-PP in a doxycycline (dox) inducible vector were

established and total RNA isolated as described previously [25].

Inducible stable A549 cells expressing V5-tagged human or mouse

LOX-PP were established as previously described [33,34]. Briefly,

pCL-Ampho retrovirus packaging vector (Imgenex, San Diego,

CA) was co-transfected into BOSC 23 cells using FuGENE 6

(Roche Diagnostics Co., Indianapolis, IN) with either empty

effector vector pC4bsrR(TO) (EV) or vector bearing the DNA

fragments of human or mouse LOX-PP with C-terminal V5 tag

and the regulator vector pCXneoTR2 (both kindly provided by

Tsuyoshi Akagi, KAN, Kobe, Japan). After 48 h, supernatants

containing viral particles were harvested and passed through a

0.45 mm filter (Corning Inc., Corning, NY). A549 lung cancer cells

were dually infected for 48 h with supernatant from BOSC 23

cells containing viruses that carry the regulator and effector vectors

supplemented with 6 mg/ml polybrene (Sigma, St. Louis, MO).

Infected cells were selected with 10 mg/ml blasticidin (Invitrogen,

Carlsbad, CA) and 1.4 mg/ml geneticin (Sigma) to generate

separate pools of stable A549-EV, A549-human LOX-PP and

A549-mouse LOX-PP cells.

Plasmids and transfection analysis
The pcDNA3/Blimp [2] and the 7-kB Blimp1-pGL3 luciferase

reporter (Blimp1-luc) [40] vectors were kindly provided by Tom

Maniatis (Columbia University, NY) and Kathryn Calame

(Columbia University), respectively. The c-Jun, c-Fos, Fra-1 and

Fra-2 AP-1 constructs in pCI expression vector were as previously

reported [41]. For transient transfection of expression vectors,

cultures in 12-well plates were incubated for 48 h in the presence

of 1 mg DNA and 3 ml Fugene 6 or 2.5 ml Lipofectamine 2000

(Invitrogen). Co-transfection of the MSV-b-gal vector, expressing

b-galactosidase (b-gal) was used to normalize for transfection

efficiency. All transient transfection reporter assays were per-

formed, in triplicate, two times as described previously [42], and

the standard error of the mean (SEM) calculated. BLIMP1 siRNA,

and JUN, FRA-1 and FRA-2 siRNA duplex sequences were as

previously described [15,43]. The siRNA targeting human KRAS

gene (sc-35731) was from Santa Cruz Biotechnology (Santa Cruz,

CA). The RNA duplexes used for targeting c-RAF were as

described by Chadee and Kyriakis [44] and purchased from

QIAGEN (Valencia, CA). For transient transfection of single

siRNAs, cultures in 6-well plates were incubated for 24 h in the

presence of siRNA duplex (10 nM final) and Lipofectamine

RNAiMax (Invitrogen), according to the manufacturer’s protocol.

In the case of co-transfection of two AP-1 siRNAs, the final

concentration of each siRNA was 10 nM, making the total siRNA

concentration 20 nM. Where mentioned, the culture was

supplemented with a negative control siRNA (Qiagen) at a final

concentration of either 10 or 20 nM, as appropriate. The Ras

S186 expression vector was kindly provided by Mark Philips (NYU

School of Medicine, New York, NY). For construction of N-

terminally glutathione S-transferase (GST) tagged LOX-PP and its

deletion mutants, the cDNA encoding full length LOX-PP (WT,

amino acid 1–162) and deletion of aa residues 26–100 (DM3) were

amplified from full-length Pro-LOX cDNA [33] and inserted into

the BamHI/ClaI site of pEBG-GST mammalian expression

vector, a generous gift of Dr. Bruce Mayer (University of

Connecticut Health Center, Farmington, CT). For construction

of C-terminally GST-tagged LOX-PP, the cDNAs encoding GST

and LOX-PP were amplified and inserted into pcDNA3.1 (+).

pBabe-puro-MEK1 S217E/S221E constitutively active (CA-

MEK) mutant was kindly supplied by Dr. Geoffrey M. Cooper

(Boston University, Boston, MA). The cDNA encoding MEK1

S217E/S221E was inserted into pcDNA3.1(+).

Immunoblot analysis
Nuclear extracts (NE) and whole cell extracts (WCE) were

prepared and subjected to immunoblotting, as described previ-

ously [33]. For the detection of secreted recombinant LOX-PP-
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V5, culture medium (40 ml from 2 ml of culture medium) was

immunoblotted using an anti-V5 antibody (R960-25, Invitrogen).

The antibodies against Blimp1 (no. 9115s), c-Jun (no. 9165),

phospho-c-Jun (no. 9261s), MEK1/2 (L38C12; no. 4694) phos-

pho-ERK1/2 (phospho-Thr202/Tyr204; no. 9101s) and ERK1/

2 (9102) were obtained from Cell Signaling (Danvers, MA).

Antibodies against GST (B-14), K-Ras (F234), B-Raf (F-7), Fra-1

(N-17), Fra-2 (Q-20) and c-Fos (H-125) were from Santa Cruz

Biotechnology. Antibodies against b-actin (AC-15) and a-tubulin

(DM1A) were from Sigma. Hsp70/Hsc70 (SPA-820) and Hsp90

(SPA-830) antibodies were purchased from Stressgen (Victoria,

BC, Canada). Antibody against c-Raf (clone 53) and Ras (clone

18/Ras) were from BD Transduction (Franklin Lakes, NJ). Rabbit

polyclonal antibodies against LOX-PP were prepared as described

previously [45]. The results from a minimum of two independent

experiments were subjected to densitometry and normalized to a

b-actin loading control and the mean values relative to control

empty vector (EV) cells (set to 1.0) given.

Migration and invasion assays
Suspensions of 16105 cells were layered, in triplicate, in the

upper compartments of Costar Transwells (Corning, Lowell, MA)

on an 8-mm diameter polycarbonate filter (8 mm pore size), and

incubated at 37uC for 16 h. Migration of the cells to the lower side

of the filter was evaluated with the phosphatase enzymatic assay

using p-nitrophenyl phosphate and OD410 nm determination, as

described previously [13] or by staining with crystal violet and

OD570 nm determination (63). The average migration from three

independent experiments 6 SD is presented relative to the control

EV, which was set at 1.0. P values were calculated using a

Student’s t-test. For invasion assays, filters were precoated with

10 mg of Matrigel (BD Biosciences, San Jose, CA). Migration of

the cells to the lower side of the filter was evaluated by staining

with crystal violet and OD570 nm determination. The mean 6 SD

are presented. Invasion assays were performed three times, in

triplicate.

Reverse Transcriptase (RT)-PCR analysis
RNA was isolated using RNeasy Mini Kit (Invitrogen), and

samples with A260/A280 ratios between 1.8 and 2.0 were treated

with RQ1 RNase-free DNase (Promega). Superscript III RT was

used for reverse transcription with 1 mg RNA in the presence of

100 ng of random primers (Invitrogen). For Realtime quantitative

PCR (Q-PCR), the BLIMP1 primers were as described previously

[46]. The GAPDH primers were: Forward 59-TTGCCATCAAT-

GACCCCTTCA-39; Reverse 59-CGCCCCACTTGATTTTG-

GA-39. Q-PCR was performed in triplicate in a Roche LightCycler

480 system.

Chromatin Immunoprecipitation (ChIP) assay
ChIP assays were performed using an EZ-ChIP kit (Millipore

Corporation, Billerica, MA), according to the manufacturer’s

instructions. For analysis of ectopically expressed AP-1, 24 h after

H441 cells were transfected with a c-Jun expression vector,

formaldehyde (1% final) was added to the cell culture medium.

Whole cell lysates were made and subjected to sonication in a

Misonix 3000 Sonicator (Misnonix, Farmingdale, NY) for 15 cycles

of 10 sec each to yield genomic DNA fragments of ,200 to 1000 bp.

After preclearing with ChIP grade Protein G agarose, 100 ml of

sheared DNA-protein complexes were immunoprecipitated with

antibodies against c-Jun (sc-1694) or normal rabbit IgG (sc-2027)

(Santa Cruz Biotechnology). Crosslinking was reversed and purified

genomic DNA fragments were subjected to PCR. The crosslinking

was reversed by overnight incubation at 65uC and genomic DNA

fragments purified with a Qiaquick PCR purification kit (QIAGEN,

no. 28104). Two binding elements for AP-1, which are also known

as TPA responsive elements or TREs, were previously identified at

21813 and 21647 bp relative to the BLIMP1 transcription start site

[47] and verified using TransFac (genomatix.de) analysis. The region

across the two TREs was amplified by PCR. The primers for the

21813 bp TRE: Forward 59-GCCTTCTTCCCACCTCAAA-

TATCA-39, Reverse 59-TGGCCTGCTGTTCAAACAGTCT-

CA-39; and for the 21647 bp TRE: Forward 59-GTTGCAT-

GATGGTGTATGTGGCCT-39, Reverse 59-ATCCAGCCTG-

CTCAAGAGGGTTTA -39. As a positive control for AP-1 binding,

a fragment of the human JUN promoter containing two closely

located TRE sites (2120 and 21 bp) was similarly subjected to ChIP

analysis, using the previously described primers [48]. As a negative

control, primers were designed for an upstream region of the

BLIMP1 promoter (25508 to 25366 bp) containing no TRE sites:

Forward 59- TCCTTCCCTGTGTTTGGTCCCATT-39, Reverse

59-ATTGTTTCCTTCAAGCAGGCACCC-39. For binding of

endogenous AP-1 subunits, A549 cells were incubated in serum-

free medium for 48 h and FBS (10% final concentration) added

back. After 30 min, WCE were prepared and subjected to ChIP

assay, as above, using antibodies against normal rabbit IgG, c-Jun,

Fra-1 (sc-183), or Fra-2 (sc-604) (from Santa Cruz Biotechnology).

Immunoprecipitation and GST pull down assay
H1299 or A549 cells were lysed with Buffer A [25 mM HEPES-

KOH (pH 7.2), 150 mM KCl, 2 mM EDTA, 1 mM phenyl-

methylsulfonyl fluoride, 1 mM dithiothreitol, 0.5 mg/ml leupeptin,

2 mM pepstatin A, 1 mg/ml aprotinin, and 1% Triton X-100].

The lysates were centrifuged in a microcentrifuge for 10 min at

13,000 rpm at 4uC to remove insoluble material. For immuno-

precipitation, 2 mg of either rabbit anti-LOX-PP [45] or rabbit

control IgG was added to 500 mg cell lysate, followed by overnight

incubation at 4uC. Protein G-Sepharose beads (Invitrogen) were

then added to the mixture, followed by incubation at 4uC for 2 h

with gentle shaking. The beads were washed four times with Buffer

A. For GST-pull down assay, the lysates were incubated with 20 ml

Glutathione-Sepharose 4B (GE Healthcare) for 2 h at 4uC. The

resin was washed four times with Buffer A. The immune-

complexes or GST pull down-complexes were eluted from the

Sepharose beads with SDS-PAGE sample buffer, and the

precipitated proteins analyzed by immunoblot analysis.

Results

Lung cancer cells express Blimp1
Five lung cancer cell lines, driven by mutant K-Ras or N-Ras,

were selected to test for Blimp1 expression: A549, H1299, Calu-1,

H23 and H441. Nuclear extracts were subjected to immunoblot

analysis (Fig. 1A). As a reference, we included nuclear extracts

from ERa positive MCF-7 and ERa negative MDA-MB-231

breast cancer cells, which displayed relatively lower and higher

Blimp1 levels, respectively [13]. All five lung cancer cell lines

expressed 100 kDa Blimp1 protein recognized by an antibody

against the N-terminus of the human Blimp1 protein. As seen

previously, the ERa negative MDA-MB-231 breast cancer cells

expressed higher levels of Blimp1 than the ERa positive MCF-7

cells [13]. All of the lung cancer cells expressed substantially higher

amounts of Blimp1 than the MDA-MB-231 line. Thus, Blimp1 is

expressed in lung cancer cells.

Blimp1 promotes migration of lung cancer cells
The absence of Blimp1 in mouse embryos led to development of

primordial germ-like cells that were unable to migrate [11,12]. To

Ras/c-Raf to AP-1 Pathway Activates Blimp1
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test whether Blimp1 expression is involved in control of lung

cancer cell migration, a knockdown strategy was used. A549 and

H1299 cells, which displayed relatively high levels of Blimp1

(Fig. 1A), were incubated with either siBLIMP1-1 or siBLIMP1-2,

two independent siRNA species, or with a scrambled negative

control siRNA. After 48 h, samples of WCE were subjected to

immunoblot analysis. Both BLIMP1 siRNAs resulted in effective

knockdown of Blimp1 protein expression compared to the control

siRNA. A more robust knockdown was seen with siBLIMP1-2 in

both cell lines, i.e., 93% decrease in A549 and 88% in H1299

compared to 30% in A549 and 48% in H1299 with siBLIMP1-1

(upper panels, Figs. 1B and 1C). The effects of a 24 h incubation

with these siRNAs on migration of A549 and H1299 cells were

tested in Boyden chambers (16105 per well) using FBS as the

chemo-attractant. Cell migration was measured 16 h later.

Knockdown of BLIMP1 expression led to decreased migration of

A549 (Fig. 1B) and H1299 (Fig. 1C) lung cancer cells. In three

independent experiments, performed in triplicate, siBLIMP1-2 led

to a more profound reduction in migration of A549 (average

decreases of 42% with siBLIMP1-1 vs 71% with siBLIMP1-2) and

H1299 cells (average decreases of 35% with siBLIMP1-1 vs 54%

with siBLIMP1-2). No significant effects of the treatments on cell

proliferation were observed (data not shown). These results are

consistent with the reduction of Blimp-1 levels. To confirm that

the reduction of cell migration was specifically due to the

knockdown of Blimp1 expression, we performed a rescue

experiment using siBLIMP1-2 and Blimp1 ectopic expression in

A549 lung cancer cells. Briefly, A549 cells were incubated with

either siBLIMP1-2 or negative control siRNA for 16 h followed by

transient transfection of a vector expressing Blimp1 or EV DNA.

After 32 h, cells were subjected to a migration assay or samples of

WCE were subjected to immunoblot analysis. BLIMP1 siRNA-2

resulted in effective knockdown of Blimp1 protein expression

compared to the control siRNA and this effect was overcome by

the Blimp1 expression vector (Fig. 1D, inset). As seen above,

knockdown of BLIMP1 expression led to a 42% decrease in cell

migration compared to cells transfected with negative control

siRNA and EV, and this was overridden by ectopic Blimp1

expression (Fig. 1D). A 33% increase in migration of A549 cells

transfected with Blimp1 cDNA and siBlimp1-2 was observed

compared to the control siRNA and EV transfected cells. In

addition, no significant effects on cell proliferation were noted over

Figure 1. Blimp1 is expressed in lung cancer cells and its
knockdown reduces migration. (A) Samples of nuclear extracts
(20 mg) of A549, H1299, Calu-1, H23 and H441 human lung cancer cells
and MCF-7 and MDA-MB-231 (MB-231) breast cancer cells were
subjected to immunoblotting for Blimp1 and b-actin, as a control for
equal loading. Positions of molecular weight markers are given in the
left lane. A representative of two independent experiments with similar
results is shown. (B) A549 and (C) H1299 cells were transiently
transfected with 10 nM each of siBLIMP1-1, siBLIMP1-2 or a scrambled
negative control siRNA. Upper panels: Forty-eight h after transfection,
WCE (30 mg) were subjected to immunoblotting for Blimp1 and b-actin.
The bands were quantified using NIH Image J software and Blimp1

expression normalized to b-actin expression. Normalized Blimp1
expression was determined in two independent experiments and the
average values are given below the blots. Lower panels: Alternatively,
after 24 h, cultures were trypsinized and 16105 cells subjected to a
migration assay for 16 h, in triplicate. The average migration from three
independent experiments 6 SD is presented relative to the negative
control siRNA (set at 1.0). P values were calculated using Student’s t-
test. *, P,0.005; **, P,0.0005. (D) A549 cells were incubated in the
presence of 0.5 nM siBlimp1-2 or scrambled negative control siRNA for
16 h. Cells were then transfected with Blimp1 expression vector (2 mg
per well in 6-well plate) and incubated for 32 h. (Inset) Whole cell
lysates (20 mg) were subjected to western blot analysis using antibodies
against Blimp1 or b-actin. Cultures were trypsinized and 16105 cells
subjected to a migration assay for 16 h, in triplicate. The average
migration from two independent experiments 6 SE is presented
relative to the negative control siRNA and EV (set at 1.0). Data shown is
a representative of two independent experiments with similar results.
(E) A549 cells were transiently transfected with 10 nM each of siBLIMP1-
1, siBLIMP1-2 or a scrambled negative control siRNA. After 48 h, cultures
were trypsinized and 16105 cells subjected to an invasion assay for
16 h, in triplicate. The average data from three independent
experiments 6 SD is presented relative to the negative control siRNA
(set at 1.0). P values were calculated using Student’s t-test. *, P,0.01.
doi:10.1371/journal.pone.0033287.g001
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the time course (data not shown). Next, we tested the effects of

Blimp1 knockdown on invasion. A decrease in invasion by A549

lung cancer cells was noted with BLIMP1 siRNA-1, which was

even more profound with BLIMP1 siRNA-2 compared to the

negative control siRNA, consistent with the migration data

(Fig. 1E). Thus, reduced levels of Blimp1 lead to decreased ability

of A549 and H1299 lung cancer cells to migrate and invade.

We next performed the converse experiment and ectopically

expressed Blimp1 in A549 and H441 cells, which express higher

and moderate levels of Blimp1, respectively. Cultures were

transiently transfected with a Blimp1 expression cDNA or parental

empty vector (EV) for 24 h and subjected to migration assays, as

above. In three independent experiments, performed in triplicate,

Blimp1 overexpression increased migration of A549 and H441

cells by an average of 64% (Fig. 2A) and 58% (Fig. 2B),

respectively. Western blotting of extracts prepared from similarly

transfected cultures confirmed ectopic expression of Blimp1 (upper

panels, Figs. 2A and 2B). Thus, Blimp1 promotes a more

migratory phenotype of lung cancer cells.

Multiple primary tumors display overexpression of
BLIMP1 RNA

We next asked whether BLIMP1 RNA is detected in primary

lung tumors. Elevated BLIMP1 mRNA expression was detected

in lung adenocarcinoma samples compared to normal lung tissues

[49] (Fig. 2C). Constitutive Ras signaling induced by either a

mutant RAS gene or upstream activator such as growth factor

receptor has been implicated in many other tumors. KRAS

mutations have been found in .95% of pancreatic ductal

adenocarcinomas [50], while overexpression of Epidermal

Growth Factor receptor (EGFR), which induces Ras signaling,

was found in 80–90% human head and neck squamous cell

carcinomas [51] and 40% of glioblastomas [52]. Notably, our

analyses using microarray datasets in Oncomine revealed

elevated BLIMP1 RNA expression in samples of pancreatic

adenocarcinoma [53], tongue squamous cell carcinoma [54] and

glioblastoma [55] compared to the corresponding normal tissues

(Fig. 2D). Thus, BLIMP1 RNA is overexpressed in a diverse

group of human cancers.

Figure 2. Blimp1 promotes lung cancer cell migration and is aberrantly expressed in multiple cancers. (A) A549 cells or (B) H441 cells
were transiently transfected with 1 mg of Blimp1 cDNA or EV DNA using Lipofectamine 2000. Upper panels: WCE were isolated after 48 h and
subjected to immunoblot analysis for Blimp1 and b-actin. Lower panels: Alternatively, 24 h after transfection, cells were subjected to a migration
assay as in Fig. 1. The average migration from three independent experiments 6 SD is presented relative to the EV (set at 1.0). P values were
calculated using a Student’s t-test. *, P,0.005. C) Box plot from the Hou lung cancer microarray dataset was accessed using Oncomine Database.
Student’s t-test for the two groups shows a P value of 0.024. D) Box plots from the Badea pancreatic cancer, Estilo head-neck cancer and Sun brain
tumor microarray datasets were accessed using Oncomine Database. Student’s t-tests comparing the groups in these studies show P values of
8.67e27, 0.001 and 3.28e215, respectively.
doi:10.1371/journal.pone.0033287.g002
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Ras to c-Raf signaling induces Blimp1 expression in lung
cancer cells

To directly address the role of Ras signaling on Blimp1 levels in

lung cancer cells, a dominant negative mutant was first used. The

Ras S186 mutant retains the ability to associate with the effector

protein kinase c-Raf but does not translocate to the membrane and

inhibited activation of Blimp1 by Bcl-2 [13,56]. A549 cells, which

express an activated mutant K-Ras C12, were transfected with EV

or a plasmid expressing Ras S186 and after 48 h, WCE and RNA

were isolated. Ectopic expression of Ras S186, which was

confirmed by immunoblotting, decreased Blimp1 protein expres-

sion by ,54% (Fig. 3A). In two separate experiments, BLIMP1

mRNA expression declined an average of 48% upon ectopic

expression of Ras S186 (Fig. 3B). The effects of the dominant

Figure 3. A Ras to c-Raf pathway induces the Blimp1 promoter and AP-1 activity. (A) A549 cells were transfected with 5 mg of a plasmid
expressing dominant negative Ras S186 or EV DNA. After 48 h, WCE and RNA were prepared. Samples (30 mg) of WCE were subjected to immunoblot
analysis for Blimp1, Ras and a-tubulin. The bands were quantified using NIH Image J software and Blimp1 expression normalized to b-actin
expression. The average values for normalized Blimp1 levels from two independent experiments are given relative to EV DNA (set to 1.0). (B) RNA was
isolated from the A549 cells treated as in part A, and subjected to Q-PCR for BLIMP1 mRNA and normalized to GAPDH. The values represent an
average of two independent experiments. (C) A549 cells were transfected, in triplicate, with 0.16 mg of Ras S186 plasmid or EV DNA, 0.33 mg of a MSV-
b-gal expression vector and 0.16 mg of the 7-kB Blimp1 promoter Blimp1-Luc, in a 12-well plate. After 48 h, cell lysates were subjected to
measurements for luciferase and b-gal activities and normalized Blimp1 promoter activity values are presented as the mean 6 SEM from two
experiments (EV DNA set to 1.0). (D) Two-hundred pmol of an siRNA against K-Ras or a negative control siRNA (Ctrl) was incubated in the presence of
25 ml of Lipofectamine RNAiMAX in 2 ml of optiMEM in P100 plates. A549 cells (6.46105) were seeded at a final siRNA concentration of 20 nM for
48 h. WCE were subjected to immunoblotting for K-Ras, Blimp1, c-Jun, phospho-ERK (p-ERK), Fra-1, Fra-2, and a-tubulin. Average normalized levels of
Blimp1, c-Jun, Fra-1, Fra-2 and K-Ras from two independent experiments are given relative to the control (set to 1.0). Immunoblots from one of two
independent experiments with similar results are presented. (E) Two-hundred pmol of an siRNA against c-RAF or a negative control siRNA was
incubated in the presence of 25 ml of Lipofectamine RNAiMAX in 2 ml of optiMEM in P100 plates. A549 cells (6.46105) were seeded at a final siRNA
concentration of 20 nM for 48 h. WCE were subjected to immunoblotting for c-Raf, Blimp1, Fra-1, Fra-2, c-Jun, and a-tubulin. Average normalized
levels of c-Raf, Blimp1, Fra-1, Fra-2 and c-Jun from two independent experiments are given relative to the control (set to 1.0). Immunoblots from one
of two independent experiments with similar results are presented. (F) A549 cells were transiently transfected, in triplicate, with si-c-RAF or negative
control siRNA at a final concentration of 20 nM in a 12-well plate. Eight h later, Blimp1-luc promoter construct (0.16 mg) and an MSV- b-gal expression
vector (0.33 mg) were transfected into these siRNA-treated A549 cells for an additional 40 h. Relative (Rel.) Blimp1 promoter activity values are
presented as the mean 6 SEM from two experiments (EV DNA set to 1.0).
doi:10.1371/journal.pone.0033287.g003
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negative Ras on Blimp1 promoter activity were also tested. A549

cells were co-transfected with either EV or Ras S186 vector DNA,

along with a 7-kB Blimp1 promoter reporter construct Blimp1-luc

and a b-gal expression vector, for normalization of transfection

efficiencies. Overexpression of Ras S186 led to an average

decrease of 69% in normalized Blimp1 promoter activity

(Fig. 3C). Lastly, an si-KRAS strategy was employed (Fig. 3D).

Knockdown of K-Ras led to a decrease of 93% of K-Ras protein

expression and to a substantial decrease in ERK activity as judged

by a reduction in phospho-ERK levels. Furthermore, an average

decrease of 44% in Blimp1 levels were seen in two independent

experiments (Fig. 3D). Together, these results indicate that

oncogenic Ras signaling in A549 lung cancer cells drives BLIMP1

gene expression.

Ras mediates its effects by signaling via several pathways. The c-

Raf/Erk pathway has been implicated in control of migration and

thus we used a knockdown strategy to test whether c-Raf mediates

signals leading to induction of Blimp1. A549 cells were transfected

for 48 h with a negative control siRNA or an siRNA against c-

RAF, which effectively decreased levels of c-Raf and Blimp1

protein, which decreased by an average of 39% in two

experiments (Fig. 3E). To confirm a role of c-Raf in Blimp1

promoter activity, A549 cells were reverse-transfected with c-RAF

siRNA or control siRNA, and after 8 h were transfected with a

Blimp1 reporter construct for 40 h. The si-c-RAF led to an average

decrease of 52% in Blimp1 promoter activity compared to negative

control siRNA (Fig. 3F). Thus, a Ras to c-Raf pathway activates

BLIMP1 gene expression in A549 lung cancer cells.

AP-1 induces Blimp1 expression
The AP-1 family of transcription factors has been implicated in

the highly migratory phenotype of lung cancer cells [19,20,21],

and two functional AP-1 binding sites or TREs have been

identified in the BLIMP1 promoter [47]. Substantial decreases in

amounts of c-Jun (53%), Fra-1 (65%) and Fra-2 (43%) resulted

from treatment with the c-RAF siRNA (Fig. 3E), consistent with

the observed reduction in Blimp1 expression. Similarly knock-

down of Ras led to average decreases of 35, 33 and 28% in levels

of c-Jun, Fra-1 and Fra-2, respectively (Fig. 3D). We next

characterized AP-1 subunit expression in the lung cancer cell

lines by subjecting nuclear extracts to immunoblot analysis

(Fig. 4A). High levels of c-Jun were detected in H1299 and

Calu-1 cells and low to moderate c-Jun levels in H23, H441 and

A549 cells. High levels of Fra-1 were seen in H1299, Calu-1 and

H441 cells, while A549 and H23 cells expressed low levels of Fra-

1. All of the lung cancer cell lines except H441 expressed moderate

to high levels of Fra-2, while only low levels of c-Fos were seen in

all of the lines.

To test whether the c-Jun, Fra-2 and Fra-1 AP-1 subunits play a

role in Blimp1 expression, a knockdown strategy was employed.

The c-Jun subunit can form homodimers with Jun family members

or heterodimers with Fos family members, while Fos family

members only bind as heterodimers with Jun family members

[57]. A549, H441 and H1299 cells were transfected with JUN

siRNA alone or in combination with either FRA-1 or FRA-2

siRNA or a negative control siRNA. A FOS siRNA was not

included as c-Fos expression appeared low in these lines. Effective

knockdown of the corresponding AP-1 subunits in A549, H441

and H1299 cells was confirmed by immunoblot analysis (Fig. 4B).

Depletion of c-Jun alone led to an average 51%, 29% and 23%

decrease in Blimp1 expression in A549, H441 and H1299 cells,

respectively. Simultaneous knockdown of c-Jun and Fra-1 led to

more substantial decreases in Blimp1 expression of 80%, 55% and

40% in A549, H441 and H1299 cells, respectively. Knockdown of

c-Jun and Fra-2 led to decreases in Blimp1 expression by 78%,

48% and 38% in A549, H441 and H1299 cells, respectively.

These results indicate that AP-1 subunits c-Jun, Fra-1 and Fra-2

are all involved in the maintenance of basal Blimp1 expression in

lung cancer cells.

We next tested whether AP-1 complexes containing c-Jun with

either Fra-1, Fra-2 or c-Fos induce Blimp1 expression and selected

H441 cells, which express a low endogenous level of c-Jun. H441

cells were transfected with c-Jun, Fra-1, Fra-2 or c-Fos cDNA

individually or in combination or with EV DNA for 48 h and

subunit expression confirmed by immunoblotting (Fig. 5A, lower

panels). Q-PCR was performed to measure the effects on BLIMP1

mRNA expression. Data from three independent experiments

show that relative to EV DNA, which was set to 1.0, ectopic

expression of c-Jun, c-Jun-Fra-1, c-Jun-Fra-2 or c-Jun-c-Fos

induced BLIMP1 mRNA levels in H441 cells by an average of

2.8-, 2.1-, 1.7 or 2.6-fold, respectively (Fig. 5A, upper panels). Fra-

1, Fra-2 and c-Fos alone had little effect on BLIMP1 mRNA

expression. Immunoblot analyses were quantified to assess the

effects of these AP-1 subunits on Blimp1 protein and the average

values from two independent transfection experiments were

calculated relative to the EV DNA (Fig. 5A, middle panels).

Ectopic expression of c-Jun alone induced endogenous Blimp1

protein expression 3.3-fold and the combinations of c-Jun with

Fra-1, Fra-2 or c-Fos induced Blimp1 by an average of 5.4-, 3.8- or

5.6-fold, respectively. Fra-1, Fra-2 and c-Fos alone were again less

effective (Fig. 5A, darker exposure, middle panels). Thus, AP-1

complexes containing c-Jun with Fra-1, Fra-2 or c-Fos, and

possibly c-Jun homodimers, induce Blimp1 protein and mRNA

expression in lung cancer cells.

Lastly, AP-1 factors were tested for their ability to induce Blimp1

promoter activity in H441 lung cancer cells using a co-transfection

assay. c-Jun alone or in combination with Fra-1, Fra-2 or c-Fos

substantially induced normalized Blimp1 promoter activity by an

average of 6.4-, 3.6-, 7.7- or 5.1-fold, respectively (Fig. 5B).

Expression of Fra-1, Fra-2, or c-Fos cDNA alone had only minor

effects on the activity of the Blimp1 promoter, as expected.

Together, these results show that c-Jun containing AP-1 complexes

(c-Jun-c-Jun, c-Jun-Fra-1, c-Jun-Fra-2 and c-Jun-c-Fos effectively

induce Blimp1 promoter activity, leading to elevated levels of

Blimp1 expression.

Ectopic c-Jun binds to the BLIMP1 promoter
Next, binding of AP-1 subunits to the BLIMP1 promoter was

examined using ChIP assays. The two identified AP-1 binding sites

are located at 21647 and 21813 bp relative to the BLIMP1

transcription start [47] (Fig. 6A). Since c-Jun plays an essential role

in formation of homo- and hetero-dimers of AP-1 complexes, we

first tested for direct binding of c-Jun to the TRE sites. H441 cells

were transiently transfected with a c-Jun cDNA expression vector.

ChIP analysis was performed using an anti-c-Jun or control IgG

antibody, and resulting genomic DNA fragments analyzed by

PCR (Fig. 6B). Amplification of the 21647 and 21813 bp TRE

sites was observed using the two primer sets indicated in Fig. 6A.

As a positive control, a primer set for previously described TREs

on the JUN promoter was used [48]. Ectopically expressed c-Jun

was also present on its own promoter (Fig. 6B), as expected. As a

negative control, an upstream region of the BLIMP1 promoter

(25508 to 25366 bp) without any known TRE consensus

sequence was tested, and no amplification was observed following

c-Jun antibody pull-down (Fig. 6B). These results indicate that the

ectopically expressed AP-1 c-Jun subunit is recruited to the

BLIMP1 promoter in H441 lung cancer cells.
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Endogenous AP-1 subunits bind to the BLIMP1 promoter
Our attempts to test for the binding of endogenous c-Jun to the

BLIMP1 promoter in A549 lung cancer cells cultured in growth

medium supplemented with 10% FBS were unsuccessful as no

amplification of either the BLIMP1 or positive control JUN TRE

sites was detected in ChIP analyses (data not shown). Since AP-1

activities are controlled by Ras-MAPK signaling and because AP-

1 subunits have been shown to be recruited to target gene

promoters upon serum stimulation [58,59], we tested the temporal

induction of BLIMP1 mRNA levels, and AP-1 expression as a

function of time after serum stimulation. A549 lung cancer cells

were incubated for 48 h in serum free DMEM medium. FBS was

added back and proteins and mRNA isolated after 0, 15, or

30 min or 1, 2, or 4 h. The expression of AP-1 subunits was

monitored. Phospho-c-Jun levels began to increase by the 15 min

time point and peaked at 2 h, while a substantial increase in total

c-Jun levels was noted at 1 h (Fig. 6C, lower panels). A markedly

slower migration of Fra-2 bands was noted by 15 min, presumably

active phosphorylated forms, which lasted until 30 min. An

increase in the slower migrating, presumably phosphorylated,

Fra-1 was also seen at 15 min, and these levels remained high

throughout the time course. An increase in total Fra-1 levels was

initially observed at the 1 h time point. Levels of c-Fos remained

relatively low but increased at 1 h. Thus, serum rapidly induces

AP-1 phosphorylation and a later increase in total AP-1 expression

levels. RNA, which isolated over the same time course, was

subjected to Q-PCR assays for BLIMP1 and GAPDH, as loading

control. The normalized levels of BLIMP1 mRNA increased

within 15 min after serum stimulation, peaked at ,2-fold at

30 min and stayed elevated until 2 h (Fig. 6C, upper panel). By the

4 h time point, BLIMP1 mRNA levels were low, suggesting a rapid

but transient transcriptional activation. The 30 min time point was

selected to assess for induction of AP-1 binding to the BLIMP1

promoter.

Figure 4. Knockdown of AP-1 subunits decreases Blimp1 expression in lung cancer cells. (A) The immunoblot of nuclear extracts from
lung cancer cells in Fig. 1A was stripped and re-probed to assess expression of the AP-1 subunits c-Jun, Fra-1, Fra-2 and c-Fos. (B) A549, H441 and
H1299 cells were transfected with 20 nM of JUN siRNA alone or 10 nM of JUN siRNA in combination with 10 nM of FRA-1 or FRA-2 siRNA or with
20 nM of a negative control siRNA (Qiagen) for 24 h. WCE (30 mg) were subjected to immunoblotting for Blimp1, c-Jun, Fra-1, Fra-2 and a-tubulin, as a
loading control. The Blimp1 bands were quantified and normalized to a-tubulin expression, and average values from two independent experiments
presented relative to control siRNA, set to 1.0.
doi:10.1371/journal.pone.0033287.g004
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To test whether the rapid induction of AP-1 activity is

responsible for the increase of BLIMP1 mRNA, A549 cells were

serum deprived, and then stimulated with FBS for 30 min. ChIP

analysis was performed using antibodies against c-Jun, Fra-1, or

Fra-2 or the pre-immune IgG. PCR amplification of the 21647

and 21813 bp TRE sites of the BLIMP1 promoter was observed

with c-Jun, Fra-1 or Fra-2 antibodies (Fig. 6D). The positive

control TRE sites on the JUN promoter were also amplified with

the antibody against c-Jun, consistent with the literature [48]. We

were unable to detect precipitation of the JUN DNA with Fra-1 or

Fra-2 antibodies. No amplification of the negative control region

of the BLIMP1 promoter was observed. Taken together, these

experiments show that endogenous c-Jun, Fra-1 and Fra-2 AP-1

subunits are recruited to the BLIMP1 promoter upon serum

stimulation, further implicating binding of AP-1 subunits to the

TRE sites in regulation of Blimp1 expression.

LOX-PP reduces the expression of Blimp1 and its
upstream AP-1 activators

As the amino terminal LOX-PP domain of Pro-LOX has the

ability to inhibit Ras-mediated transformation of NIH 3T3 cells

[32] and H1299 lung cancer cells [25], its ability to reduce Blimp1

was next examined. We first tested the effects of induction of

LOX-PP in two stable H1299 tet-on clones expressing ectopic

LOX-PP, which were described previously [25]. A robust decrease

in BLIMP1 RNA (,90%) was observed upon induction of LOX-

PP, as judged by Q-PCR (Fig. 7A). To extend the findings to a

second line, stable A549 cell populations expressing either human

LOX-PP (hLOX-PP) or mouse LOX-PP (mLOX-PP) in a dox-

inducible vector or with EV DNA were prepared. Following

incubation in the presence of dox for 48 h, induction of ectopic

human or mouse LOX-PP expression was found to reduce

BLIMP1 mRNA by an average of ,60% compared to EV DNA

(Fig. 7B). Ectopic LOX-PP expression was confirmed by

immunoblotting (Fig. 7B). The effects of LOX-PP on Blimp1

protein expression were further analyzed by transiently transfect-

ing A549 and H1299 cells with LOX-PP cDNA. Ectopic

expression of LOX-PP was confirmed by immunoblotting

(Fig. 7C). An average decrease of 53 and 39% in Blimp1

expression was observed in A549 and H1299 cells, respectively.

We next assessed the ability of LOX-PP to reduce the

induction of AP-1 subunits and Blimp1 mediated by serum.

H441 and A549 cells were serum starved for 24 h in culture

medium with 0.5% FBS in the presence of 1 or 4 mg/ml purified

functionally active recombinant LOX-PP protein (rLOX-PP),

respectively, prepared as reported previously [34,60]. FBS was

added back to a final concentration of 10% and cultures

incubated for another 16 h (Fig. 7D). Notably, the levels of

active phospho-c-Jun were decreased by an average of 41% and

34% by LOX-PP treatment in A549 and H441 cells, respectively.

Total c-Jun was decreased by an average of 35% and 50%,

respectively in the LOX-PP-treated A549 and H441 cells. Fra-1

expression was decreased by an average of 30–32% and an

average decrease of 33–35% in Fra-2 expression was observed in

these two cell lines. A commensurate decrease in Blimp1 levels

resulted from LOX-PP treatment (,40% in A549 and H441

cells) (Fig. 7D). Thus LOX-PP reduces the increase in Blimp1

expression and its upstream activators c-Jun, Fra-1 and Fra-2

following serum stimulation.

Figure 5. Ectopic AP-1 subunits induce Blimp1 expression. (A)
H441 cells, growing in 6-well plates, were transfected with 1 mg of
vectors expressing the indicated AP-1 subunits or EV DNA (see bottom)
to make a 2 mg total. Upper panel. After 48 h, RNA was isolated and
subjected to Q-PCR. The levels of BLIMP1 mRNA normalized to GAPDH
mRNA are presented as mean 6 SD of three independent experiments.
Middle and lower panels. WCE were isolated and subjected to
immunoblotting (IB) for Blimp1 (Middle panels), and for c-Jun, Fra-1,
Fra-2, c-Fos and b-actin (Lower panels). (L exp., longer exposure; S exp.,
shorter exposure). Blimp1 levels, normalized to b-actin, were deter-
mined as in Fig. 1C and average values from two independent
experiments presented relative to EV DNA, set to 1.0. (B) H441 cells
were transiently transfected, in triplicate, with 0.3 mg of Blimp1-Luc,
0.3 mg of MSV-b-gal, and vectors expressing the indicated AP-1 subunits
(0.15 mg each) and EV DNA to a total of 1.0 mg DNA. Normalized values

of Blimp1 promoter activity are presented as the mean 6 SEM from two
experiments (EV DNA set to 1.0).
doi:10.1371/journal.pone.0033287.g005
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LOX-PP-mediated reduction in lung cancer cell migration
occurs via repression of Blimp1

To test the effects of LOX-PP on lung cancer cell migration,

A549 and H441 cells were transiently transfected with a LOX-PP

expressing cDNA or EV DNA. After 24 h, cells were subjected to

a migration assay. LOX-PP expression led to an average decrease

of 39% and 26% in migration of A549 and H441 cells,

respectively, compared to EV (Fig. 8A and 8B, upper panels).

Expression of LOX-PP in the media was confirmed by

immunoblot analysis (Fig. 8A and 8B, lower panels). Similar

results were also observed with addition of rLOX-PP, which

resulted in an ,40% decrease in migration (data not shown).

Next, in order to assess the role of Blimp1 in LOX-PP-

mediated decrease in lung cancer cell migration, we asked

whether ectopic Blimp1 expression can override the observed

inhibition. H441 cells were transiently transfected with EV DNA

or LOX-PP in the absence or presence of Blimp1 cDNA and

subjected to migration assays. Ectopic LOX-PP decreased

endogenous Blimp1 expression and led to a 26% reduction in

cell migration while ectopic Blimp1 increased cell migration by

43% (Fig. 8C), consistent with the earlier findings. Importantly,

LOX-PP-transfected cells expressing ectopic Blimp1 displayed an

ability to migrate at a level similar to those expressing ectopic

Blimp1 only. Immunoblot analysis confirmed ectopic expression

of LOX-PP and Blimp1 expression (Fig. 8D). Together these

results argue for a role of repression of Blimp1 expression in the

inhibition of migration by LOX-PP.

Figure 6. AP-1 subunits bind to the BLIMP1 promoter. (A) Schematic of the localization of the two TRE sites on the human BLIMP1 promoter.
Two primer sets encompassing these sites are shown: 1F/1R amplifies the 21647 bp TRE and 2F/2R amplifies the 21813 bp TRE. (B) H441 cells at
90% confluence in P100 plates were transfected with 4 mg of c-Jun expression vector, and after 48 h subjected to a ChIP assay using a control IgG or
c-Jun antibody, as described in the Materials and Methods. Input, 1% of the WCE. Positive (Pos.) control: a genomic region of the JUN promoter
containing two TREs (21 and 2120 bp). Negative (Neg.) control: region upstream of BLIMP1 transcription start site (,25.4 kB) that does not contain
any known TRE sites. (C) A549 lung cancer cells were incubated in serum free DMEM for 48 h. FBS was added back to 10%. Samples were harvested at
0, 15, 30 minutes or 1, 2, 4 h and RNA and WCE prepared. Upper panel: RNA was subjected to Q-PCR, in triplicate, and values for BLIMP1 normalized
to GAPDH RNA levels presented relative to the 0 time point which was set to 1.0. Data for the mean 6 SD from three independent experiments are
presented. Lower panels: WCE (25 mg) were subjected to immunoblot analysis for phospho-c-Jun (p-c-Jun), c-Jun, Fra-1, Fra-2, c-Fos AP-1 subunits,
and a-tubulin, which confirmed essentially equal loading control. Data shown is a representative of two independent experiments with similar results.
(D) A549 cells were incubated in serum free DMEM for 48 h, and stimulated with addition of FBS (final 10%) for 30 min. Whole cell lysates were
subjected to ChIP analysis using antibodies against c-Jun, Fra-1, Fra-2 or normal rabbit IgG, as described in part B. Data shown is a representative of
two independent experiments with similar results.
doi:10.1371/journal.pone.0033287.g006
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Physical interaction of LOX-PP with c-Raf inhibits Blimp1-
mediated cell migration

We recently noted that LOX-PP can physically interact with c-

Raf and Hsp70 in breast cancer cells [61]. Given the role of c-Raf

in activation of Blimp1, their physical association in lung cancer

cells was next tested. Association of c-Raf with LOX-PP in the

H1299 lung cancer line was monitored using GST-pull down

assays. Cells were transfected with a vector expressing LOX-PP-

GST or GST protein. LOX-PP-GST brought down c-Raf and

Hsp70, but not B-Raf, Hsp90, Erk1/2 and MEK1/2 (Fig. 9A).

Triton X-100 soluble lysates of A549 cells were immunoprecip-

itated with an antibody against either LOX-PP or rabbit control

IgG. The antibody against LOX-PP brought down the LOX-PP

peptide as well as c-Raf, confirming the ability of these

Figure 7. Ectopic LOX-PP reduces Blimp1 expression in lung cancer cells. (A) H1299-EV cells, and H1299-LOX-PP4 (PP4) and H1299-LOX-PP7
(PP7) clones, isolated as described previously [25], were treated in triplicate with 2 mg/ml dox for 48 h. RNA from two independent experiments was
subjected to Q-PCR and normalized values for BLIMP1 mRNA relative to GAPDH levels are presented as the mean 6 SEM (EV DNA set to 1.0). (B) A549-
EV, A549-hLOX-PP, A549-mLOX-PP dox-inducible stable populations were treated with 2 mg/ml dox for 48 h in DMEM supplemented with 0.5% FBS.
FBS was added back to 10% and cells incubated overnight. RNA from two independent experiments was subjected to Q-PCR and normalized values
for BLIMP1 mRNA relative to GAPDH levels are presented as the mean 6 SEM (EV DNA set to 1.0). Samples of medium (5 ml) were subjected to
immunoprecipitation followed by immunoblotting using V5 antibody for LOX-PP expression. (C) A549 and H1299 cells were transiently transfected
with human LOX-PP cDNA or EV DNA. After 48 h, media and WCE were prepared. Samples of media (50 ml) were subjected to immunoblotting for V5.
Samples of WCE (25 mg) were probed for Blimp1 and b-actin, and average normalized Blimp1 values from two independent experiments presented
relative to EV DNA, set to 1.0. (D) A549 and H441 cells were treated with purified recombinant LOX-PP protein at a final concentration of 4 or 1 mg/ml,
respectively, or the same volume of vehicle (water) in medium with 0.5% FBS. Twenty-four h later, FBS was added back to 10% and cultures incubated
overnight. WCE were subjected to immunoblotting for Blimp1, phospho-c-Jun (p-c-Jun), total c-Jun, Fra-1 and Fra-2 and a-tubulin, as a loading
control. Normalized Blimp1 and AP-1 subunit values from two independent experiments are presented relative to EV DNA, set to 1.0.
doi:10.1371/journal.pone.0033287.g007
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endogenous proteins to interact (Fig. 9B). The region of LOX-PP

encompassing aa 26 to 100 is necessary for its interaction with c-

Raf in breast cancer cells [61]. Lysates were prepared from H1299

cells ectopically expressing either GST, GST-LOX-PP WT or

GST-LOX-PP DM3 (with a deletion of aa 26–100) and subjected

to purification with Glutathione-Sepharose 4B beads. Binding of c-

Raf to full-length LOX-PP was readily detected, whereas no

binding was seen with the GST-LOX-PP DM3 protein, or with

the GST control protein (Fig. 9C). These results suggest that aa 26

to 100 of LOX-PP is necessary for its interaction with c-Raf in

H1299 cells. To assess the role of LOX-PP and c-Raf interaction

in migration, assays were performed 24 h after ectopic expression

of GST, full-length GST-LOX-PP WT, or GST-LOX-PP DM3 in

H1299 cells. An approximately 40% reduction was seen with

expression of full-length LOX-PP. In contrast, no reduction in

H1299 cell migration was seen with the LOX-PP DM3 mutant

(Fig. 9D). Lastly, a constitutively active mutant of MEK, which is

downstream of c-Raf, was able to override the inhibition of

migration by LOX-PP (Fig. 9E), confirming the importance of this

pathway. Thus, the domain comprising aa 26 to 100, which

mediates the interaction of LOX-PP with c-Raf, is required for

inhibition of migratory activity.

Discussion

Here we demonstrate that Blimp1, the zinc finger master

regulator of B and T cells, is aberrantly activated in lung cancer

cells by the oncogenic Ras/c-Raf to AP-1 pathway, and functions

to promote their migratory phenotype. Furthermore, high

BLIMP1 RNA typifies several other aggressive cancers frequently

driven by Ras signaling, including pancreatic and head and neck

carcinomas as well as glioblastomas. The anti-cancer peptide

LOX-PP, which was found to interact with c-Raf in lung cancer

cells, repressed the induction of AP-1. Blimp1, which was detected

in all five lung cancer cell lines examined, promoted lung cancer

cell migration as judged by both knockdown and ectopic

expression approaches. The ability of a dominant-negative Ras

(Ras S186), and of knockdown of K-Ras and c-Raf and multiple

AP-1 subunits to decrease Blimp1 levels in lung cancer cells

confirmed the role of this signaling axis in aberrant expression of

this zinc finger protein. Notably, c-Raf has recently been found

essential for development of K-Ras-driven NSCLCs [62]. The

ability of LOX-PP to inhibit this pathway and the observation that

lung cancers are typified by greatly reduced levels of LOX gene

expression [24,25], suggests the potential use of LOX-PP in

therapy of these cancers.

Mechanistically, Blimp1 expression is shown here to be

positively regulated by AP-1 subunits. To our knowledge, this is

the first study showing the induction of Blimp1 expression by AP-1

factors in epithelial cancer cells. Of note, deregulated AP-1 activity

alone is sufficient for neoplastic transformation and critically

necessary for the function of upstream dominant oncogenes,

including members of growth factor receptor family which signal

via the Ras-MAPK system [63]. AP-1 subunits including c-Jun, c-

Fos and Fra-1 have been implicated in promoting cell motility in

lung cancer [20,64,65]; although, the downstream targets were not

fully elucidated. The c-Fos AP-1 subunit was shown to induce

accelerated expression of Blimp1 upon CD40L/IL-4 treatment of

B cells [66]. Our data implicate c-Jun containing complexes (c-

Jun-c-Jun, c-Jun-Fra-1, c-Jun-Fra-2 and c-Jun-c-Fos) in Blimp1

expression in lung cancer cells. The observation that c-Jun, Fra-1

and Fra-2 AP-1 subunits are physically present on the TRE sites of

the BLIMP1 promoter indicates their direct control of transcrip-

tion following growth factor stimulation. Activation of ERK has

Figure 8. LOX-PP represses the migratory phenotype of lung
cancer cells via inhibiting Blimp1. (A) A549 and (B) H441 cells were
transfected with 2 mg of EV or human LOX-PP cDNA. Upper panels:
After 24 h, 16105 transfected cells were subjected to migration assay.
Lower panels: After 48 h, culture media was isolated and samples (50 ml
of 2 ml total) subjected to immunoblotting using an anti-V5 antibody
for LOX-PP. (C and D) H441 were transiently transfected with 1 mg of
LOX-PP or Blimp1 DNA alone or in combination, or EV DNA (2 mg total
DNA). (C) After 24 h. cells were subjected to migration assays, in
triplicate, for 16 h. The average migration from two independent
experiments 6 SEM is presented relative to the EV (set at 1.0). (D) WCE
and media were isolated. WCE samples (25 mg) were subjected to
immunoblotting for Blimp1 and a-tubulin. Media samples (50 ml) were
subjected to immunoblotting for LOX-PP-V5. Immunoblots from one of
two independent experiments with similar results are presented.
doi:10.1371/journal.pone.0033287.g008
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been found to lead to c-Jun phosphorylation at Ser 63 and 73

[67,68] which subsequently upregulates c-Jun expression via a

positive feed-back loop. In addition, Fra-1 and Fra-2 are directly

activated by ERK which may enhance their DNA binding in

conjunction with c-Jun [69]. These findings suggest that the Ras

downstream effectors c-Jun, Fra-1 and Fra-2 are all involved in the

expression of Blimp1 in lung cancer cells.

Microarray data from Oncomine confirmed upregulated

BLIMP1 mRNA expression is present in lung, pancreatic, head

and neck cancers, and glioblastomas. In addition to oncogenic Ras

mutations, 15–30% of samples of NSCLC, which make up 85% of

total lung cancers, were also found positive for overexpression of

EGFR [70], which signals via Ras, and has been implicated in

their increased ability to invade and metastasize [70]. It is known

that Ras mutations, especially activating K-Ras mutations, occur

in more than 95% of pancreatic cancers [50]. High frequencies of

EGFR overexpression have been reported in head and neck

squamous cell carcinomas [51] and glioblastomas [52]. All these

evidences suggest a role for Blimp1 as a mediator of the aberrantly

activated Ras/MAPK signaling pathway under pathological

conditions. Although Blimp1 may play an important etiologic

role in development of these cancers in vivo, unfortunately, as was

found with NF-kB, it cannot likely serve as a direct therapeutic

target for most cancers given its essential role in directing the

immune response. However, we hypothesized that as Blimp1 can

only repress genes that are being actively expressed, that a distinct

subset of targets will exist in transformed epithelial vs immune

cells. Our microarray data in breast cancer cells has confirmed this

hypothesis (Mathilde Romagnoli and G.E.S., unpublished obser-

vations). Together, these findings suggest that the observed

aberrant expression of Blimp1 in lung and other epithelial cancers

may have important clinical ramifications, leading to development

of new therapeutic modalities.
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Figure 9. LOX-PP inhibits the migratory phenotype of lung cancer cells via interaction with c-Raf. (A) H1299 cells were transfected with
expression plasmids for GST or LOX-PP-GST (PP-GST) and tagged proteins purified on Glutathione-Sepharose 4B beads. Bound proteins were
analyzed by immunoblotting for the indicated proteins. For estimation of the amounts of expressed proteins, 4% of each of the lysates was
immunoblotted (Input). (B) Triton X-100 extracts of A549 were immunoprecipitated with the indicated antibodies. The precipitated proteins were
analyzed by Western blotting for c-Raf and LOX-PP. As the band of precipitated LOX-PP migrated close to that of rabbit IgG light chain, Protein A-
conjugated HRP was used as a secondary ‘antibody’ to detect immunoprecipitated LOX-PP. (C) GST (EV), GST-LOX-PP WT (G-PP-WT), or GST-LOX-PP
DM3 (G-PP-DM3) were expressed in H1299 cells for 24 h and tagged proteins purified as in part A and subjected to Western blotting with the
indicated antibodies. Input = 4% of the lysate. (D) Either GST (EV), GST-LOX-PP WT or GST-LOX-PP DM3 (D26–100) were expressed in H1299. After
24 h, cells were subjected to a migration assay in triplicate for 16 h. Cells that migrated to the lower side of the filter were stained and quantified by
spectrometric determination at A570 nm. The average values from three independent experiments 6 SD presented relative to the EV control, set to 1.0.
P values were calculated from three independent experiments using Student’s t test. *, P,0.01. (E) GST (EV) or GST-LOX-PP (PP) was co-transfected in
H1299 cells in presence of a vector expressing a constitutively active MEK mutant (CA-MEK) or EV DNA (2) for 24 h. Cultures were subjected to a
migration assay for 16 h, in triplicate, as in part D. P values of three independent experiments were calculated using Student’s t test. *, P,0.01.
doi:10.1371/journal.pone.0033287.g009
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